{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,12]],"date-time":"2025-04-12T05:28:16Z","timestamp":1744435696519,"version":"3.37.3"},"reference-count":72,"publisher":"Springer Science and Business Media LLC","issue":"6","license":[{"start":{"date-parts":[[2021,4,19]],"date-time":"2021-04-19T00:00:00Z","timestamp":1618790400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,4,19]],"date-time":"2021-04-19T00:00:00Z","timestamp":1618790400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100001809","name":"NSFC","doi-asserted-by":"crossref","award":["61773198","61751306"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100001809","name":"NSFC","doi-asserted-by":"crossref","award":["61632004"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"name":"NSFC-NRF Joint Research Project under Grant","award":["61861146001"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Int J Comput Vis"],"published-print":{"date-parts":[[2021,6]]},"DOI":"10.1007\/s11263-020-01381-4","type":"journal-article","created":{"date-parts":[[2021,4,19]],"date-time":"2021-04-19T07:02:59Z","timestamp":1618815779000},"page":"1930-1953","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":45,"title":["Learning Adaptive Classifiers Synthesis for Generalized Few-Shot Learning"],"prefix":"10.1007","volume":"129","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-1173-1880","authenticated-orcid":false,"given":"Han-Jia","family":"Ye","sequence":"first","affiliation":[]},{"given":"Hexiang","family":"Hu","sequence":"additional","affiliation":[]},{"given":"De-Chuan","family":"Zhan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,4,19]]},"reference":[{"key":"1381_CR1","doi-asserted-by":"crossref","unstructured":"Akata, Z., Perronnin, F., Harchaoui, Z., & Schmid, C. (2013). Label-embedding for attribute-based classification. In IEEE conference on computer vision and pattern recognition (pp. 819\u2013826).","DOI":"10.1109\/CVPR.2013.111"},{"key":"1381_CR2","unstructured":"Antoniou, A., Edwards, H., & Storkey, A. J. (2019). How to train your MAML. In Proceedings of the 7th international conference on learning representations."},{"key":"1381_CR3","unstructured":"Ba, L. J., Kiros, R., & Hinton, G. E. (2016). Layer normalization. CoRR arXiv:1607.06450."},{"key":"1381_CR4","unstructured":"Bertinetto, L., Henriques, J. F., Torr, P. H. S., & Vedaldi, A. (2019). Meta-learning with differentiable closed-form solvers. In Proceedings of the 7th international conference on learning representations."},{"key":"1381_CR5","first-page":"1565","volume":"32","author":"K Cao","year":"2019","unstructured":"Cao, K., Wei, C., Gaidon, A., Arechiga, N., & Ma, T. (2019). Learning imbalanced datasets with label-distribution-aware margin loss. Advances in Neural Information Processing Systems, 32, 1565\u20131576.","journal-title":"Advances in Neural Information Processing Systems"},{"key":"1381_CR6","doi-asserted-by":"crossref","unstructured":"Changpinyo, S., Chao, W. L., & Sha, F. (2017). Predicting visual exemplars of unseen classes for zero-shot learning. In IEEE international conference on computer vision (pp. 3496\u20133505).","DOI":"10.1109\/ICCV.2017.376"},{"key":"1381_CR7","doi-asserted-by":"crossref","unstructured":"Changpinyo, S., Chao, W. L., Gong, B., & Sha, F. (2016). Synthesized classifiers for zero-shot learning. In IEEE conference on computer vision and pattern recognition (pp. 5327\u20135336).","DOI":"10.1109\/CVPR.2016.575"},{"issue":"1","key":"1381_CR8","doi-asserted-by":"publisher","first-page":"166","DOI":"10.1007\/s11263-019-01193-1","volume":"128","author":"S Changpinyo","year":"2020","unstructured":"Changpinyo, S., Chao, W. L., Gong, B., & Sha, F. (2020). Classifier and exemplar synthesis for zero-shot learning. International Journal of Computer Vision, 