{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T14:38:39Z","timestamp":1740148719586,"version":"3.37.3"},"reference-count":45,"publisher":"Springer Science and Business Media LLC","issue":"12","license":[{"start":{"date-parts":[[2023,10,11]],"date-time":"2023-10-11T00:00:00Z","timestamp":1696982400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,10,11]],"date-time":"2023-10-11T00:00:00Z","timestamp":1696982400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Sign Process Syst"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1007\/s11265-023-01895-3","type":"journal-article","created":{"date-parts":[[2023,10,11]],"date-time":"2023-10-11T12:02:49Z","timestamp":1697025769000},"page":"1425-1437","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Stealthy Energy Consumption-oriented Attacks on Training Stage in Deep Learning"],"prefix":"10.1007","volume":"95","author":[{"ORCID":"https:\/\/orcid.org\/0009-0008-7976-5431","authenticated-orcid":false,"given":"Wencheng","family":"Chen","sequence":"first","affiliation":[]},{"given":"Hongyu","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,11]]},"reference":[{"key":"1895_CR1","doi-asserted-by":"crossref","unstructured":"Wang, M., & Deng, W. (2020). Deep face recognition: a survey. Neurocomputing.","DOI":"10.1016\/j.neucom.2020.10.081"},{"issue":"1","key":"1895_CR2","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s11704-020-9240-8","volume":"15","author":"C Shi","year":"2021","unstructured":"Shi, C., Ding, J., Cao, X., Hu, L., Wu, B., & Li, X. (2021). Entity set expansion in knowledge graph: A heterogeneous information network perspective. Frontiers of Computer Science, 15(1), 1\u201312.","journal-title":"Frontiers of Computer Science"},{"key":"1895_CR3","doi-asserted-by":"crossref","unstructured":"Fu, Z., Gao, H., Guo, W., Jha, S. K., Jia, J., Liu, X., Long, B., Shi, J., Wang, S., & Zhou, M. (2020). Deep Learning for Search and Recommender Systems in Practice. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3515\u20133516.","DOI":"10.1145\/3394486.3406709"},{"issue":"2","key":"1895_CR4","doi-asserted-by":"publisher","first-page":"172","DOI":"10.1109\/MNET.001.1900243","volume":"34","author":"H Qiu","year":"2019","unstructured":"Qiu, H., Qiu, M., & Lu, R. (2019). Secure v2x communication network based on intelligent pki and edge computing. IEEE Network, 34(2), 172\u2013178.","journal-title":"IEEE Network"},{"key":"1895_CR5","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778.","DOI":"10.1109\/CVPR.2016.90"},{"key":"1895_CR6","unstructured":"Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. arXiv preprint arXiv:1706.03762."},{"key":"1895_CR7","unstructured":"Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805."},{"key":"1895_CR8","unstructured":"Zeng, W., Ren, X., Su, T., Wang, H., Liao, Y., Wang, Z., Jiang, X., Yang, Z., Wang, K., Zhang, X., et al. (2021). Pangu-$$\\alpha$$: Large-scale autoregressive pretrained chinese language models with auto-parallel computation. arXiv preprint arXiv:2104.12369."},{"issue":"3","key":"1895_CR9","first-page":"2124","volume":"17","author":"H Qiu","year":"2020","unstructured":"Qiu, H., Zheng, Q., Memmi, G., Lu, J., Qiu, M., & Thuraisingham, B. (2020). Deep residual learning-based enhanced jpeg compression in the internet of things. IEEE Transactions on Industrial Informatics, 17(3), 2124\u20132133.","journal-title":"IEEE Transactions on Industrial Informatics"},{"issue":"8","key":"1895_CR10","doi-asserted-by":"publisher","first-page":"1655","DOI":"10.1109\/JPROC.2019.2921977","volume":"107","author":"J Chen","year":"2019","unstructured":"Chen, J., & Ran, X. (2019). Deep learning with edge computing: A review. Proceedings of the IEEE, 107(8), 1655\u20131674.","journal-title":"Proceedings of the IEEE"},{"key":"1895_CR11","doi-asserted-by":"crossref","unstructured":"Joshi, A. V. (2020). Amazon\u2019s machine learning toolkit: Sagemaker. In: Machine Learning and Artificial Intelligence, pp. 233\u2013243. Springer.","DOI":"10.1007\/978-3-030-26622-6_24"},{"key":"1895_CR12","unstructured":"Ciaburro, G., Ayyadevara, V. K., & Perrier, A. (2018). Hands-On Machine Learning on Google Cloud Platform: Implementing Smart and Efficient Analytics Using Cloud ML Engine. Packt Publishing Ltd."