{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T16:58:33Z","timestamp":1726851513143},"reference-count":69,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2023,1,7]],"date-time":"2023-01-07T00:00:00Z","timestamp":1673049600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,1,7]],"date-time":"2023-01-07T00:00:00Z","timestamp":1673049600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Int J Comput Vis"],"published-print":{"date-parts":[[2023,4]]},"abstract":"Abstract<\/jats:title>The development of neural relighting techniques has by far outpaced the rate of their corresponding training data (e.g.,<\/jats:italic> OLAT) generation. For example, high-quality relighting from a single portrait image still requires supervision from comprehensive datasets covering broad diversities in gender, race, complexion, and facial geometry. We present a hybrid parametric neural relighting (PN-Relighting) framework for single portrait relighting, using a much smaller OLAT dataset or SMOLAT. At the core of PN-Relighting, we employ parametric 3D faces coupled with appearance inference and implicit material modelling to enrich SMOLAT for handling in-the-wild images. Specifically, we tailor an appearance inference module to generate detailed geometry and albedo on top of the parametric face and develop a neural rendering module to first construct an implicit material representation from SMOLAT and then conduct self-supervised training on in-the-wild image datasets. Comprehensive experiments show that PN-Relighting produces comparable high-quality relighting to TotalRelighting (Pandey et al., 2021), but with a smaller dataset. It further improves shape estimation and naturally supports free-viewpoint rendering and partial skin material editing. PN-Relighting also serves as a data augmenter to produce rich OLAT datasets beyond the original capture.<\/jats:p>","DOI":"10.1007\/s11263-022-01730-5","type":"journal-article","created":{"date-parts":[[2023,1,7]],"date-time":"2023-01-07T10:05:48Z","timestamp":1673085948000},"page":"1002-1021","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Free-view Face Relighting Using a Hybrid Parametric Neural Model on a SMALL-OLAT Dataset"],"prefix":"10.1007","volume":"131","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0517-3475","authenticated-orcid":false,"given":"Youjia","family":"Wang","sequence":"first","affiliation":[]},{"given":"Kai","family":"He","sequence":"additional","affiliation":[]},{"given":"Taotao","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Kaixin","family":"Yao","sequence":"additional","affiliation":[]},{"given":"Nianyi","family":"Li","sequence":"additional","affiliation":[]},{"given":"Lan","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Jingyi","family":"Yu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,1,7]]},"reference":[{"issue":"3","key":"1730_CR1","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3447648","volume":"40","author":"R Abdal","year":"2021","unstructured":"Abdal, R., Zhu, P., Mitra, N. J., & Wonka, P. (2021). Styleflow: Attribute-conditioned exploration of stylegan-generated images using conditional continuous normalizing flows. ACM Transactions on Graphics (TOG), 40(3), 1\u201321.","journal-title":"ACM Transactions on Graphics (TOG)"},{"key":"1730_CR2","doi-asserted-by":"crossref","unstructured":"Alp\u00a0Guler, R., Trigeorgis, G., Antonakos, E., Snape, P., Zafeiriou, S., Kokkinos, I. (2017) Densereg: Fully convolutional dense shape regression in-the-wild. In Proceedings of the IEEE conference on computer vision and pattern recognition, (pp 6799\u20136808)","DOI":"10.1109\/CVPR.2017.280"},{"issue":"2","key":"1730_CR3","doi-asserted-by":"publisher","first-page":"218","DOI":"10.1109\/TPAMI.2003.1177153","volume":"25","author":"R Basri","year":"2003","unstructured":"Basri, R., & Jacobs, D. W. (2003). Lambertian reflectance and linear subspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(2), 218\u2013233.