128(1), 166\u2013201.","journal-title":"International Journal of Computer Vision"},{"key":"1381_CR9","doi-asserted-by":"crossref","unstructured":"Chao, W. L., Changpinyo, S., Gong, B., & Sha, F. (2016). An empirical study and analysis of generalized zero-shot learning for object recognition in the wild. In Proceedings of the 14th European conference on computer vision (pp. 52\u201368).","DOI":"10.1007\/978-3-319-46475-6_4"},{"key":"1381_CR10","unstructured":"Chen, W. Y., Liu, Y. C., Kira, Z., Wang, Y. C. F., & Huang, J. B. (2019). A closer look at few-shot classification. In Proceedings of the 7th international conference on learning representations."},{"key":"1381_CR11","doi-asserted-by":"crossref","unstructured":"Cui, Y., Jia, M., Lin, T. Y., Song, Y., & Belongie, S. J. (2019). Class-balanced loss based on effective number of samples. In IEEE conference on computer vision and pattern recognition (pp. 9268\u20139277).","DOI":"10.1109\/CVPR.2019.00949"},{"issue":"9","key":"1381_CR12","doi-asserted-by":"publisher","first-page":"3336","DOI":"10.1109\/TIP.2019.2959254","volume":"2","author":"D Das","year":"2020","unstructured":"Das, D., & Lee, C. S. G. (2020). A two-stage approach to few-shot learning for image recognition. IEEE Transactions on Image Processing, 2(9), 3336\u20133350.","journal-title":"IEEE Transactions on Image Processing"},{"key":"1381_CR13","doi-asserted-by":"crossref","unstructured":"Dong, N., & Xing, E. P. (2018). Domain adaption in one-shot learning. In Proceedings of the European conference on machine learning and knowledge discovery in databases (pp. 573\u2013588).","DOI":"10.1007\/978-3-030-10925-7_35"},{"key":"1381_CR14","unstructured":"Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the 34th international conference on machine learning (pp. 1126\u20131135)."},{"key":"1381_CR15","first-page":"983","volume":"31","author":"H Gao","year":"2018","unstructured":"Gao, H., Shou, Z., Zareian, A., Zhang, H., & Chang, S. F. (2018). Low-shot learning via covariance-preserving adversarial augmentation networks. Advances in Neural Information Processing Systems, 31, 983\u2013993.","journal-title":"Advances in Neural Information Processing Systems"},{"key":"1381_CR16","first-page":"10750","volume":"31","author":"G Ghiasi","year":"2018","unstructured":"Ghiasi, G., Lin, T. Y., & Le, Q. V. (2018). Dropblock: A regularization method for convolutional networks. Advances in Neural Information Processing Systems, 31, 10750\u201310760.","journal-title":"Advances in Neural Information Processing Systems"},{"key":"1381_CR17","doi-asserted-by":"crossref","unstructured":"Gidaris, S., & Komodakis, N. (2018). Dynamic few-shot visual learning without forgetting. In IEEE international conference on computer vision (pp. 4367\u20134375).","DOI":"10.1109\/CVPR.2018.00459"},{"key":"1381_CR18","doi-asserted-by":"crossref","unstructured":"Gu, J., Wang, Y., Chen, Y., Li, V. O. K., & Cho, K. (2018). Meta-learning for low-resource neural machine translation. In Proceedings of the 2018 conference on empirical methods in natural language processing (pp. 3622\u20133631).","DOI":"10.18653\/v1\/D18-1398"},{"key":"1381_CR19","unstructured":"Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017). On calibration of modern neural networks. In Proceedings of the 34th international conference on machine learning (pp. 1321\u20131330)."},{"key":"1381_CR20","doi-asserted-by":"crossref","unstructured":"Hariharan, B., & Girshick, R. B. (2017). Low-shot visual recognition by shrinking and hallucinating features. In IEEE international conference on computer vision (pp. 3037\u20133046).","DOI":"10.1109\/ICCV.2017.328"},{"key":"1381_CR21","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In IEEE conference on computer vision and pattern recognition (pp. 770\u2013778).","DOI":"10.1109\/CVPR.2016.90"},{"key":"1381_CR22","unstructured":"Hinton, G. E., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. CoRR arXiv:1503.02531."