{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,29]],"date-time":"2024-08-29T15:45:51Z","timestamp":1724946351900},"reference-count":106,"publisher":"Springer Science and Business Media LLC","issue":"8","license":[{"start":{"date-parts":[[2024,1,4]],"date-time":"2024-01-04T00:00:00Z","timestamp":1704326400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,4]],"date-time":"2024-01-04T00:00:00Z","timestamp":1704326400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Supercomput"],"published-print":{"date-parts":[[2024,5]]},"DOI":"10.1007\/s11227-023-05790-3","type":"journal-article","created":{"date-parts":[[2024,1,4]],"date-time":"2024-01-04T18:02:45Z","timestamp":1704391365000},"page":"10746-10795","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Prism refraction search: a novel physics-based metaheuristic algorithm"],"prefix":"10.1007","volume":"80","author":[{"given":"Rohit","family":"Kundu","sequence":"first","affiliation":[]},{"given":"Soumitri","family":"Chattopadhyay","sequence":"additional","affiliation":[]},{"given":"Sayan","family":"Nag","sequence":"additional","affiliation":[]},{"given":"Mario A.","family":"Navarro","sequence":"additional","affiliation":[]},{"given":"Diego","family":"Oliva","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,1,4]]},"reference":[{"issue":"19","key":"5790_CR1","doi-asserted-by":"crossref","first-page":"14885","DOI":"10.1007\/s00500-020-04842-7","volume":"24","author":"M Abd Elaziz","year":"2020","unstructured":"Abd Elaziz M, Sarkar U, Nag S, Hinojosa S, Oliva D (2020) Improving image thresholding by the type ii fuzzy entropy and a hybrid optimization algorithm. Soft Comput 24(19):14885\u201314905","journal-title":"Soft Comput"},{"issue":"5","key":"5790_CR2","doi-asserted-by":"crossref","first-page":"2932","DOI":"10.1016\/j.asoc.2012.03.068","volume":"13","author":"M Abdechiri","year":"2013","unstructured":"Abdechiri M, Meybodi MR, Bahrami H (2013) Gases brownian motion optimization: an algorithm for optimization (gbmo). Appl Soft Comput 13(5):2932\u20132946","journal-title":"Appl Soft Comput"},{"issue":"19","key":"5790_CR3","doi-asserted-by":"crossref","first-page":"3466","DOI":"10.3390\/math10193466","volume":"10","author":"M Abdel-Basset","year":"2022","unstructured":"Abdel-Basset M, Mohamed R, Sallam KM, Chakrabortty RK (2022) Light spectrum optimizer: a novel physics-inspired metaheuristic optimization algorithm. Mathematics 10(19):3466","journal-title":"Mathematics"},{"key":"5790_CR4","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2021.107408","volume":"158","author":"B Abdollahzadeh","year":"2021","unstructured":"Abdollahzadeh B, Gharehchopogh FS, Mirjalili S (2021) African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems. Comput Ind Eng 158:107408","journal-title":"Comput Ind Eng"},{"key":"5790_CR5","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1016\/j.swevo.2015.07.002","volume":"26","author":"H Abedinpourshotorban","year":"2016","unstructured":"Abedinpourshotorban H, Shamsuddin SM, Beheshti Z, Jawawi DN (2016) Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm. Swarm Evol Comput 26:8\u201322","journal-title":"Swarm Evol Comput"},{"key":"5790_CR6","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.116158","volume":"191","author":"L Abualigah","year":"2022","unstructured":"Abualigah L, Abd Elaziz M, Sumari P, Geem ZW, Gandomi AH (2022) Reptile search algorithm (rsa): a nature-inspired meta-heuristic optimizer. Expert Syst Appl 191:116158","journal-title":"Expert Syst Appl"},{"key":"5790_CR7","doi-asserted-by":"crossref","first-page":"169196","DOI":"10.1109\/ACCESS.2020.3024095","volume":"8","author":"S Ahmed","year":"2020","unstructured":"Ahmed S, Ghosh KK, Bera SK, Schwenker F, Sarkar R (2020) Gray level image contrast enhancement using barnacles mating optimizer. IEEE Access 8:169196\u2013169214","journal-title":"IEEE Access"},{"issue":"12","key":"5790_CR8","doi-asserted-by":"crossref","first-page":"6467","DOI":"10.1007\/s00521-020-05409-1","volume":"33","author":"S Ahmed","year":"2021","unstructured":"Ahmed S, Ghosh KK, Garcia-Hernandez L, Abraham A, Sarkar R (2021) Improved coral reefs optimization with adaptive $$\\beta$$-hill