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"1730_CR4","doi-asserted-by":"crossref","unstructured":"Beeler, T., Bickel, B., Beardsley, P., Sumner, B., Gross, M. (2010) High-quality single-shot capture of facial geometry. In ACM SIGGRAPH 2010 papers, (pp 1\u20139)","DOI":"10.1145\/1778765.1778777"},{"key":"1730_CR5","doi-asserted-by":"crossref","unstructured":"Bi, S., Xu, Z., Sunkavalli, K., Kriegman, D., Ramamoorthi, R. (2020) Deep 3d capture: Geometry and reflectance from sparse multi-view images. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 5960\u20135969","DOI":"10.1109\/CVPR42600.2020.00600"},{"key":"1730_CR6","doi-asserted-by":"crossref","unstructured":"Blanz, V., Vetter, T. (1999) A morphable model for the synthesis of 3d faces. In Proceedings of the 26th annual conference on computer graphics and interactive techniques, pp 187\u2013194","DOI":"10.1145\/311535.311556"},{"issue":"2","key":"1730_CR7","doi-asserted-by":"publisher","first-page":"233","DOI":"10.1007\/s11263-017-1009-7","volume":"126","author":"J Booth","year":"2018","unstructured":"Booth, J., Roussos, A., Ponniah, A., Dunaway, D., & Zafeiriou, S. (2018). Large scale 3d morphable models. International Journal of Computer Vision, 126(2), 233\u2013254.","journal-title":"International Journal of Computer Vision"},{"key":"1730_CR8","doi-asserted-by":"crossref","unstructured":"Cao, X., Chen, Z., Chen, A., Chen, X., Li, S., Yu, J. (2018) Sparse photometric 3d face reconstruction guided by morphable models. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4635\u20134644","DOI":"10.1109\/CVPR.2018.00487"},{"key":"1730_CR9","doi-asserted-by":"crossref","unstructured":"Chabert, CF., Einarsson, P., Jones, A., Lamond, B., Ma, WC., Sylwan, S., Hawkins, T., Debevec, P. (2006) Relighting human locomotion with flowed reflectance fields. In ACM SIGGRAPH 2006 sketches, pp 76\u2013es","DOI":"10.1145\/1179849.1179944"},{"key":"1730_CR10","doi-asserted-by":"crossref","unstructured":"Chan, ER., Lin, CZ., Chan, MA., Nagano, K., Pan, B., Mello, SD., Gallo, O., Guibas, L., Tremblay, J., Khamis, S., Karras, T., Wetzstein, G. (2022) Efficient geometry-aware 3D generative adversarial networks. In CVPR","DOI":"10.1109\/CVPR52688.2022.01565"},{"issue":"2","key":"1730_CR11","doi-asserted-by":"publisher","first-page":"547","DOI":"10.1007\/s11263-019-01260-7","volume":"128","author":"H Dai","year":"2020","unstructured":"Dai, H., Pears, N., Smith, W., & Duncan, C. (2020). Statistical modeling of craniofacial shape and texture. International Journal of Computer Vision, 128(2), 547\u2013571.","journal-title":"International Journal of Computer Vision"},{"key":"1730_CR12","doi-asserted-by":"crossref","unstructured":"Debevec, P., Hawkins, T., Tchou, C., Duiker, HP., Sarokin, W., Sagar, M. (2000) Acquiring the reflectance field of a human face. In Proceedings of the 27th annual conference on computer graphics and interactive techniques, pp 145\u2013156","DOI":"10.1145\/344779.344855"},{"key":"1730_CR13","doi-asserted-by":"crossref","unstructured":"Dou, P., Shah, SK., Kakadiaris, IA. (2017) End-to-end 3d face reconstruction with deep neural networks. In proceedings of the IEEE conference on computer vision and pattern recognition, pp 5908\u20135917","DOI":"10.1109\/CVPR.2017.164"},{"key":"1730_CR14","doi-asserted-by":"crossref","unstructured":"Feng, Y., Wu, F., Shao, X., Wang, Y., Zhou, X. (2018) Joint 3d face reconstruction and dense alignment with position map regression network. In Proceedings of the European conference on computer vision (ECCV), pp 534\u2013551","DOI":"10.1007\/978-3-030-01264-9_33"},{"issue":"4","key":"1730_CR15","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3450626.3459936","volume":"40","author":"Y Feng","year":"2021","unstructured":"Feng, Y., Feng, H., Black, M. J., & Bolkart, T. (2021). Learning an