},{"key":"1381_CR23","unstructured":"Kang, B., & Feng, J. (2018). Transferable meta learning across domains. In Proceedings of the 34th conference on uncertainty in artificial intelligence (pp. 177\u2013187)."},{"key":"1381_CR24","unstructured":"Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng, J., & Kalantidis, Y. (2020). Decoupling representation and classifier for long-tailed recognition. In Proceedings of the 8th international conference on learning representations."},{"key":"1381_CR25","unstructured":"Khosla, A., Jayadevaprakash, N., Yao, B., & Fei-Fei, L. (2011). Novel dataset for fine-grained image categorization. In 1st workshop on fine-grained visual categorization, IEEE conference on computer vision and pattern recognition."},{"key":"1381_CR26","unstructured":"Koch, G., Zemel, R., & Salakhutdinov, R. (2015). Siamese neural networks for one-shot image recognition. In ICML deep learning workshop (Vol. 2)."},{"key":"1381_CR27","doi-asserted-by":"crossref","unstructured":"Krause, J., Stark, M., Deng, J., & Fei-Fei, L. (2013). 3D object representations for fine-grained categorization. In 4th international IEEE workshop on 3D representation and recognition.","DOI":"10.1109\/ICCVW.2013.77"},{"issue":"6","key":"1381_CR28","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1145\/3065386","volume":"60","author":"A Krizhevsky","year":"2017","unstructured":"Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84\u201390.","journal-title":"Communications of the ACM"},{"issue":"3","key":"1381_CR29","doi-asserted-by":"publisher","first-page":"453","DOI":"10.1109\/TPAMI.2013.140","volume":"36","author":"CH Lampert","year":"2014","unstructured":"Lampert, C. H., Nickisch, H., & Harmeling, S. (2014). Attribute-based classification for zero-shot visual object categorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(3), 453\u2013465.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"1381_CR30","unstructured":"Larochelle, H. (2018). Few-shot learning with meta-learning: Progress made and challenges ahead."},{"key":"1381_CR31","unstructured":"Lee, Y., & Choi, S. (2018). Gradient-based meta-learning with learned layerwise metric and subspace. In Proceedings of the 35th international conference on machine learning (pp. 2933\u20132942)."},{"key":"1381_CR32","doi-asserted-by":"crossref","unstructured":"Lee, K., Maji, S., Ravichandran, A., & Soatto, S. (2019). Meta-learning with differentiable convex optimization. In IEEE conference on computer vision and pattern recognition (pp. 10657\u201310665).","DOI":"10.1109\/CVPR.2019.01091"},{"key":"1381_CR33","doi-asserted-by":"crossref","unstructured":"Li, H., Eigen, D., Dodge, S., Zeiler, M & Wang, X. (2019). Finding task-relevant features for few-shot learning by category traversal. In IEEE conference on computer vision and pattern recognition (pp. 1\u201310).","DOI":"10.1109\/CVPR.2019.00009"},{"key":"1381_CR34","unstructured":"Li, Z., Zhou, F., Chen, F., & Li, H. (2017). Meta-SGD: Learning to learn quickly for few shot learning. CoRR arXiv:1707.09835."},{"key":"1381_CR35","doi-asserted-by":"crossref","unstructured":"Lifchitz, Y., Avrithis, Y., Picard, S., & Bursuc, A. (2019). Dense classification and implanting for few-shot learning. In IEEE conference on computer vision and pattern recognition (pp. 9258\u20139267).","DOI":"10.1109\/CVPR.2019.00948"},{"issue":"4","key":"1381_CR36","doi-asserted-by":"publisher","first-page":"594","DOI":"10.1109\/TPAMI.2006.79","volume":"28","author":"FF Li","year":"2006","unstructured":"Li, F. F., Fergus, R., & Perona, P. (2006). One-shot learning of object categories. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4), 594\u2013611.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"12","key":"1381_CR37","doi-asserted-by":"publisher","first-page":"2935","DOI":"10.1109\/TPAMI.2017.2773081","volume":"40","author":"Z Li","year":"2018","unstructured":"Li, Z., & Hoiem, D. (2018). Learning without forgetting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(12), 2935\u20132947.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"1381_CR38","first-page":"10276","volume":"32","author":"X Li","year":"2019","unstructured":"Li, X., Sun, Q., Liu, Y., Zhou, Q., Zheng, S., Chua, T. S., et al. (2019). Learning to self-train for semi-supervised few-shot classification. Advances in Neural Information Processing Systems, 32, 10276\u201310286.","journal-title":"Advances in Neural Information Processing Systems"},{"key":"1381_CR39","doi-asserted-by":"crossref","unstructured":"Liu, Y., Liu, A. A., Su, Y., Schiele, B., & Sun, Q. (2020). Mnemonics training: Multi-class incremental learning without forgetting. In IEEE conference on computer vision and pattern recognition (pp. 12245\u201312254).","DOI":"10.1109\/CVPR42600.2020.01226"},{"key":"1381_CR40","doi-asserted-by":"crossref","unstructured":"Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., & Yu, S. X. (2019). Large-scale long-tailed recognition in an open world. In IEEE conference on computer vision and pattern recognition (pp. 2537\u20132546).","DOI":"10.1109\/CVPR.2019.00264"},{"key":"1381_CR41","first-page":"6467","volume":"30","author":"D Lopez-Paz","year":"2017","unstructured":"Lopez-Paz, D., & Ranzato, M. (2017). Gradient episodic memory for continual learning. Advances in Neural Information Processing Systems, 30, 6467\u20136476.","journal-title":"Advances in Neural Information Processing Systems"},{"key":"1381_CR42","unstructured":"Maji, S., Rahtu, E., Kannala, J., Blaschko, M. B., & Vedaldi, A. (2013). Fine-grained visual classification of aircraft. CoRR arXiv:1306.5151."},{"key":"1381_CR43","unstructured":"Nichol, A., Achiam, J., & Schulman, J. (2018). On first-order meta-learning algorithms. CoRR arXiv:1803.02999."},{"key":"1381_CR44","first-page":"719","volume":"31","author":"BN Oreshkin","year":"2018","unstructured":"Oreshkin, B. N., L\u00f3pez, P. R., & Lacoste, A. (2018). TADAM: Task dependent adaptive metric for improved few-shot learning. Advances in Neural Information Processing Systems, 31, 719\u2013729.","journal-title":"Advances in Neural Information Processing Systems"},{"key":"1381_CR45","doi-asserted-by":"crossref","unstructured":"Qiao, S., Liu, C., Shen, W., & Yuille, A. L. (2018). Few-shot image recognition by predicting parameters from activations. In IEEE conference on computer vision and pattern recognition (pp. 7229\u20137238).","DOI":"10.1109\/CVPR.2018.00755"},{"key":"1381_CR46","doi-asserted-by":"crossref","unstructured":"Quattoni, A., & Torralba, A. (2009). Recognizing indoor scenes. In IEEE conference on computer vision and pattern recognition (pp. 413\u2013420).","DOI":"10.1109\/CVPR.2009.5206537"},{"key":"1381_CR47","unstructured":"Ravi, S., & Larochelle, H. (2017). Optimization as a model for few-shot learning. In Proceedings of the 5th international conference on learning representations."},{"key":"1381_CR48","unstructured":"Reed, S. E., Chen, Y., Paine, T., van\u00a0den Oord, A., Eslami, S. M. A., Rezende, D. J., et al. (2018). Few-shot autoregressive density estimation: Towards learning to learn distributions. In Proceedings of the 6th international conference on learning representations."},{"key":"1381_CR49","unstructured":"Ren, M., Triantafillou, E., Ravi, S., Snell, J., Swersky, K., Tenenbaum, J.B., et al. (2018). Meta-learning for semi-supervised few-shot classification. In Proceedings of the 6th international conference on learning representations."