{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T14:38:34Z","timestamp":1740148714167,"version":"3.37.3"},"reference-count":40,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2022,7,22]],"date-time":"2022-07-22T00:00:00Z","timestamp":1658448000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,7,22]],"date-time":"2022-07-22T00:00:00Z","timestamp":1658448000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61907031"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Sign Process Syst"],"published-print":{"date-parts":[[2023,1]]},"DOI":"10.1007\/s11265-022-01800-4","type":"journal-article","created":{"date-parts":[[2022,7,22]],"date-time":"2022-07-22T19:45:22Z","timestamp":1658519122000},"page":"77-88","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["GC-Net: An Unsupervised Network for Gaussian Curvature Optimization on Images"],"prefix":"10.1007","volume":"95","author":[{"given":"Wenming","family":"Tang","sequence":"first","affiliation":[]},{"given":"Zewei","family":"Lin","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-5702-1927","authenticated-orcid":false,"given":"Yuanhao","family":"Gong","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,7,22]]},"reference":[{"key":"1800_CR1","doi-asserted-by":"crossref","unstructured":"Gong, Y., & Sbalzarini, I.\u00a0F. (2013). Local weighted gaussian curvature for image processing. In 2013 IEEE International Conference on Image Processing (pp. 534\u2013538). IEEE.","DOI":"10.1109\/ICIP.2013.6738110"},{"key":"1800_CR2","doi-asserted-by":"publisher","first-page":"1066","DOI":"10.1002\/num.22042","volume":"32","author":"C Brito-Loeza","year":"2016","unstructured":"Brito-Loeza, C., Chen, K., & Uc-Cetina, V. (2016). Image denoising using the gaussian curvature of the image surface. Numerical Methods for Partial Differential Equations, 32, 1066\u20131089.","journal-title":"Numerical Methods for Partial Differential Equations"},{"key":"1800_CR3","doi-asserted-by":"crossref","unstructured":"Tang, W., Zhou, L., & Gong, Y. (2021). Real-time optimizing weighted gaussian curvature for 4k videos. In 2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP) (pp. 1\u20136). IEEE.","DOI":"10.1109\/MLSP52302.2021.9596473"},{"key":"1800_CR4","unstructured":"Shrikhande, N., & Ramaswamy, S. (1995). Image segmentation using gaussian curvature. In Intelligent Robots and Computer Vision XIV: Algorithms, Techniques, Active Vision, and Materials Handling (pp. 654\u2013661). International Society for Optics and Photonics volume 2588."},{"key":"1800_CR5","doi-asserted-by":"publisher","first-page":"74","DOI":"10.1515\/cmb-2020-0101","volume":"8","author":"A Akopyan","year":"2020","unstructured":"Akopyan, A., & Edelsbrunner, H. (2020). The weighted gaussian curvature derivative of a space-filling diagram. Computational and Mathematical Biophysics, 8, 74\u201388.","journal-title":"Computational and Mathematical Biophysics"},{"key":"1800_CR6","doi-asserted-by":"publisher","first-page":"187","DOI":"10.1137\/120901246","volume":"7","author":"M Bertalm\u00edo","year":"2014","unstructured":"Bertalm\u00edo, M., & Levine, S. (2014). Denoising an image by denoising its curvature image. SIAM Journal on Imaging Sciences, 7, 187\u2013211.","journal-title":"SIAM Journal on Imaging Sciences"},{"key":"1800_CR7","doi-asserted-by":"publisher","first-page":"449","DOI":"10.1016\/j.sigpro.2014.04.029","volume":"105","author":"A El Chakik","year":"2014","unstructured":"El Chakik, A., Elmoataz, A., & Desquesnes, X. (2014). Mean curvature flow on graphs for image and manifold restoration and enhancement. Signal Processing, 105, 449\u2013463.","journal-title":"Signal Processing"},{"key":"1800_CR8","doi-asserted-by":"publisher","first-page":"81","DOI":"10.1023\/A:1021897212261","volume":"18","author":"B