animatable detailed 3d face model from in-the-wild images. ACM Transactions on Graphics (TOG), 40(4), 1\u201313.","journal-title":"ACM Transactions on Graphics (TOG)"},{"issue":"3","key":"1730_CR16","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2890493","volume":"35","author":"P Garrido","year":"2016","unstructured":"Garrido, P., Zollh\u00f6fer, M., Casas, D., Valgaerts, L., Varanasi, K., P\u00e9rez, P., & Theobalt, C. (2016). Reconstruction of personalized 3d face rigs from monocular video. ACM Transactions on Graphics (TOG), 35(3), 1\u201315.","journal-title":"ACM Transactions on Graphics (TOG)"},{"key":"1730_CR17","doi-asserted-by":"crossref","unstructured":"Gecer, B., Ploumpis, S., Kotsia, I., Zafeiriou, S. (2019) Ganfit: Generative adversarial network fitting for high fidelity 3d face reconstruction. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 1155\u20131164","DOI":"10.1109\/CVPR.2019.00125"},{"key":"1730_CR18","doi-asserted-by":"crossref","unstructured":"Genova, K., Cole, F., Maschinot, A., Sarna, A., Vlasic, D., Freeman, WT. (2018) Unsupervised training for 3d morphable model regression. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp 8377\u20138386","DOI":"10.1109\/CVPR.2018.00874"},{"key":"1730_CR19","unstructured":"Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y. (2014) Generative adversarial nets. Advances in Neural Information Processing Systems 27"},{"key":"1730_CR20","unstructured":"Gu, J., Liu, L., Wang, P., Theobalt, C. (2022) Stylenerf: A style-based 3d aware generator for high-resolution image synthesis. In International conference on learning representations, https:\/\/openreview.net\/forum?id=iUuzzTMUw9K"},{"key":"1730_CR21","doi-asserted-by":"crossref","unstructured":"Guo, J., Zhu, X., Yang, Y., Yang, F., Lei, Z., Li, SZ. (2020) Towards fast, accurate and stable 3d dense face alignment. In Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part XIX 16, Springer, pp 152\u2013168","DOI":"10.1007\/978-3-030-58529-7_10"},{"issue":"6","key":"1730_CR22","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3072959.3092817","volume":"36","author":"L Hu","year":"2017","unstructured":"Hu, L., Saito, S., Wei, L., Nagano, K., Seo, J., Fursund, J., Sadeghi, I., Sun, C., Chen, Y. C., & Li, H. (2017). Avatar digitization from a single image for real-time rendering. ACM Transactions on Graphics (ToG), 36(6), 1\u201314.","journal-title":"ACM Transactions on Graphics (ToG)"},{"issue":"4","key":"1730_CR23","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2766974","volume":"34","author":"AE Ichim","year":"2015","unstructured":"Ichim, A. E., Bouaziz, S., & Pauly, M. (2015). Dynamic 3d avatar creation from hand-held video input. ACM Transactions on Graphics (ToG), 34(4), 1\u201314.","journal-title":"ACM Transactions on Graphics (ToG)"},{"key":"1730_CR24","doi-asserted-by":"crossref","unstructured":"Jackson, AS., Bulat, A., Argyriou, V., Tzimiropoulos, G. (2017) Large pose 3d face reconstruction from a single image via direct volumetric cnn regression. In Proceedings of the IEEE international conference on computer vision, pp 1031\u20131039","DOI":"10.1109\/ICCV.2017.117"},{"key":"1730_CR25","doi-asserted-by":"crossref","unstructured":"Jeni, LA., Cohn, JF., Kanade, T. (2015) Dense 3d face alignment from 2d videos in real-time. In 11th IEEE international conference and workshops on automatic face and gesture recognition (FG), IEEE, vol\u00a01, pp 1\u20138","DOI":"10.1109\/FG.2015.7163142"},{"issue":"10","key":"1730_CR26","doi-asserted-by":"publisher","first-page":"4756","DOI":"10.1109\/TIP.2018.2845697","volume":"27","author":"L Jiang","year":"2018","unstructured":"Jiang, L., Zhang, J., Deng, B., Li, H., & Liu, L. (2018). 