{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:40:05Z","timestamp":1732041605556},"reference-count":69,"publisher":"Springer Science and Business Media LLC","issue":"8","license":[{"start":{"date-parts":[[2022,6,19]],"date-time":"2022-06-19T00:00:00Z","timestamp":1655596800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,6,19]],"date-time":"2022-06-19T00:00:00Z","timestamp":1655596800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Int J Comput Vis"],"published-print":{"date-parts":[[2022,8]]},"DOI":"10.1007\/s11263-022-01628-2","type":"journal-article","created":{"date-parts":[[2022,6,19]],"date-time":"2022-06-19T18:02:35Z","timestamp":1655661755000},"page":"2040-2059","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":9,"title":["Learning Inverse Depth Regression for Pixelwise Visibility-Aware Multi-View Stereo Networks"],"prefix":"10.1007","volume":"130","author":[{"given":"Qingshan","family":"Xu","sequence":"first","affiliation":[]},{"given":"Wanjuan","family":"Su","sequence":"additional","affiliation":[]},{"given":"Yuhang","family":"Qi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3284-864X","authenticated-orcid":false,"given":"Wenbing","family":"Tao","sequence":"additional","affiliation":[]},{"given":"Marc","family":"Pollefeys","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,6,19]]},"reference":[{"issue":"2","key":"1628_CR1","doi-asserted-by":"publisher","first-page":"153","DOI":"10.1007\/s11263-016-0902-9","volume":"120","author":"H Aan\u00e6s","year":"2016","unstructured":"Aan\u00e6s, H., Jensen, R. R., Vogiatzis, G., Tola, E., & Dahl, A. B. (2016). Large-scale data for multiple-view stereopsis. International Journal of Computer Vision, 120(2), 153\u2013168.","journal-title":"International Journal of Computer Vision"},{"key":"1628_CR2","doi-asserted-by":"crossref","unstructured":"Barnes, C., Shechtman, E., Finkelstein, A., & Goldman, D. B. (2009). Patchmatch: A randomized correspondence algorithm for structural image editing. In ACM SIGGRAPH, pp. 24:1\u201324:11.","DOI":"10.1145\/1531326.1531330"},{"key":"1628_CR3","doi-asserted-by":"crossref","unstructured":"Bleyer, M., Rhemann, C., & Rother, C. (2011). Patchmatch stereo-stereo matching with slanted support windows. In Bmvc, 11, 1\u201311.","DOI":"10.5244\/C.25.14"},{"issue":"11","key":"1628_CR4","doi-asserted-by":"publisher","first-page":"1222","DOI":"10.1109\/34.969114","volume":"23","author":"Y Boykov","year":"2001","unstructured":"Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11), 1222\u20131239.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"1628_CR5","doi-asserted-by":"crossref","unstructured":"Campbell, N. D.\u00a0F., Vogiatzis, G., Hern\u00e1ndez, C., & Cipolla, R. (2008). Using multiple hypotheses to improve depth-maps for multi-view stereo. In Proceedings of the European Conference on Computer Vision, pp. 766\u2013779.","DOI":"10.1007\/978-3-540-88682-2_58"},{"key":"1628_CR6","doi-asserted-by":"crossref","unstructured":"Chang, J., & Chen, Y. (2018). Pyramid stereo matching network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5410\u20135418.","DOI":"10.1109\/CVPR.2018.00567"},{"key":"1628_CR7","doi-asserted-by":"crossref","unstructured":"Chen, R., Han, S., Xu, J., & Su, H. (2019). Point-based multi-view stereo network. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1538\u20131547.","DOI":"10.1109\/ICCV.2019.00162"},{"issue":"10","key":"1628_CR8","doi-asserted-by":"publisher","first-page":"3695","DOI":"10.1109\/TPAMI.2020.2988729","volume":"43","author":"R Chen","year":"2020","unstructured":"Chen, R., Han, S., Xu, J., & Su, H. (2020). Visibility-aware point-based multi-view stereo network. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(10), 3695\u20133708.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"1628_CR9","doi-asserted-by":"crossref","unstructured":"Cheng, S., Xu, Z., Zhu, S., Li, Z., Li, L.\u00a0E., Ramamoorthi, R., & Su, H. (2020). Deep stereo using adaptive thin volume representation with uncertainty awareness. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.","DOI":"10.1109\/CVPR42600.2020.00260"},{"key":"1628_CR10","doi-asserted-by":"crossref","unstructured":"Collins, R.\u00a0T. (1996). A space-sweep approach to true multi-image matching. In Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 358\u2013363.","DOI":"10.1109\/CVPR.1996.517097"},{"key":"1628_CR11","doi-asserted-by":"crossref","unstructured":"Fu, Z., & Ardabilian Fard, M. (2018). Learning confidence measures by multi-modal convolutional neural networks. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, pp. 1321\u20131330.","DOI":"10.1109\/WACV.2018.00149"},{"key":"1628_CR12","unstructured":"Fuhrmann, S., Langguth, F., & Goesele, M. (2014). Mve: A multi-view reconstruction environment. In Proceedings of the Eurographics Workshop on Graphics and Cultural Heritage, pp. 11\u201318."},{"issue":"8","key":"1628_CR13","doi-asserted-by":"publisher","first-page":"1362","DOI":"10.1109\/TPAMI.2009.161","volume":"32","author":"Y Furukawa","year":"2010","unstructured":"Furukawa, Y., & Ponce, J. (2010). Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8), 1362\u20131376.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"1628_CR14","doi-asserted-by":"crossref","unstructured":"Galliani, S., Lasinger, K., & Schindler, K. (2015). Massively parallel multiview stereopsis by surface normal diffusion. In Proceedings of the IEEE International Conference on Computer Vision, pp. 873\u2013881.","DOI":"10.1109\/ICCV.2015.106"},{"key":"1628_CR15","doi-asserted-by":"crossref","unstructured":"Gu, X., Fan, Z., Zhu, S., Dai, Z., Tan, F., & Tan, P. (2020). Cascade cost volume for high-resolution multi-view stereo and stereo matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.","DOI":"10.1109\/CVPR42600.2020.00257"},{"key":"1628_CR16","doi-asserted-by":"crossref","unstructured":"Guo, X., Yang, K., Yang, W., Wang, X. & Li, H. (2019). Group-wise correlation stereo network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3273\u20133282.","DOI":"10.1109\/CVPR.2019.00339"},{"issue":"4","key":"1628_CR17","doi-asserted-by":"publisher","first-page":"331","DOI":"10.1127\/1432-8364\/2012\/0121","volume":"202","author":"N Haala","year":"2012","unstructured":"Haala, N., & Rothermel, M. (2012). Dense multi-stereo matching for high quality digital elevation models. Photogrammetrie-Fernerkundung-Geoinformation, 202(4), 331\u2013343.","journal-title":"Photogrammetrie-Fernerkundung-Geoinformation"},{"key":"1628_CR18","doi-asserted-by":"crossref","unstructured":"Hartmann, W., Galliani, S., Havlena, M., Gool, L.\u00a0V., & Schindler, K. (2017). Learned multi-patch similarity. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1595\u20131603.","DOI":"10.1109\/ICCV.2017.176"},{"key":"1628_CR19","doi-asserted-by":"crossref","unstructured":"Heise, P., Jensen, B., Klose, S., & Knoll, A. (2015). Variational patchmatch multiview reconstruction and refinement. In Proceedings of the IEEE International Conference on Computer Vision, pp. 882\u2013890.","DOI":"10.1109\/ICCV.2015.107"},{"issue":"2","key":"1628_CR20","doi-asserted-by":"publisher","first-page":"328","DOI":"10.1109\/TPAMI.2007.1166","volume":"30","author":"H Hirschmuller","year":"2008","unstructured":"Hirschmuller, H. (2008). Stereo processing by semiglobal matching and mutual information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 328\u2013341.