climbing for feature selection. Neural Comput Appl 33(12):6467\u20136486","journal-title":"Neural Comput Appl"},{"key":"5790_CR9","doi-asserted-by":"publisher","DOI":"10.1007\/s10462-021-09992-0","author":"B Akay","year":"2021","unstructured":"Akay B, Karaboga D, Akay R (2021) A comprehensive survey on optimizing deep learning models by metaheuristics. Artif Intell Rev. https:\/\/doi.org\/10.1007\/s10462-021-09992-0","journal-title":"Artif Intell Rev"},{"key":"5790_CR10","doi-asserted-by":"crossref","unstructured":"Al-Aboody N, Al-Raweshidy H (2016) Grey wolf optimization-based energy-efficient routing protocol for heterogeneous wireless sensor networks. In: 2016 4th International Symposium on Computational and Business Intelligence (ISCBI), IEEE, pp 101\u2013107","DOI":"10.1109\/ISCBI.2016.7743266"},{"issue":"1","key":"5790_CR11","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1007\/s00521-016-2328-2","volume":"28","author":"MA Al-Betar","year":"2017","unstructured":"Al-Betar MA (2017) $$\\beta$$-hill climbing: an exploratory local search. Neural Comput Appl 28(1):153\u2013168","journal-title":"Neural Comput Appl"},{"issue":"24","key":"5790_CR12","doi-asserted-by":"crossref","first-page":"13489","DOI":"10.1007\/s00500-019-03887-7","volume":"23","author":"MA Al-Betar","year":"2019","unstructured":"Al-Betar MA, Aljarah I, Awadallah MA, Faris H, Mirjalili S (2019) Adaptive $$\\beta$$-hill climbing for optimization. Soft Comput 23(24):13489\u201313512","journal-title":"Soft Comput"},{"issue":"10","key":"5790_CR13","doi-asserted-by":"crossref","first-page":"13170","DOI":"10.1016\/j.eswa.2011.04.126","volume":"38","author":"B Alatas","year":"2011","unstructured":"Alatas B (2011) Acroa: artificial chemical reaction optimization algorithm for global optimization. Expert Syst Appl 38(10):13170\u201313180","journal-title":"Expert Syst Appl"},{"key":"5790_CR14","volume-title":"Computational intelligence laboratory","author":"N Awad","year":"2017","unstructured":"Awad N, Ali M, Liang J, Qu B, Suganthan P (2017) Problem definitions and evaluation criteria for the cec 2017 special session and competition on single objective real-parameter numerical optimization. Computational intelligence laboratory. Zhengzhou University, China and Nanyang Technological University, Singapore"},{"key":"5790_CR15","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107468","volume":"232","author":"R Bandyopadhyay","year":"2021","unstructured":"Bandyopadhyay R, Kundu R, Oliva D, Sarkar R (2021) Segmentation of brain MRI using an altruistic Harris hawks\u2019 optimization algorithm. Knowl Based Syst 232:107468","journal-title":"Knowl Based Syst"},{"issue":"5","key":"5790_CR16","doi-asserted-by":"crossref","first-page":"2745","DOI":"10.1109\/TAP.2013.2238654","volume":"61","author":"Z Bayraktar","year":"2013","unstructured":"Bayraktar Z, Komurcu M, Bossard JA, Werner DH (2013) The wind driven optimization technique and its application in electromagnetics. Trans Antennas Propag 61(5):2745\u20132757","journal-title":"Trans Antennas Propag"},{"key":"5790_CR17","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2021\/8548639","volume":"2021","author":"H Bayzidi","year":"2021","unstructured":"Bayzidi H, Talatahari S, Saraee M, Lamarche CP (2021) Social network search for solving engineering optimization problems. Comput Intell Neurosci 2021:1\u201332","journal-title":"Comput Intell Neurosci"},{"issue":"3","key":"5790_CR18","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1023\/A:1022452626305","volume":"25","author":"\u015e\u0130 Birbil","year":"2003","unstructured":"Birbil \u015e\u0130, Fang SC (2003) An electromagnetism-like mechanism for global optimization. J Glob Optim 25(3):263\u2013282","journal-title":"J Glob Optim"},{"key":"5790_CR19","doi-asserted-by":"publisher","DOI":"10.1155\/2013\/438152","volume":"2013","author":"A Biswas","year":"2013","unstructured":"Biswas A, Mishra K, Tiwari S, Misra A (2013) Physics-inspired optimization algorithms: a survey. J Optim 2013:438152. https:\/\/doi.org\/10.1155\/2013\/438152","journal-title":"J Optim"},{"issue":"4","key":"5790_CR20","doi-asserted-by":"crossref","DOI":"10.1111\/exsy.12676","volume":"40","author":"B