3d face reconstruction with geometry details from a single image. IEEE Transactions on Image Processing, 27(10), 4756\u20134770.","journal-title":"IEEE Transactions on Image Processing"},{"issue":"1145\/3272127","key":"1730_CR27","first-page":"3275104","volume":"10","author":"Y Kanamori","year":"2018","unstructured":"Kanamori, Y., & Endo, Y. (2018). Relighting humans: Occlusion-aware inverse rendering for full-body human images. ACM Trans Graph, 10(1145\/3272127), 3275104.","journal-title":"ACM Trans Graph"},{"key":"1730_CR28","doi-asserted-by":"crossref","unstructured":"Karras, T., Laine, S., Aila, T. (2019) A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp 4401\u20134410","DOI":"10.1109\/CVPR.2019.00453"},{"key":"1730_CR29","doi-asserted-by":"crossref","unstructured":"Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T. (2020) Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp 8110\u20138119","DOI":"10.1109\/CVPR42600.2020.00813"},{"issue":"1","key":"1730_CR30","doi-asserted-by":"publisher","first-page":"1140","DOI":"10.1609\/aaai.v36i1.19999","volume":"36","author":"Z Ke","year":"2022","unstructured":"Ke, Z., Sun, J., Li, K., Yan, Q., & Lau, R. W. (2022). Modnet: Real-time trimap-free portrait matting via objective decomposition. Proceedings of the AAAI Conference on Artificial Intelligence, 36(1), 1140\u20131147. https:\/\/doi.org\/10.1609\/aaai.v36i1.19999","journal-title":"Proceedings of the AAAI Conference on Artificial Intelligence"},{"key":"1730_CR31","first-page":"1","volume":"01","author":"A Lattas","year":"2021","unstructured":"Lattas, A., Moschoglou, S., Ploumpis, S., Gecer, B., Ghosh, A., & Zafeiriou, S. P. (2021). Avatarme++: Facial shape and brdf inference with photorealistic rendering-aware gans. IEEE Transactions on Pattern Analysis & Machine Intelligence, 01, 1.","journal-title":"IEEE Transactions on Pattern Analysis & Machine Intelligence"},{"issue":"4","key":"1730_CR32","doi-asserted-by":"publisher","first-page":"42","DOI":"10.1145\/2461912.2462019","volume":"32","author":"H Li","year":"2013","unstructured":"Li, H., Yu, J., Ye, Y., & Bregler, C. (2013). Realtime facial animation with on-the-fly correctives. ACM Trans Graph, 32(4), 42\u20131.","journal-title":"ACM Trans Graph"},{"issue":"6","key":"1730_CR33","doi-asserted-by":"publisher","first-page":"194","DOI":"10.1145\/3130800.3130813","volume":"36","author":"T Li","year":"2017","unstructured":"Li, T., Bolkart, T., Black, M. J., Li, H., & Romero, J. (2017). Learning a model of facial shape and expression from 4d scans. ACM Trans Graph, 36(6), 194\u20131.","journal-title":"ACM Trans Graph"},{"key":"1730_CR34","doi-asserted-by":"crossref","unstructured":"Li, Y., Ma, L., Fan, H., Mitchell, K. (2018) Feature-preserving detailed 3d face reconstruction from a single image. In Proceedings of the 15th ACM SIGGRAPH European Conference on Visual Media Production, pp 1\u20139","DOI":"10.1145\/3278471.3278473"},{"issue":"4","key":"1730_CR35","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3306346.3323027","volume":"38","author":"A Meka","year":"2019","unstructured":"Meka, A., Haene, C., Pandey, R., Zollh\u00f6fer, M., Fanello, S., Fyffe, G., Kowdle, A., Yu, X., Busch, J., Dourgarian, J., et al. (2019). Deep reflectance fields: high-quality facial reflectance field inference from color gradient illumination. ACM Transactions on Graphics (TOG), 38(4), 1\u201312.","journal-title":"ACM Transactions on Graphics (TOG)"},{"issue":"1","key":"1730_CR36","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1145\/3503250","volume":"65","author":"B Mildenhall","year":"2020","unstructured":"Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., & Ng, R. (2020). Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM, 65(1), 99\u2013106.","journal-title":"Communications of the ACM"},{"key":"1730_CR37","doi-asserted-by":"crossref","unstructured":"Nestmeyer, T., Lalonde, J. F., Matthews, I., & Lehrmann, A. (2020). Learning physics-guided face relighting under directional light. In Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 5124\u20135133.","DOI":"10.1109\/CVPR42600.2020.00517"},{"key":"1730_CR38","doi-asserted-by":"crossref","unstructured":"Pallant, C. (2011) Demystifying Disney: a history of Disney feature animation. Bloomsbury Publishing USA","DOI":"10.5040\/9781628928655"},{"issue":"4","key":"1730_CR39","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3450626.3459872","volume":"40","author":"R Pandey","year":"2021","unstructured":"Pandey, R., Escolano, S. O., Legendre, C., Haene, C., Bouaziz, S., Rhemann, C., Debevec, P., & Fanello, S. (2021). Total relighting: Learning to relight portraits for background replacement. ACM Transactions on Graphics (TOG), 40(4), 1\u201321.","journal-title":"ACM Transactions on Graphics (TOG)"},{"issue":"6","key":"1730_CR40","doi-asserted-by":"publisher","first-page":"311","DOI":"10.1145\/360825.360839","volume":"18","author":"BT Phong","year":"1975","unstructured":"Phong, B. T. (1975). Illumination for computer generated pictures. Communications of the ACM, 18(6), 311\u2013317.","journal-title":"Communications of the ACM"},{"key":"1730_CR41","volume-title":"Computer vision for visual effects","author":"RJ Radke","year":"2013","unstructured":"Radke, R. J. (2013). Computer vision for visual effects. Cambridge University Press."},{"key":"1730_CR42","doi-asserted-by":"crossref","unstructured":"Riviere, J., Gotardo, P., Bradley, D., Ghosh, A., & Beeler, T. (2020). Single-shot high-quality facial geometry and skin appearance capture.","DOI":"10.1145\/3386569.3392464"},{"issue":"1","key":"1730_CR43","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3544777","volume":"42","author":"D Roich","year":"2022","unstructured":"Roich, D., Mokady, R., Bermano, A. H., & Cohen-Or, D. (2022). Pivotal tuning for latent-based editing of real images. ACM Transactions on Graphics (TOG), 42(1), 1\u201313.","journal-title":"ACM Transactions on Graphics (TOG)"},{"key":"1730_CR44","doi-asserted-by":"crossref","unstructured":"Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In International conference on medical image computing and computer-assisted intervention, Springer, 234\u2013241.","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"1730_CR45","doi-asserted-by":"crossref","unstructured":"Roth, J., Tong, Y., & Liu, X. (2016). Adaptive 3d face reconstruction from unconstrained photo collections. In Proceedings of the IEEE conference on computer vision and pattern recognition, 4197\u20134206.","DOI":"10.1109\/CVPR.2016.455"},{"key":"1730_CR46","doi-asserted-by":"crossref","unstructured":"Sagar, M. (2005) Reflectance field rendering of human faces for\u201d spider-man 2\u201d. In ACM SIGGRAPH 2005 Courses, pp 14\u2013es","DOI":"10.1145\/1198555.1198594"},{"key":"1730_CR47","doi-asserted-by":"crossref","unstructured":"Sela, M., Richardson, E., & Kimmel, R. (2017). Unrestricted facial geometry reconstruction using image-to-image translation. In Proceedings of the IEEE international conference on computer vision, 1576\u20131585.","DOI":"10.1109\/ICCV.2017.175"},{"key":"1730_CR48","doi-asserted-by":"crossref","unstructured":"Sengupta, S., Kanazawa, A., Castillo, C. D., & Jacobs, D. W. (2018). Sfsnet: Learning shape, reflectance and illuminance of facesin the wild\u2019. In Proceedings of the IEEE conference on computer vision and pattern recognition, 6296\u20136305.","DOI":"10.1109\/CVPR.2018.00659"},{"key":"1730_CR49","doi-asserted-by":"crossref","unstructured":"Shang, J., Shen, T., Li, S., Zhou, L., Zhen, M., Fang, T., Quan, L. (2020) Self-supervised monocular 3d face reconstruction by occlusion-aware multi-view geometry consistency. In Computer Vision\u2013ECCV 2020: 16th European conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part XV 16, Springer, pp 53\u201370","DOI":"10.1007\/978-3-030-58555-6_4"},{"issue":"6","key":"1730_CR50","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2661229.2661290","volume":"33","author":"F