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"2","key":"1628_CR21","doi-asserted-by":"publisher","first-page":"504","DOI":"10.1109\/TPAMI.2012.156","volume":"35","author":"A Hosni","year":"2013","unstructured":"Hosni, A., Rhemann, C., Bleyer, M., Rother, C., & Gelautz, M. (2013). Fast cost-volume filtering for visual correspondence and beyond. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(2), 504\u2013511.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"11","key":"1628_CR22","doi-asserted-by":"publisher","first-page":"2121","DOI":"10.1109\/TPAMI.2012.46","volume":"34","author":"X Hu","year":"2012","unstructured":"Hu, X., & Mordohai, P. (2012). A quantitative evaluation of confidence measures for stereo vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11), 2121\u20132133.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"1628_CR23","doi-asserted-by":"crossref","unstructured":"Huang, P., Matzen, K., Kopf, J., Ahuja, N., & Huang, J. (2018). Deepmvs: Learning multi-view stereopsis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2821\u20132830.","DOI":"10.1109\/CVPR.2018.00298"},{"key":"1628_CR24","unstructured":"Im, S., Jeon, H.-G., Lin, S., & Kweon, I.\u00a0S. (2019). Dpsnet: End-to-end deep plane sweep stereo. arXiv:1905.00538."},{"key":"1628_CR25","doi-asserted-by":"crossref","unstructured":"Ji, M., Gall, J., Zheng, H., Liu, Y., & Fang, L. (2017). Surfacenet: An end-to-end 3d neural network for multiview stereopsis. In Proceedings of the IEEE International Conference on Computer Vision, pp. 2307\u20132315.","DOI":"10.1109\/ICCV.2017.253"},{"key":"1628_CR26","unstructured":"Kar, A., H\u00e4ne, C., & Malik, J. (2017). Learning a multi-view stereo machine. In Advances in Neural Information Processing Systems, pp. 365\u2013376."},{"issue":"3","key":"1628_CR27","doi-asserted-by":"publisher","first-page":"29:1","DOI":"10.1145\/2487228.2487237","volume":"32","author":"Michael Kazhdan","year":"2013","unstructured":"Kazhdan, Michael, & Hoppe, Hugues. (2013). Screened poisson surface reconstruction. ACM Transactions on Graphics, 32(3), 29:1-29:13.","journal-title":"ACM Transactions on Graphics"},{"key":"1628_CR28","doi-asserted-by":"crossref","unstructured":"Kendall, A., Martirosyan, H., Dasgupta, S. & Henry, P. (2017). End-to-end learning of geometry and context for deep stereo regression. In Proceedings of the IEEE International Conference on Computer Vision, pp. 66\u201375.","DOI":"10.1109\/ICCV.2017.17"},{"key":"1628_CR29","doi-asserted-by":"crossref","unstructured":"Kim, S., Kim, S., Min, D., & Sohn, K. (2019). Laf-net: Locally adaptive fusion networks for stereo confidence estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 205\u2013214.","DOI":"10.1109\/CVPR.2019.00029"},{"issue":"3","key":"1628_CR30","doi-asserted-by":"publisher","first-page":"1299","DOI":"10.1109\/TIP.2018.2878325","volume":"28","author":"S Kim","year":"2019","unstructured":"Kim, S., Min, D., Kim, S., & Sohn, K. (2019). Unified confidence estimation networks for robust stereo matching. IEEE Transactions on Image Processing, 28(3), 1299\u20131313.","journal-title":"IEEE Transactions on Image Processing"},{"key":"1628_CR31","unstructured":"Arno, K., Jaesik, P., Qian-Yi, Z., & Vladlen, K. (2017). Tanks and temples benchmark. https:\/\/www.tanksandtemples.org."