Chatterjee","year":"2021","unstructured":"Chatterjee B, Bhattacharyya T, Ghosh KK, Chatterjee A, Sarkar R (2021) A novel meta-heuristic approach for influence maximization in social networks. Expert Syst 40(4):e12676","journal-title":"Expert Syst"},{"issue":"7","key":"5790_CR21","first-page":"1","volume":"37","author":"S Chattopadhyay","year":"2021","unstructured":"Chattopadhyay S, Kundu R, Singh PK, Mirjalili S, Sarkar R (2021) Pneumonia detection from lung x-ray images using local search aided sine cosine algorithm based deep feature selection method. Int J Intel Syst 37(7):1\u201338","journal-title":"Int J Intel Syst"},{"key":"5790_CR22","unstructured":"Chattopadhyay S, Marik A, Pramanik R (2022) A brief overview of physics-inspired metaheuristic optimization techniques. arXiv preprint arXiv: Arxiv-2201.12810"},{"key":"5790_CR23","volume-title":"Optimization methods in finance","author":"G Consigli","year":"2019","unstructured":"Consigli G (2019) Optimization methods in finance. Taylor & Francis, Oxford"},{"issue":"2","key":"5790_CR24","doi-asserted-by":"crossref","first-page":"256","DOI":"10.1007\/s10489-013-0458-0","volume":"40","author":"E Cuevas","year":"2014","unstructured":"Cuevas E, Echavarr\u00eda A, Ram\u00edrez-Orteg\u00f3n MA (2014) An optimization algorithm inspired by the states of matter that improves the balance between exploration and exploitation. Appl Intell 40(2):256\u2013272","journal-title":"Appl Intell"},{"issue":"1","key":"5790_CR25","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1109\/TEVC.2010.2059031","volume":"15","author":"S Das","year":"2010","unstructured":"Das S, Suganthan PN (2010) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4\u201331","journal-title":"IEEE Trans Evol Comput"},{"key":"5790_CR26","doi-asserted-by":"crossref","unstructured":"Dehghani M, Montazeri Z, Dehghani A, Seifi A (2017) Spring search algorithm: a new meta-heuristic optimization algorithm inspired by Hooke\u2019s law. In: 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), IEEE, pp 0210\u20130214","DOI":"10.1109\/KBEI.2017.8324975"},{"key":"5790_CR27","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.110011","volume":"259","author":"M Dehghani","year":"2023","unstructured":"Dehghani M, Montazeri Z, Trojovsk\u00e1 E, Trojovsk\u1ef3 P (2023) Coati optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl Based Syst 259:110011","journal-title":"Knowl Based Syst"},{"issue":"10","key":"5790_CR28","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s42452-020-03511-6","volume":"2","author":"M Dehghani","year":"2020","unstructured":"Dehghani M, Samet H (2020) Momentum search algorithm: a new meta-heuristic optimization algorithm inspired by momentum conservation law. SN Appl Sci 2(10):1\u201315","journal-title":"SN Appl Sci"},{"key":"5790_CR29","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1016\/j.ins.2014.08.053","volume":"293","author":"B Do\u011fan","year":"2015","unstructured":"Do\u011fan B, \u00d6lmez T (2015) A new metaheuristic for numerical function optimization: vortex search algorithm. Inf Sci 293:125\u2013145","journal-title":"Inf Sci"},{"key":"5790_CR30","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2019.106040","volume":"137","author":"T Dokeroglu","year":"2019","unstructured":"Dokeroglu T, Sevinc E, Kucukyilmaz T, Cosar A (2019) A survey on new generation metaheuristic algorithms. Comput Ind Eng 137:106040","journal-title":"Comput Ind Eng"},{"issue":"2\u20133","key":"5790_CR31","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1016\/j.tcs.2005.05.020","volume":"344","author":"M Dorigo","year":"2005","unstructured":"Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comput Sci 344(2\u20133):243\u2013278","journal-title":"Theor Comput Sci"},{"key":"5790_CR32","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1016\/j.swevo.2014.01.003","volume":"16","author":"A Draa","year":"2014","unstructured":"Draa A, Bouaziz A (2014) An artificial bee colony algorithm for image contrast enhancement. Swarm Evol Comput 16:69\u201384","journal-title":"Swarm Evol Comput"},{"key":"5790_CR33","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1016\/j.ijpe.2017.10.027","volume":"196","author":"MA