},{"key":"1895_CR13","doi-asserted-by":"crossref","unstructured":"Barga, R., Fontama, V., & Tok, W. H. (2015). Introducing microsoft azure machine learning. In: Predictive Analytics with Microsoft Azure Machine Learning, pp. 21\u201343. Springer.","DOI":"10.1007\/978-1-4842-1200-4_2"},{"issue":"248","key":"1895_CR14","first-page":"1","volume":"21","author":"P Henderson","year":"2020","unstructured":"Henderson, P., Hu, J., Romoff, J., Brunskill, E., Jurafsky, D., & Pineau, J. (2020). Towards the systematic reporting of the energy and carbon footprints of machine learning. Journal of Machine Learning Research, 21(248), 1\u201343.","journal-title":"Journal of Machine Learning Research"},{"key":"1895_CR15","unstructured":"So, D., Le, Q., & Liang, C. (2019). The evolved transformer. In: International Conference on Machine Learning, pp. 5877\u20135886. PMLR."},{"key":"1895_CR16","doi-asserted-by":"crossref","unstructured":"Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy considerations for deep learning in NLP. arXiv preprint arXiv:1906.02243.","DOI":"10.18653\/v1\/P19-1355"},{"key":"1895_CR17","doi-asserted-by":"crossref","unstructured":"Wang, Y., Ding, C., Li, Z., Yuan, G., Liao, S., Ma, X., Yuan, B., Qian, X., Tang, J., Qiu, Q., et al. (2018). Towards ultra-high performance and energy efficiency of deep learning systems: an algorithm-hardware co-optimization framework. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32.","DOI":"10.1609\/aaai.v32i1.11653"},{"key":"1895_CR18","doi-asserted-by":"crossref","unstructured":"Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers, A., et al. (2017). In-datacenter performance analysis of a tensor processing unit. In: Proceedings of the 44th Annual International Symposium on Computer Architecture, pp. 1\u201312.","DOI":"10.1145\/3079856.3080246"},{"key":"1895_CR19","doi-asserted-by":"crossref","unstructured":"Qiu, H., Dong, T., Zhang, T., Lu, J., Memmi, G., & Qiu, M. (2020). Adversarial attacks against network intrusion detection in IoT systems. IEEE Internet of Things Journal.","DOI":"10.1109\/JIOT.2020.3048038"},{"key":"1895_CR20","unstructured":"Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2013). Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199."},{"key":"1895_CR21","unstructured":"Li, Y., Wu, B., Jiang, Y., Li, Z., & Xia, S.-T. (2020). Backdoor learning: A survey. arXiv preprint arXiv:2007.08745."},{"key":"1895_CR22","doi-asserted-by":"crossref","unstructured":"Zhai, T., Li, Y., Zhang, Z., Wu, B., Jiang, Y., & Xia, S.-T. (2021). Backdoor attack against speaker verification. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2560\u20132564. IEEE.","DOI":"10.1109\/ICASSP39728.2021.9413468"},{"key":"1895_CR23","doi-asserted-by":"crossref","unstructured":"Qiu, H., Zeng, Y., Guo, S., Zhang, T., Qiu, M., & Thuraisingham, B. (2021). Deepsweep: An evaluation framework for mitigating dnn backdoor attacks using data augmentation. In: Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security, pp. 363\u2013377.","DOI":"10.1145\/3433210.3453108"},{"key":"1895_CR24","doi-asserted-by":"crossref","unstructured":"Carlini, N., & Wagner, D. (2017). Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (sp), pp. 39\u201357. IEEE.","DOI":"10.1109\/SP.2017.49"},{"key":"1895_CR25","unstructured":"Athalye, A., Carlini, N., & Wagner, D. (2018). Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. In: International Conference on Machine Learning, pp. 274\u2013283. PMLR."},{"key":"1895_CR26","doi-asserted-by":"crossref","unstructured":"Qiu, H., Zeng, Y., Zheng, Q., Guo, S., Zhang, T., & Li, H. (2021). An efficient preprocessing-based approach to mitigate advanced adversarial attacks. IEEE Transactions on Computers.","DOI":"10.1109\/TC.2021.3076826"},{"key":"1895_CR27","unstructured":"Hong, S., Kaya, Y., Modoranu, I.-V., & Dumitra\u015f, T. (2020). A Panda? No, It\u2019s a Sloth: Slowdown Attacks on Adaptive Multi-Exit Neural Network Inference. arXiv preprint arXiv:2010.02432."},{"key":"1895_CR28","doi-asserted-by":"crossref","unstructured":"\u00c7alik, R. C., & Demirci, M. F. (2018). Cifar-10 image classification with convolutional neural networks for embedded systems. In: 2018 IEEE\/ACS 15th International Conference on Computer Systems and Applications (AICCSA), pp. 1\u20132. IEEE.","DOI":"10.1109\/AICCSA.2018.8612873"},{"key":"1895_CR29","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI Conference on Artificial Intelligence.","DOI":"10.1609\/aaai.v31i1.11231"},{"key":"1895_CR30","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1016\/j.ins.2020.05.013","volume":"536","author":"Q Zhang","year":"2020","unstructured":"Zhang, Q., Bai, C., Liu, Z., Yang, L. T., Yu, H., Zhao, J., & Yuan, H. (2020). A gpu-based residual network for medical image classification in smart medicine. Information Sciences, 536, 91\u2013100.","journal-title":"Information Sciences"},{"key":"1895_CR31","doi-asserted-by":"publisher","first-page":"386","DOI":"10.1016\/j.ins.2019.10.069","volume":"513","author":"MM Hassan","year":"2020","unstructured":"Hassan, M. M., Gumaei, A., Alsanad, A., Alrubaian, M., & Fortino, G. (2020). A hybrid deep learning model for efficient intrusion detection in big data environment. Information Sciences, 513, 386\u2013396.","journal-title":"Information Sciences"},{"key":"1895_CR32","doi-asserted-by":"crossref","unstructured":"He, Y., Liu, P., Wang, Z., Hu, Z., & Yang, Y. (2019). Filter pruning via geometric median for deep convolutional neural networks acceleration. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 4340\u20134349.","DOI":"10.1109\/CVPR.2019.00447"},{"key":"1895_CR33","unstructured":"Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531."},{"key":"1895_CR34","unstructured":"Han, S., Mao, H., & Dally, W. J. (2015). Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149."},{"issue":"3","key":"1895_CR35","first-page":"513","volume":"36","author":"C Wang","year":"2016","unstructured":"Wang, C., Gong, L., Yu, Q., Li, X., Xie, Y., & Zhou, X. (2016). DLAU: A scalable deep learning accelerator unit on FPGA. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 36(3), 513\u2013517.","journal-title":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems"},{"key":"1895_CR36","doi-asserted-by":"crossref","unstructured":"Liao, H., Tu, J., Xia, J., & Zhou, X. (2019). Davinci: A scalable architecture for neural network computing. In: 2019 IEEE Hot Chips 31 Symposium (HCS), pp. 1\u201344. IEEE Computer Society.","DOI":"10.1109\/HOTCHIPS.2019.8875654"},{"issue":"1","key":"1895_CR37","doi-asserted-by":"publisher","first-page":"269","DOI":"10.1145\/2654822.2541967","volume":"42","author":"T Chen","year":"2014","unstructured":"Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., & Temam, O. (2014). Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning. ACM SIGARCH Computer Architecture News, 42(1), 269\u2013284.","journal-title":"ACM SIGARCH Computer Architecture News"},{"key":"1895_CR38","doi-asserted-by":"crossref","unstructured":"Acun, B., Murphy, M., Wang, X., Nie, J., Wu, C.