},{"issue":"4","key":"1628_CR32","first-page":"78:1","volume":"36","author":"K Arno","year":"2017","unstructured":"Arno, K., Jaesik, P., Qian-Yi, Z., & Vladlen, K. (2017). Tanks and temples: Benchmarking large-scale scene reconstruction. ACM Transactions on Graphics, 36(4), 78:1-78:13.","journal-title":"ACM Transactions on Graphics"},{"key":"1628_CR33","doi-asserted-by":"crossref","unstructured":"Vladimir, K., & Ramin, Z. (2002). Multi-camera scene reconstruction via graph cuts. In Proceedings of the European Conference on Computer Vision, pp. 82\u201396","DOI":"10.1007\/3-540-47977-5_6"},{"key":"1628_CR34","unstructured":"Andreas, K., Christian, S., Mattia, R., Oliver, E., & Friedrich, F. (2020). Deepc-mvs: Deep confidence prediction for multi-view stereo reconstruction. In Proceedings of the IEEE Conference on on 3D Vision, pp. 404\u2013413."},{"key":"1628_CR35","doi-asserted-by":"publisher","first-page":"7176","DOI":"10.1109\/TIP.2020.2999853","volume":"29","author":"Zhaoxin Li","year":"2020","unstructured":"Li, Zhaoxin, Zuo, Wangmeng, Wang, Zhaoqi, & Zhang, Lei. (2020). Confidence-based large-scale dense multi-view stereo. IEEE Transactions on Image Processing, 29, 7176\u20137191.","journal-title":"IEEE Transactions on Image Processing"},{"key":"1628_CR36","unstructured":"Keyang, L., Tao, G., Lili, J., Haipeng, H., & Yawei, L. (2019). P-mvsnet: Learning patch-wise matching confidence aggregation for multi-view stereo. In Proceedings of the IEEE International Conference on Computer Vision, pp. 10452\u201310461."},{"key":"1628_CR37","unstructured":"Keyang, L., Tao, G., Lili, J., Yuesong, W., Zhuo, C., & Yawei, L. (2020). Attention-aware multi-view stereo. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1590\u20131599."},{"key":"1628_CR38","doi-asserted-by":"crossref","unstructured":"Luo, W., Schwing, A.\u00a0G., & Urtasun, R. (2016). Efficient deep learning for stereo matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5695\u20135703.","DOI":"10.1109\/CVPR.2016.614"},{"key":"1628_CR39","doi-asserted-by":"crossref","unstructured":"Mayer, N., Ilg, E., H\u00e4usser, P., Fischer, P., Cremers, D., Dosovitskiy, A., & Brox, T. (2016). A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4040\u20134048.","DOI":"10.1109\/CVPR.2016.438"},{"key":"1628_CR40","doi-asserted-by":"crossref","unstructured":"Poggi, M., Tosi, F., & Mattoccia, S. (2017). Quantitative evaluation of confidence measures in a machine learning world. In Proceedings of the IEEE International Conference on Computer Vision, pp. 5238\u20135247.","DOI":"10.1109\/ICCV.2017.559"},{"key":"1628_CR41","doi-asserted-by":"crossref","unstructured":"Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention\u2014MICCAI, 234\u2013241.","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"1628_CR42","doi-asserted-by":"crossref","unstructured":"L. Sch\u00f6nberger, J., & Frahm, J. (2016). Structure-from-motion revisited. In Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 4104\u20134113.","DOI":"10.1109\/CVPR.2016.445"},{"key":"1628_CR43","doi-asserted-by":"crossref","unstructured":"Johannes, L., Sch\u00f6nberger, E. Z., Jan-Michael, F., & Marc, P. (2016). Pixelwise view selection for unstructured multi-view stereo. In Proceedings of the European Conference on Computer Vision, pp. 501\u2013518.","DOI":"10.1007\/978-3-319-46487-9_31"},{"key":"1628_CR44","unstructured":"Thomas, S., Johannes, L. S., Silvano, G., Torsten, S., Konrad, S., Marc, P., & Andreas, G. ETH3D Benchmark. https:\/\/www.eth3d.net."},{"key":"1628_CR45","doi-asserted-by":"crossref","unstructured":"Sch\u00f6ps, T.., Sch\u00f6nberger, J.