},{"key":"1381_CR50","first-page":"5276","volume":"32","author":"M Ren","year":"2019","unstructured":"Ren, M., Liao, R., Fetaya, E., & Zemel, R. (2019). Incremental few-shot learning with attention attractor networks. Advances in Neural Information Processing Systems, 32, 5276\u20135286.","journal-title":"Advances in Neural Information Processing Systems"},{"issue":"3","key":"1381_CR51","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","volume":"115","author":"O Russakovsky","year":"2015","unstructured":"Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211\u2013252.","journal-title":"International Journal of Computer Vision"},{"key":"1381_CR52","unstructured":"Rusu, A. A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S., et al. (2019). Meta-learning with latent embedding optimization. In Proceedings of the 7th international conference on learning representations."},{"key":"1381_CR53","doi-asserted-by":"crossref","unstructured":"Sch\u00f6nfeld, E., Ebrahimi, S., Sinha, S., Darrell, T., & Akata, Z. (2019). Generalized zero- and few-shot learning via aligned variational autoencoders. In IEEE conference on computer vision and pattern recognition (pp. 8247\u20138255).","DOI":"10.1109\/CVPR.2019.00844"},{"key":"1381_CR54","unstructured":"Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd international conference on learning representations."},{"key":"1381_CR55","first-page":"4080","volume":"30","author":"J Snell","year":"2017","unstructured":"Snell, J., Swersky, K., & Zemel, R. S. (2017). Prototypical networks for few-shot learning. Advances in Neural Information Processing Systems, 30, 4080\u20134090.","journal-title":"Advances in Neural Information Processing Systems"},{"key":"1381_CR56","doi-asserted-by":"crossref","unstructured":"Sun, Q., Liu, Y., Chua, T. S., & Schiele, B. (2019). Meta-transfer learning for few-shot learning. In IEEE conference on computer vision and pattern recognition (pp. 403\u2013412).","DOI":"10.1109\/CVPR.2019.00049"},{"key":"1381_CR57","unstructured":"Triantafillou, E., Zhu, T., Dumoulin, V., Lamblin, P., Evci, U., Xu, K., et al. (2020). Meta-dataset: A dataset of datasets for learning to learn from few examples. In Proceedings of the 8th international conference on learning representations."},{"key":"1381_CR58","first-page":"2252","volume":"30","author":"E Triantafillou","year":"2017","unstructured":"Triantafillou, E., Zemel, R. S., & Urtasun, R. (2017). Few-shot learning through an information retrieval lens. Advances in Neural Information Processing Systems, 30, 2252\u20132262.","journal-title":"Advances in Neural Information Processing Systems"},{"key":"1381_CR59","first-page":"5998","volume":"30","author":"A Vaswani","year":"2017","unstructured":"Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30, 5998\u20136008.","journal-title":"Advances in Neural Information Processing Systems"},{"key":"1381_CR60","doi-asserted-by":"crossref","unstructured":"Venkateswara, H., Eusebio, J., Chakraborty, S., & Panchanathan, S. (2017). Deep hashing network for unsupervised domain adaptation. In IEEE conference on computer vision and pattern recognition (pp. 5385\u20135394).","DOI":"10.1109\/CVPR.2017.572"},{"key":"1381_CR61","first-page":"3630","volume":"29","author":"O Vinyals","year":"2016","unstructured":"Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., & Wierstra, D. (2016). Matching networks for one shot learning. Advances in Neural Information Processing Systems, 29, 3630\u20133638.","journal-title":"Advances in Neural Information Processing Systems"},{"key":"1381_CR62","first-page":"1","volume":"32","author":"R Vuorio","year":"2019","unstructured":"Vuorio, R., Sun, S. H., Hu, H., & Lim, J. J. (2019). Multimodal model-agnostic meta-learning via task-aware modulation. Advances in Neural Information Processing Systems, 32, 1\u201312.","journal-title":"Advances in Neural Information Processing Systems"},{"key":"1381_CR63","unstructured":"Wah, C., Branson, S., Welinder, P., Perona, P., & Belongie, S. (2011). The Caltech-UCSD Birds-200-2011 Dataset. Technical report CNS-TR-2011-001, California Institute of Technology."