-J., & Hazelwood, K. (2021). Understanding training efficiency of deep learning recommendation models at scale. In: 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pp. 802\u2013814. IEEE.","DOI":"10.1109\/HPCA51647.2021.00072"},{"key":"1895_CR39","doi-asserted-by":"publisher","first-page":"146","DOI":"10.1016\/j.ins.2016.01.039","volume":"364","author":"L Zhang","year":"2016","unstructured":"Zhang, L., & Suganthan, P. N. (2016). A survey of randomized algorithms for training neural networks. Information Sciences, 364, 146\u2013155.","journal-title":"Information Sciences"},{"key":"1895_CR40","doi-asserted-by":"crossref","unstructured":"Akita, R., Yoshihara, A., Matsubara, T., & Uehara, K. (2016). Deep learning for stock prediction using numerical and textual information. In: 2016 IEEE\/ACIS 15th International Conference on Computer and Information Science (ICIS), pp. 1\u20136. IEEE.","DOI":"10.1109\/ICIS.2016.7550882"},{"key":"1895_CR41","unstructured":"Qiu, H., Noura, H., Qiu, M., Ming, Z., & Memmi, G. (2019). A user-centric data protection method for cloud storage based on invertible DWT. IEEE Transactions on Cloud Computing."},{"key":"1895_CR42","doi-asserted-by":"crossref","unstructured":"Grosse, K., Trost, T. A., Mosbach, M., Backes, M., & Klakow, D. (2019). On the security relevance of weights in deep learning. arXiv preprint arXiv:1902.03020.","DOI":"10.1007\/978-3-030-61609-0_1"},{"key":"1895_CR43","doi-asserted-by":"publisher","first-page":"354","DOI":"10.1016\/j.patcog.2017.10.013","volume":"77","author":"J Gu","year":"2018","unstructured":"Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., et al. (2018). Recent advances in convolutional neural networks. Pattern Recognition, 77, 354\u2013377.","journal-title":"Pattern Recognition"},{"key":"1895_CR44","unstructured":"Shumailov, I., Shumaylov, Z., Kazhdan, D., Zhao, Y., Papernot, N., Erdogdu, M. A., & Anderson, R. (2021). Manipulating SGD with data ordering attacks. arXiv preprint arXiv:2104.09667."},{"key":"1895_CR45","unstructured":"Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A. (2017). Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083."}],"container-title":["Journal of Signal Processing Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11265-023-01895-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11265-023-01895-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11265-023-01895-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,17]],"date-time":"2024-01-17T10:11:51Z","timestamp":1705486311000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11265-023-01895-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10,11]]},"references-count":45,"journal-issue":{"issue":"12","published-print":{"date-parts":[[2023,12]]}},"alternative-id":["1895"],"URL":"https:\/\/doi.org\/10.1007\/s11265-023-01895-3","relation":{},"ISSN":["1939-8018","1939-8115"],"issn-type":[{"type":"print","value":"1939-8018"},{"type":"electronic","value":"1939-8115"}],"subject":[],"published":{"date-parts":[[2023,10,11]]},"assertion":[{"value":"18 May 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"29 August 2023","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"21 September 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"11 October 2023","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"Not applicable.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethics Approval"}},{"value":"Yes.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Consent to Participate"}},{"value":"Yes.","order":4,"name":"Ethics","group":{"name":"EthicsHeading","label":"Consent for Publication"}},{"value":"The authors have no relevant financial or non-financial interests to disclose.","order":5,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing Interests"}}]}}