Dulebenets","year":"2018","unstructured":"Dulebenets MA (2018) A comprehensive multi-objective optimization model for the vessel scheduling problem in liner shipping. Int J Prod Econ 196:293\u2013318","journal-title":"Int J Prod Econ"},{"issue":"Suppl 4","key":"5790_CR34","doi-asserted-by":"crossref","first-page":"3191","DOI":"10.1007\/s00366-021-01460-1","volume":"38","author":"H Emami","year":"2022","unstructured":"Emami H (2022) Hazelnut tree search algorithm: a nature-inspired method for solving numerical and engineering problems. Eng Comput 38(Suppl 4):3191\u20133215","journal-title":"Eng Comput"},{"issue":"2","key":"5790_CR35","doi-asserted-by":"crossref","first-page":"1845","DOI":"10.1007\/s00366-020-01133-5","volume":"38","author":"H Emami","year":"2022","unstructured":"Emami H (2022) Seasons optimization algorithm. Eng Comput 38(2):1845\u20131865","journal-title":"Eng Comput"},{"issue":"2","key":"5790_CR36","doi-asserted-by":"crossref","first-page":"2125","DOI":"10.1007\/s11227-021-03943-w","volume":"78","author":"H Emami","year":"2022","unstructured":"Emami H (2022) Stock exchange trading optimization algorithm: a human-inspired method for global optimization. J Supercomput 78(2):2125\u20132174","journal-title":"J Supercomput"},{"issue":"3","key":"5790_CR37","doi-asserted-by":"crossref","first-page":"591","DOI":"10.3233\/AIC-140652","volume":"28","author":"H Emami","year":"2015","unstructured":"Emami H, Derakhshan F (2015) Election algorithm: a new socio-politically inspired strategy. AI Commun 28(3):591\u2013603","journal-title":"AI Commun"},{"key":"5790_CR38","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1016\/j.compstruc.2012.07.010","volume":"110","author":"H Eskandar","year":"2012","unstructured":"Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110:151\u2013166","journal-title":"Comput Struct"},{"key":"5790_CR39","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.113377","volume":"152","author":"A Faramarzi","year":"2020","unstructured":"Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst Appl 152:113377","journal-title":"Expert Syst Appl"},{"issue":"2","key":"5790_CR40","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1007\/BF01096763","volume":"6","author":"TA Feo","year":"1995","unstructured":"Feo TA, Resende MG (1995) Greedy randomized adaptive search procedures. J Glob Optim 6(2):109\u2013133","journal-title":"J Glob Optim"},{"key":"5790_CR41","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1007\/978-3-540-78987-1_21","volume-title":"Nature inspired cooperative strategies for optimization (NICSO 2007)","author":"RA Formato","year":"2008","unstructured":"Formato RA (2008) Central force optimization: a new nature inspired computational framework for multidimensional search and optimization. Nature inspired cooperative strategies for optimization (NICSO 2007). Springer, Cham, pp 221\u2013238"},{"key":"5790_CR42","doi-asserted-by":"crossref","DOI":"10.1007\/978-4-431-55420-2","volume-title":"Optimization in the real world","author":"K Fujisawa","year":"2016","unstructured":"Fujisawa K, Shinano Y, Waki H (2016) Optimization in the real world. Springer, Cham"},{"issue":"2","key":"5790_CR43","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1177\/003754970107600201","volume":"76","author":"ZW Geem","year":"2001","unstructured":"Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60\u201368","journal-title":"Simulation"},{"issue":"23","key":"5790_CR44","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s00500-021-06080-x","volume":"25","author":"R Gillala","year":"2021","unstructured":"Gillala R, Vuyyuru KR, Jatoth C, Fiore U (2021) An efficient chaotic salp swarm optimization approach based on ensemble algorithm for class imbalance problems. Soft Comput 25(23):1\u201311","journal-title":"Soft Comput"},{"key":"5790_CR45","volume-title":"Introduction to ray tracing","author":"AS Glassner","year":"1989","unstructured":"Glassner AS (1989) Introduction to ray tracing. Morgan Kaufmann, Burlington"},{"key":"5790_CR46","doi-asserted-by":"crossref","first-page":"2093","DOI":"10.1007\/978-1-4613-0303-9_33","volume-title":"Handbook of combinatorial optimization","author":"F