\u00a0L., Galliani, S., Sattler, T., Schindler, K., Pollefeys, M., & Geiger, A. (2017). A multi-view stereo benchmark with high-resolution images and multi-camera videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2538\u20132547.","DOI":"10.1109\/CVPR.2017.272"},{"key":"1628_CR46","unstructured":"Akihito, S., & Marc, P. (2016). Patch based confidence prediction for dense disparity map. In Proceedings of the British Machine Vision Conference, pp. 23.1\u201323.13."},{"key":"1628_CR47","unstructured":"Christian, S., Patrick, K., Andreas, K., Mattia, R., Thomas, P., & Friedrich, F. (2020). Bp-mvsnet: Belief-propagation-layers for multi-view-stereo. In Proceedings of the International Conference on 3D Vision, pp. 394\u2013403."},{"key":"1628_CR48","unstructured":"Christian, S., Mattia, R., Andreas, K., & Friedrich, F. (2021). Ib-mvs: An iterative algorithm for deep multi-view stereo based on binary decisions. arXiv:2111.14420."},{"issue":"5","key":"1628_CR49","doi-asserted-by":"publisher","first-page":"903","DOI":"10.1007\/s00138-011-0346-8","volume":"23","author":"Engin Tola","year":"2012","unstructured":"Tola, Engin, Strecha, Christoph, & Fua, Pascal. (2012). Efficient large-scale multi-view stereo for ultra high-resolution image sets. Machine Vision and Applications, 23(5), 903\u2013920.","journal-title":"Machine Vision and Applications"},{"key":"1628_CR50","unstructured":"Stepan, T., Anton, I., & Fran\u00e7ois, F. (2018). Practical deep stereo (pds): Toward applications-friendly deep stereo matching. In Advances in Neural Information Processing Systems, pp. 5871\u20135881."},{"key":"1628_CR51","doi-asserted-by":"crossref","unstructured":"\u017dbontar, J., LeCun, Y. (2015). Computing the stereo matching cost with a convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1592\u20131599.","DOI":"10.1109\/CVPR.2015.7298767"},{"key":"1628_CR52","unstructured":"Fangjinhua, W., Silvano, G., Christoph, V., & Marc, P. (2021). Itermvs: Iterative probability estimation for efficient multi-view stereo. arXiv:2112.05126."},{"key":"1628_CR53","doi-asserted-by":"crossref","unstructured":"Fangjinhua, W., Silvano, G., Christoph, Vogel., Pablo, Speciale., & Marc, P. (2021). Patchmatchnet: Learned multi-view patchmatch stereo. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 14194\u201314203.","DOI":"10.1109\/CVPR46437.2021.01397"},{"key":"1628_CR54","unstructured":"Qingshan, X., & Wenbing, T. (2019). Multi-scale geometric consistency guided multi-view stereo. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5483\u20135492."},{"key":"1628_CR55","unstructured":"Qingshan, X., & Wenbing, T. (2020). Learning inverse depth regression for multi-view stereo with correlation cost volume. In Proceedings of the AAAI Conference on Artificial Intelligence."},{"key":"1628_CR56","unstructured":"Qingshan, X., & Wenbing, T. (2020). Planar prior assisted patchmatch multi-view stereo. In Proceedings of the AAAI Conference on Artificial Intelligence."},{"key":"1628_CR57","unstructured":"Qingshan, X., & Wenbing T. (2020). Pvsnet: Pixelwise visibility-aware multi-view stereo network. arXiv:2007.07714."},{"key":"1628_CR58","unstructured":"Zhenyu, X., Yiguang, L., Xuelei, S., Ying, W., Yunan, Z. (2020). Marmvs: Matching ambiguity reduced multiple view stereo for efficient large scale scene reconstruction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5981\u20135990."},{"key":"1628_CR59","unstructured":"Youze, X., Jiansheng, C., Weitao, W., Yiqing, H., Cheng, Y., Tianpeng, L., & Jiayu, B. (2019). Mvscrf: Learning multi-view stereo with conditional random fields. In Proceedings of the IEEE International Conference on Computer Vision, pp. 4312\u20134321."