Fischer","year":"2003","unstructured":"Fischer, B., & Modersitzki, J. (2003). Curvature based image registration. Journal of Mathematical Imaging and Vision, 18, 81\u201385.","journal-title":"Journal of Mathematical Imaging and Vision"},{"key":"1800_CR9","doi-asserted-by":"publisher","first-page":"329","DOI":"10.1016\/j.sigpro.2019.06.020","volume":"164","author":"Y Gong","year":"2019","unstructured":"Gong, Y., & Goksel, O. (2019). Weighted mean curvature. Signal Processing, 164, 329\u2013339.","journal-title":"Signal Processing"},{"key":"1800_CR10","doi-asserted-by":"publisher","first-page":"95","DOI":"10.1137\/140962164","volume":"8","author":"M Myllykoski","year":"2015","unstructured":"Myllykoski, M., Glowinski, R., Karkkainen, T., & Rossi, T. (2015). A new augmented lagrangian approach for l$$\\vee$$1-mean curvature image denoising. SIAM Journal on Imaging Sciences, 8, 95\u2013125.","journal-title":"SIAM Journal on Imaging Sciences"},{"key":"1800_CR11","unstructured":"Lu, B., Wang, H., & Lin, Z. (2011). High order gaussian curvature flow for image smoothing. In 2011 International Conference on Multimedia Technology (pp. 5888\u20135891). IEEE."},{"key":"1800_CR12","doi-asserted-by":"crossref","unstructured":"Li, Y., Agustsson, E., Gu, S., Timofte, R., & Van\u00a0Gool, L. (2018). Carn: Convolutional anchored regression network for fast and accurate single image super-resolution. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops.","DOI":"10.1007\/978-3-030-11021-5_11"},{"key":"1800_CR13","doi-asserted-by":"crossref","unstructured":"Li, Y., Tsiminaki, V., Timofte, R., Pollefeys, M., & Gool, L.\u00a0V. (2019). 3d appearance super-resolution with deep learning. In Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (pp. 9671\u20139680).","DOI":"10.1109\/CVPR.2019.00990"},{"key":"1800_CR14","doi-asserted-by":"crossref","unstructured":"Lim, B., Son, S., Kim, H., Nah, S., & Mu\u00a0Lee, K. (2017). Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops (pp. 136\u2013144).","DOI":"10.1109\/CVPRW.2017.151"},{"key":"1800_CR15","doi-asserted-by":"crossref","unstructured":"Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y., & Change\u00a0Loy, C. (2018). Esrgan: Enhanced super-resolution generative adversarial networks. In Proceedings of the European conference on computer vision (ECCV) workshops.","DOI":"10.1007\/978-3-030-11021-5_5"},{"key":"1800_CR16","doi-asserted-by":"crossref","unstructured":"Zhang, K., Li, Y., Zuo, W., Zhang, L., Van Gool, L., spsampsps Timofte, R. (2021). Plug-and-play image restoration with deep denoiser prior. IEEE Transactions on Pattern Analysis and Machine. (Intelligence).","DOI":"10.1109\/TPAMI.2021.3088914"},{"key":"1800_CR17","doi-asserted-by":"crossref","unstructured":"Fan, Q., Yang, J., Hua, G., Chen, B., & Wipf, D. (2017). A generic deep architecture for single image reflection removal and image smoothing. In Proceedings of the IEEE International Conference on Computer Vision (pp. 3238\u20133247).","DOI":"10.1109\/ICCV.2017.351"},{"key":"1800_CR18","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3272127.3275081","volume":"37","author":"Q Fan","year":"2018","unstructured":"Fan, Q., Yang, J., Wipf, D., Chen, B., & Tong, X. (2018). Image smoothing via unsupervised learning. ACM Transactions on Graphics (TOG), 37, 1\u201314.","journal-title":"ACM Transactions on Graphics (TOG)"},{"key":"1800_CR19","doi-asserted-by":"crossref","unstructured":"Verbin, D., & Zickler, T. (2021). Field of junctions: Extracting boundary structure at low snr. In Proceedings of the IEEE\/CVF International Conference on Computer Vision (pp. 6869\u20136878).","DOI":"10.1109\/ICCV48922.2021.00679"},{"key":"1800_CR20","doi-asserted-by":"publisher","first-page":"3556","DOI":"10.1109\/TIP.2019.2908778","volume":"28","author":"F