Shi","year":"2014","unstructured":"Shi, F., Wu, H. T., Tong, X., & Chai, J. (2014). Automatic acquisition of high-fidelity facial performances using monocular videos. ACM Transactions on Graphics (TOG), 33(6), 1\u201313.","journal-title":"ACM Transactions on Graphics (TOG)"},{"key":"1730_CR51","unstructured":"Shin, I. K., \u00d6ztireli, A. C., Kim, H. J., Beeler, T., Gross, M., & Choi, S. M. (2014). Extraction and transfer of facial expression wrinkles for facial performance enhancement. In PG (Short Papers)"},{"issue":"4","key":"1730_CR52","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3072959.3095816","volume":"36","author":"Z Shu","year":"2017","unstructured":"Shu, Z., Hadap, S., Shechtman, E., Sunkavalli, K., Paris, S., & Samaras, D. (2017). Portrait lighting transfer using a mass transport approach. ACM Transactions on Graphics (TOG), 36(4), 1.","journal-title":"ACM Transactions on Graphics (TOG)"},{"issue":"11","key":"1730_CR53","doi-asserted-by":"publisher","first-page":"860","DOI":"10.1016\/j.imavis.2014.08.005","volume":"32","author":"N Smolyanskiy","year":"2014","unstructured":"Smolyanskiy, N., Huitema, C., Liang, L., & Anderson, S. E. (2014). Real-time 3d face tracking based on active appearance model constrained by depth data. Image and Vision Computing, 32(11), 860\u2013869.","journal-title":"Image and Vision Computing"},{"issue":"4","key":"1730_CR54","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1145\/3306346.3323008","volume":"38","author":"T Sun","year":"2019","unstructured":"Sun, T., Barron, J. T., Tsai, Y. T., Xu, Z., Yu, X., Fyffe, G., Rhemann, C., Busch, J., Debevec, P. E., & Ramamoorthi, R. (2019). Single image portrait relighting. ACM Trans Graph, 38(4), 79\u20131.","journal-title":"ACM Trans Graph"},{"key":"1730_CR55","doi-asserted-by":"crossref","unstructured":"Suvorov, R., Logacheva, E., Mashikhin, A., Remizova, A., Ashukha, A., Silvestrov, A., et al. (2022). Resolution-robust large mask inpainting with fourier convolutions. In Proceedings of the IEEE\/CVF winter conference on applications of computer vision, 2149\u20132159.","DOI":"10.1109\/WACV51458.2022.00323"},{"issue":"6","key":"1730_CR56","doi-asserted-by":"publisher","first-page":"183","DOI":"10.1145\/2816795.2818056","volume":"34","author":"J Thies","year":"2015","unstructured":"Thies, J., Zollh\u00f6fer, M., Nie\u00dfner, M., Valgaerts, L., Stamminger, M., & Theobalt, C. (2015). Real-time expression transfer for facial reenactment. ACM Trans Graph, 34(6), 183\u20131.","journal-title":"ACM Trans Graph"},{"key":"1730_CR57","doi-asserted-by":"crossref","unstructured":"Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., & Nie\u00dfner, M. (2016). Face2face: Real-time face capture and reenactment of rgb videos. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2387\u20132395.","DOI":"10.1109\/CVPR.2016.262"},{"issue":"6","key":"1730_CR58","first-page":"1","volume":"39","author":"Z Wang","year":"2020","unstructured":"Wang, Z., Yu, X., Lu, M., Wang, Q., Qian, C., & Xu, F. (2020). Single image portrait relighting via explicit multiple reflectance channel modeling. ACM Transactions on Graphics (TOG), 39(6), 1\u201313.","journal-title":"ACM Transactions on Graphics (TOG)"},{"key":"1730_CR59","unstructured":"Wei, H., Liang, S., Wei, Y. (2019) 3d dense face alignment via graph convolution networks. arXiv preprint arXiv:1904.05562"},{"issue":"1","key":"1730_CR60","doi-asserted-by":"publisher","DOI":"10.1117\/12.7972479","volume":"19","author":"RJ Woodham","year":"1980","unstructured":"Woodham, R. J. (1980). Photometric method for determining surface orientation from multiple images. Optical engineering, 19(1), 191139.","journal-title":"Optical engineering"},{"key":"1730_CR61","doi-asserted-by":"crossref","unstructured":"Wright, S. (2017) Digital compositing for film and v\u00eddeo: Production Workflows and Techniques. Routledge","DOI":"10.4324\/9781315284019"},{"issue":"4","key":"1730_CR62","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3450626.3459849","volume":"38","author":"Z