},{"key":"1628_CR60","doi-asserted-by":"crossref","unstructured":"Jianfeng, Y., Zizhuang, W., Hongwei, Y., Mingyu, D., Runze, Z., Yisong, C., Guoping, W., & Yu-Wing, T. (2020). Dense hybrid recurrent multi-view stereo net with dynamic consistency checking. In Proceedings of the European Conference on Computer Vision, pp. 674\u2013689.","DOI":"10.1007\/978-3-030-58548-8_39"},{"key":"1628_CR61","unstructured":"Jiayu, Y., Wei, M., Jose, M. A., & Miaomiao, L. (2020). Cost volume pyramid based depth inference for multi-view stereo. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition."},{"key":"1628_CR62","doi-asserted-by":"crossref","unstructured":"Yao, Y., Zixin, L., Shiwei, L., Tian, F., & Long, Q. (2018). Mvsnet: Depth inference for unstructured multi-view stereo. In Proceedings of the European Conference on Computer Vision, pp. 767\u2013783.","DOI":"10.1007\/978-3-030-01237-3_47"},{"key":"1628_CR63","doi-asserted-by":"crossref","unstructured":"Yao, Y., Zixin, L., Shiwei, L., Tianwei, S., Tian, F., & Long, Q. (2019). Recurrent mvsnet for high-resolution multi-view stereo depth inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5525\u20135534.","DOI":"10.1109\/CVPR.2019.00567"},{"key":"1628_CR64","doi-asserted-by":"crossref","unstructured":"Yao, Y., Zixin, L., Shiwei, L., Jingyang, Z., Yufan, R., Lei, Z., Tian, F., & Long, Q. (2020). Blendedmvs: A large-scale dataset for generalized multi-view stereo networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1790\u20131799.","DOI":"10.1109\/CVPR42600.2020.00186"},{"key":"1628_CR65","unstructured":"Zehao, Y., Shenghua, G. (2020). Fast-mvsnet: Sparse-to-dense multi-view stereo with learned propagation and gauss-newton refinement. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1949\u20131958."},{"key":"1628_CR66","unstructured":"Feihu, Z., Victor, P., Ruigang, Y., & Philip, H. S. T. (2019). Ga-net: Guided aggregation net for end-to-end stereo matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 185\u2013194."},{"key":"1628_CR67","unstructured":"Jingyang, Z., Yao, Y., Shiwei, L., Zixin, L., & Tian, F. (2020). Visibility-aware multi-view stereo network. arXiv:2008.07928."},{"key":"1628_CR68","unstructured":"Xudong, Z., Yutao, H., Haochen, W., Xianbin, C., & Baochang, Z. (2021). Long-range attention network for multi-view stereo. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, pp. 3782\u20133791."},{"key":"1628_CR69","doi-asserted-by":"crossref","unstructured":"E. Zheng, E. D., Jojic, V., & Frahm, J.\u00a0M. (2014). Patchmatch based joint view selection and depthmap estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1510\u20131517.","DOI":"10.1109\/CVPR.2014.196"}],"container-title":["International Journal of Computer Vision"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11263-022-01628-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11263-022-01628-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11263-022-01628-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,14]],"date-time":"2022-07-14T09:20:06Z","timestamp":1657790406000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11263-022-01628-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6,19]]},"references-count":69,"journal-issue":{"issue":"8","published-print":{"date-parts":[[2022,8]]}},"alternative-id":["1628"],"URL":"https:\/\/doi.org\/10.1007\/s11263-022-01628-2","relation":{},"ISSN":["0920-5691","1573-1405"],"issn-type":[{"value":"0920-5691","type":"print"},{"value":"1573-1405","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,6,19]]},"assertion":[{"value":"27 August 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"10 May 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"19 June 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}