Zhu","year":"2019","unstructured":"Zhu, F., Liang, Z., Jia, X., Zhang, L., & Yu, Y. (2019). A benchmark for edge-preserving image smoothing. IEEE Transactions on Image Processing, 28, 3556\u20133570.","journal-title":"IEEE Transactions on Image Processing"},{"key":"1800_CR21","doi-asserted-by":"publisher","first-page":"898","DOI":"10.1109\/TPAMI.2010.161","volume":"33","author":"P Arbelaez","year":"2010","unstructured":"Arbelaez, P., Maire, M., Fowlkes, C., & Malik, J. (2010). Contour detection and hierarchical image segmentation. IEEE transactions on pattern analysis and machine intelligence, 33, 898\u2013916.","journal-title":"IEEE transactions on pattern analysis and machine intelligence"},{"key":"1800_CR22","unstructured":"Weisstein, E.\u00a0W. (2008). Gaussian curvature. https:\/\/mathworld.wolfram.com\/"},{"key":"1800_CR23","doi-asserted-by":"publisher","first-page":"904","DOI":"10.1109\/TIP.2005.849294","volume":"14","author":"S-H Lee","year":"2005","unstructured":"Lee, S.-H., & Seo, J. K. (2005). Noise removal with gauss curvature-driven diffusion. IEEE Transactions on Image Processing, 14, 904\u2013909.","journal-title":"IEEE Transactions on Image Processing"},{"key":"1800_CR24","doi-asserted-by":"publisher","first-page":"555","DOI":"10.1109\/TIP.2013.2291328","volume":"23","author":"L Bao","year":"2013","unstructured":"Bao, L., Song, Y., Yang, Q., Yuan, H., & Wang, G. (2013). Tree filtering: Efficient structure-preserving smoothing with a minimum spanning tree. IEEE Transactions on Image Processing, 23, 555\u2013569.","journal-title":"IEEE Transactions on Image Processing"},{"key":"1800_CR25","first-page":"1","volume":"28","author":"R Fattal","year":"2009","unstructured":"Fattal, R. (2009). Edge-avoiding wavelets and their applications. ACM Transactions on Graphics (TOG), 28, 1\u201310.","journal-title":"ACM Transactions on Graphics (TOG)"},{"key":"1800_CR26","doi-asserted-by":"publisher","first-page":"1397","DOI":"10.1109\/TPAMI.2012.213","volume":"35","author":"K He","year":"2012","unstructured":"He, K., Sun, J., & Tang, X. (2012). Guided image filtering. IEEE transactions on pattern analysis and machine intelligence, 35, 1397\u20131409.","journal-title":"IEEE transactions on pattern analysis and machine intelligence"},{"key":"1800_CR27","doi-asserted-by":"publisher","first-page":"629","DOI":"10.1109\/34.56205","volume":"12","author":"P Perona","year":"1990","unstructured":"Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 629\u2013639.","journal-title":"IEEE Transactions on pattern analysis and machine intelligence"},{"key":"1800_CR28","doi-asserted-by":"crossref","unstructured":"Tomasi, C., & Manduchi, R. (1998). Bilateral filtering for gray and color images. In Sixth international conference on computer vision (IEEE Cat. No. 98CH36271) (pp. 839\u2013846). IEEE.","DOI":"10.1109\/ICCV.1998.710815"},{"key":"1800_CR29","doi-asserted-by":"crossref","unstructured":"Yin, H., Gong, Y., & Qiu, G. (2019). Side window filtering. In Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (pp. 8758\u20138766).","DOI":"10.1109\/CVPR.2019.00896"},{"key":"1800_CR30","doi-asserted-by":"crossref","unstructured":"Zhang, Q., Shen, X., Xu, L., & Jia, J. (2014a). Rolling guidance filter. In European conference on computer vision (pp. 815\u2013830). Springer.","DOI":"10.1007\/978-3-319-10578-9_53"},{"key":"1800_CR31","doi-asserted-by":"crossref","unstructured":"Zhang, Q., Xu, L., & Jia, J. (2014b). 