Xu","year":"2019","unstructured":"Xu, Z., Bi, S., Sunkavalli, K., Hadap, S., Su, H., & Ramamoorthi, R. (2019). Deep view synthesis from sparse photometric images. ACM Transactions on Graphics (ToG), 38(4), 1\u201313.","journal-title":"ACM Transactions on Graphics (ToG)"},{"key":"1730_CR63","doi-asserted-by":"crossref","unstructured":"Yang, H., Zhu, H., Wang, Y., Huang, M., Shen, Q., Yang, R., & Cao, X. (2020). Facescape: a large-scale high quality 3d face dataset and detailed riggable 3d face prediction. In Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 601\u2013610.","DOI":"10.1109\/CVPR42600.2020.00068"},{"key":"1730_CR64","doi-asserted-by":"crossref","unstructured":"Zhang, L., Zhang, Q., Wu, M., Yu, J., & Xu, L. (2021). Neural video portrait relighting in real-time via consistency modeling. In Proceedings of the IEEE\/CVF international conference on computer vision (ICCV), 802\u2013812.","DOI":"10.1109\/ICCV48922.2021.00084"},{"issue":"6","key":"1730_CR65","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3550454.3555469","volume":"41","author":"L Zhang","year":"2022","unstructured":"Zhang, L., Zeng, C., Zhang, Q., Lin, H., Cao, R., Yang, W., Xu, L., & Yu, J. (2022). Video-driven neural physically-based facial asset for production. ACM Trans Graph (Proc SIGGRAPH Asia), 41(6), 1\u201316.","journal-title":"ACM Trans Graph (Proc SIGGRAPH Asia)"},{"key":"1730_CR66","doi-asserted-by":"crossref","unstructured":"Zhang, X., Fanello, S., Tsai, Y. T., Sun, T., Xue, T., Pandey, R., Orts-Escolano, S., Davidson, P., Rhemann, C., Debevec, P., et al. (2021). Neural light transport for relighting and view synthesis. ACM Transactions on Graphics (TOG), 40(1), 1\u201317.","DOI":"10.1145\/3446328"},{"key":"1730_CR67","doi-asserted-by":"crossref","unstructured":"Zhou, H., Hadap, S., Sunkavalli, K., & Jacobs, D. W. (2019). Deep single-image portrait relighting. In Proceedings of the IEEE\/CVF international conference on computer vision, 7194\u20137202.","DOI":"10.1109\/ICCV.2019.00729"},{"key":"1730_CR68","doi-asserted-by":"crossref","unstructured":"Zhu, X., Yang, F., Huang, D., Yu, C., Wang, H., Guo, J., Lei, Z., Li, SZ. (2020) Beyond 3dmm space: Towards fine-grained 3d face reconstruction. In Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part VIII 16, Springer, pp 343\u2013358","DOI":"10.1007\/978-3-030-58598-3_21"},{"key":"1730_CR69","doi-asserted-by":"crossref","unstructured":"Zollh\u00f6fer, M., Thies, J., Garrido, P., Bradley, D., Beeler, T., P\u00e9rez, P., Stamminger, M., Nie\u00dfner, M., & Theobalt, C. (2018). State of the art on monocular 3d face reconstruction, tracking, and applications. Computer Graphics Forum, Wiley Online Library, 37, 523\u2013550.","DOI":"10.1111\/cgf.13382"}],"container-title":["International Journal of Computer Vision"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11263-022-01730-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11263-022-01730-5\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11263-022-01730-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,3]],"date-time":"2023-03-03T05:07:29Z","timestamp":1677820049000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11263-022-01730-5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1,7]]},"references-count":69,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2023,4]]}},"alternative-id":["1730"],"URL":"https:\/\/doi.org\/10.1007\/s11263-022-01730-5","relation":{},"ISSN":["0920-5691","1573-1405"],"issn-type":[{"value":"0920-5691","type":"print"},{"value":"1573-1405","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,1,7]]},"assertion":[{"value":"31 January 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"21 November 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"7 January 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}