Glover","year":"1998","unstructured":"Glover F, Laguna M (1998) Tabu search. Handbook of combinatorial optimization. Springer, Cham, pp 2093\u20132229"},{"issue":"10","key":"5790_CR47","doi-asserted-by":"crossref","first-page":"5267","DOI":"10.1007\/s00521-020-05297-5","volume":"33","author":"R Guha","year":"2021","unstructured":"Guha R, Khan AH, Singh PK, Sarkar R, Bhattacharjee D (2021) CGA: a new feature selection model for visual human action recognition. Neural Comput Appl 33(10):5267\u20135286","journal-title":"Neural Comput Appl"},{"key":"5790_CR48","volume-title":"Fundamentals of physics","author":"D Halliday","year":"2013","unstructured":"Halliday D, Resnick R, Walker J (2013) Fundamentals of physics. Wiley, New York"},{"key":"5790_CR49","first-page":"433","volume-title":"Meta-heuristics","author":"P Hansen","year":"1999","unstructured":"Hansen P, Mladenovi\u0107 N (1999) An introduction to variable neighborhood search. Meta-heuristics. Springer, Cham, pp 433\u2013458"},{"key":"5790_CR50","doi-asserted-by":"crossref","first-page":"646","DOI":"10.1016\/j.future.2019.07.015","volume":"101","author":"FA Hashim","year":"2019","unstructured":"Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili S (2019) Henry gas solubility optimization: a novel physics-based algorithm. Future Gener Comput Syst 101:646\u2013667","journal-title":"Future Gener Comput Syst"},{"issue":"3","key":"5790_CR51","doi-asserted-by":"crossref","first-page":"1531","DOI":"10.1007\/s10489-020-01893-z","volume":"51","author":"FA Hashim","year":"2021","unstructured":"Hashim FA, Hussain K, Houssein EH, Mabrouk MS, Al-Atabany W (2021) Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Appl Intell 51(3):1531\u20131551","journal-title":"Appl Intell"},{"key":"5790_CR52","unstructured":"He F (2012) Swarm intelligence for traveling salesman problems. In: Proceedings of the 2012 International Conference on Electronics, Communications and Control, pp 641\u2013644"},{"issue":"1","key":"5790_CR53","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1038\/scientificamerican0792-66","volume":"267","author":"JH Holland","year":"1992","unstructured":"Holland JH (1992) Genetic algorithms. Sci Am 267(1):66\u201373","journal-title":"Sci Am"},{"key":"5790_CR54","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1016\/j.asoc.2015.12.001","volume":"41","author":"A Jos\u00e9-Garc\u00eda","year":"2016","unstructured":"Jos\u00e9-Garc\u00eda A, G\u00f3mez-Flores W (2016) Automatic clustering using nature-inspired metaheuristics: a survey. Appl Soft Comput 41:192\u2013213","journal-title":"Appl Soft Comput"},{"issue":"4","key":"5790_CR55","doi-asserted-by":"crossref","first-page":"343","DOI":"10.1108\/00022660910967336","volume":"81","author":"DJ Jwo","year":"2009","unstructured":"Jwo DJ, Chang SC (2009) Particle swarm optimization for GPS navigation Kalman filter adaptation. Aircr Eng Aerosp Technol 81(4):343\u2013352","journal-title":"Aircr Eng Aerosp Technol"},{"issue":"1","key":"5790_CR56","first-page":"108","volume":"214","author":"D Karaboga","year":"2009","unstructured":"Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108\u2013132","journal-title":"Appl Math Comput"},{"key":"5790_CR57","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2021.107224","volume":"156","author":"H Karami","year":"2021","unstructured":"Karami H, Anaraki MV, Farzin S, Mirjalili S (2021) Flow direction algorithm (FDA): a novel optimization approach for solving optimization problems. Comput Ind Eng 156:107224","journal-title":"Comput Ind Eng"},{"key":"5790_CR58","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1016\/j.cor.2014.10.011","volume":"55","author":"AH Kashan","year":"2015","unstructured":"Kashan AH (2015) A new metaheuristic for optimization: optics inspired optimization (OIO). Comput Oper Res 55:99\u2013125","journal-title":"Comput Oper Res"},{"key":"5790_CR59","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1016\/j.advengsoft.2017.03.014","volume":"110","author":"A Kaveh","year":"2017","unstructured":"Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw 110:69\u201384","journal-title":"Adv Eng Softw"},{"key":"5790_CR60","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1016\/j.compstruc.2012.09.003","volume":"112","author":"A