100+ times faster weighted median filter (wmf). In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2830\u20132837).","DOI":"10.1109\/CVPR.2014.362"},{"key":"1800_CR32","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2766946","volume":"34","author":"S Bi","year":"2015","unstructured":"Bi, S., Han, X., & Yu, Y. (2015). An l 1 image transform for edge-preserving smoothing and scene-level intrinsic decomposition. ACM Transactions on Graphics (TOG), 34, 1\u201312.","journal-title":"ACM Transactions on Graphics (TOG)"},{"key":"1800_CR33","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/1360612.1360666","volume":"27","author":"Z Farbman","year":"2008","unstructured":"Farbman, Z., Fattal, R., Lischinski, D., & Szeliski, R. (2008). Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Transactions on Graphics (TOG), 27, 1\u201310.","journal-title":"ACM Transactions on Graphics (TOG)"},{"key":"1800_CR34","doi-asserted-by":"publisher","first-page":"5638","DOI":"10.1109\/TIP.2014.2366600","volume":"23","author":"D Min","year":"2014","unstructured":"Min, D., Choi, S., Lu, J., Ham, B., Sohn, K., & Do, M. N. (2014). Fast global image smoothing based on weighted least squares. IEEE Transactions on Image Processing, 23, 5638\u20135653.","journal-title":"IEEE Transactions on Image Processing"},{"key":"1800_CR35","doi-asserted-by":"crossref","unstructured":"Xu, L., Lu, C., Xu, Y., & Jia, J. (2011). Image smoothing via l 0 gradient minimization. In Proceedings of the 2011 SIGGRAPH Asia conference (pp. 1\u201312).","DOI":"10.1145\/2070781.2024208"},{"key":"1800_CR36","doi-asserted-by":"crossref","unstructured":"Li, Y., Huang, J.-B., Ahuja, N., & Yang, M.-H. (2016). Deep joint image filtering. In European Conference on Computer Vision (pp. 154\u2013169). Springer.","DOI":"10.1007\/978-3-319-46493-0_10"},{"key":"1800_CR37","doi-asserted-by":"crossref","unstructured":"Liu, S., Pan, J., & Yang, M.-H. (2016). Learning recursive filters for low-level vision via a hybrid neural network. In European Conference on Computer Vision (pp. 560\u2013576). Springer.","DOI":"10.1007\/978-3-319-46493-0_34"},{"key":"1800_CR38","unstructured":"Xu, L., Ren, J., Yan, Q., Liao, R., & Jia, J. (2015). Deep edge-aware filters. In International Conference on Machine Learning (pp. 1669\u20131678). PMLR."},{"key":"1800_CR39","doi-asserted-by":"publisher","first-page":"1786","DOI":"10.1109\/TIP.2017.2658954","volume":"26","author":"Y Gong","year":"2017","unstructured":"Gong, Y., & Sbalzarini, I. F. (2017). Curvature filters efficiently reduce certain variational energies. IEEE Transactions on Image Processing, 26, 1786\u20131798.","journal-title":"IEEE Transactions on Image Processing"},{"key":"1800_CR40","doi-asserted-by":"publisher","first-page":"259","DOI":"10.1016\/0167-2789(92)90242-F","volume":"60","author":"LI Rudin","year":"1992","unstructured":"Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60, 259\u2013268.","journal-title":"Physica D: Nonlinear Phenomena"}],"container-title":["Journal of Signal Processing Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11265-022-01800-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11265-022-01800-4\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11265-022-01800-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,2,28]],"date-time":"2023-02-28T19:27:47Z","timestamp":1677612467000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11265-022-01800-4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7,22]]},"references-count":40,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2023,1]]}},"alternative-id":["1800"],"URL":"https:\/\/doi.org\/10.1007\/s11265-022-01800-4","relation":{},"ISSN":["1939-8018","1939-8115"],"issn-type":[{"type":"print","value":"1939-8018"},{"type":"electronic","value":"1939-8115"}],"subject":[],"published":{"date-parts":[[2022,7,22]]},"assertion":[{"value":"27 February 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"5 June 2022","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"15 July 2022","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 July 2022","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of Interest"}}]}}