},{"key":"1381_CR64","unstructured":"Wang, Y., Chao, W. L., Weinberger, K. Q., & van der Maaten, L. (2019). Simpleshot: Revisiting nearest-neighbor classification for few-shot learning. CoRR arXiv:1911.04623."},{"key":"1381_CR65","doi-asserted-by":"crossref","unstructured":"Wang, Y. X., Girshick, R. B., Hebert, M., & Hariharan, B. (2018). Low-shot learning from imaginary data. In IEEE conference on computer vision and pattern recognition (pp. 7278\u20137286).","DOI":"10.1109\/CVPR.2018.00760"},{"key":"1381_CR66","unstructured":"Wang, T., Zhu, J. Y., Torralba, A., & Efros, A. A. (2018). Dataset distillation. CoRR arXiv:1811.10959."},{"key":"1381_CR67","first-page":"7032","volume":"30","author":"YX Wang","year":"2017","unstructured":"Wang, Y. X., Ramanan, D., & Hebert, M. (2017). Learning to model the tail. Advances in Neural Information Processing Systems, 30, 7032\u20137042.","journal-title":"Advances in Neural Information Processing Systems"},{"key":"1381_CR68","doi-asserted-by":"crossref","unstructured":"Xian, Y., Schiele, B., & Akata, Z. (2017). Zero-shot learning\u2014The good, the bad and the ugly. In IEEE conference on computer vision and pattern recognition (pp. 3077\u20133086).","DOI":"10.1109\/CVPR.2017.328"},{"key":"1381_CR69","unstructured":"Ye, H. J., Chen, H. Y., Zhan, D. C., & Chao, W. L. (2020). Identifying and compensating for feature deviation in imbalanced deep learning. CoRR arXiv:2001.01385."},{"key":"1381_CR70","doi-asserted-by":"crossref","unstructured":"Ye, H. J., Hu, H., Zhan, D. C., & Sha, F. (2020). Few-shot learning via embedding adaptation with set-to-set functions. In IEEE conference on computer vision and pattern recognition (pp. 8808\u20138817).","DOI":"10.1109\/CVPR42600.2020.00883"},{"key":"1381_CR71","unstructured":"Yoon, S. W., Seo, J., & Moon, J. (2019). Tapnet: Neural network augmented with task-adaptive projection for few-shot learning. In Proceedings of the 36th international conference on machine learning (pp. 7115\u20137123)."},{"key":"1381_CR72","doi-asserted-by":"crossref","unstructured":"Zhou, B., Cui, Q., Wei, X. S., & Chen, Z. M. (2020). BBN: Bilateral-branch network with cumulative learning for long-tailed visual recognition. In IEEE conference on computer vision and pattern recognition (pp. 9719\u20139728).","DOI":"10.1109\/CVPR42600.2020.00974"}],"container-title":["International Journal of Computer Vision"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11263-020-01381-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11263-020-01381-4\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11263-020-01381-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,5,24]],"date-time":"2021-05-24T06:15:01Z","timestamp":1621836901000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11263-020-01381-4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,4,19]]},"references-count":72,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2021,6]]}},"alternative-id":["1381"],"URL":"https:\/\/doi.org\/10.1007\/s11263-020-01381-4","relation":{},"ISSN":["0920-5691","1573-1405"],"issn-type":[{"type":"print","value":"0920-5691"},{"type":"electronic","value":"1573-1405"}],"subject":[],"published":{"date-parts":[[2021,4,19]]},"assertion":[{"value":"21 December 2019","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"3 September 2020","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"19 April 2021","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}