Kaveh","year":"2012","unstructured":"Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112:283\u2013294","journal-title":"Comput Struct"},{"key":"5790_CR61","doi-asserted-by":"crossref","unstructured":"Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of International Conference on Neural Networks, vol 4, pp 1942\u20131948","DOI":"10.1109\/ICNN.1995.488968"},{"issue":"4598","key":"5790_CR62","doi-asserted-by":"crossref","first-page":"671","DOI":"10.1126\/science.220.4598.671","volume":"220","author":"S Kirkpatrick","year":"1983","unstructured":"Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671\u2013680","journal-title":"Science"},{"key":"5790_CR63","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TNNLS.2021.3100554","volume":"34","author":"Y Liu","year":"2021","unstructured":"Liu Y, Sun Y, Xue B, Zhang M, Yen GG, Tan KC (2021) A survey on evolutionary neural architecture search. IEEE Trans Neural Netw Learn Syst 34:1\u201321. https:\/\/doi.org\/10.1109\/TNNLS.2021.3100554","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"5790_CR64","doi-asserted-by":"crossref","first-page":"320","DOI":"10.1007\/0-306-48056-5_11","volume-title":"Handbook of metaheuristics","author":"HR Louren\u00e7o","year":"2003","unstructured":"Louren\u00e7o HR, Martin OC, St\u00fctzle T (2003) Iterated local search. Handbook of metaheuristics. Springer, Cham, pp 320\u2013353"},{"key":"5790_CR65","volume":"146","author":"STW Mara","year":"2022","unstructured":"Mara STW, Norcahyo R, Jodiawan P, Lusiantoro L, Rifai AP (2022) A survey of adaptive large neighborhood search algorithms and applications. Comput Oper Res 146:105903","journal-title":"Comput Oper Res"},{"issue":"9","key":"5790_CR66","doi-asserted-by":"crossref","first-page":"1455","DOI":"10.1016\/S0031-3203(99)00137-5","volume":"33","author":"U Maulik","year":"2000","unstructured":"Maulik U, Bandyopadhyay S (2000) Genetic algorithm-based clustering technique. Pattern Recognit 33(9):1455\u20131465","journal-title":"Pattern Recognit"},{"key":"5790_CR67","doi-asserted-by":"publisher","first-page":"437","DOI":"10.1038\/008437a0","volume":"8","author":"JC Maxwell","year":"1873","unstructured":"Maxwell JC (1873) Molecules. Nature 8:437\u2013441. https:\/\/doi.org\/10.1038\/008437a0","journal-title":"Nature"},{"key":"5790_CR68","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1016\/j.knosys.2015.07.006","volume":"89","author":"S Mirjalili","year":"2015","unstructured":"Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228\u2013249","journal-title":"Knowl Based Syst"},{"key":"5790_CR69","doi-asserted-by":"crossref","first-page":"120","DOI":"10.1016\/j.knosys.2015.12.022","volume":"96","author":"S Mirjalili","year":"2016","unstructured":"Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120\u2013133","journal-title":"Knowl Based Syst"},{"issue":"2","key":"5790_CR70","doi-asserted-by":"crossref","first-page":"495","DOI":"10.1007\/s00521-015-1870-7","volume":"27","author":"S Mirjalili","year":"2016","unstructured":"Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495\u2013513","journal-title":"Neural Comput Appl"},{"key":"5790_CR71","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.advengsoft.2013.12.007","volume":"69","author":"S Mirjalili","year":"2014","unstructured":"Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46\u201361","journal-title":"Adv Eng Softw"},{"key":"5790_CR72","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/j.ins.2014.02.026","volume":"275","author":"S Moein","year":"2014","unstructured":"Moein S, Logeswaran R (2014) Kgmo: a swarm optimization algorithm based on the kinetic energy of gas molecules. Inf Sci 275:127\u2013144","journal-title":"Inf Sci"},{"key":"5790_CR73","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1016\/j.asoc.2017.11.043","volume":"64","author":"R Moghdani","year":"2018","unstructured":"Moghdani R, Salimifard K (2018) Volleyball premier league algorithm. Appl Soft Comput 64:161\u2013185","journal-title":"Appl Soft Comput"},{"issue":"2","key":"5790_CR74","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1007\/s10710-019-09342-8","volume":"20","author":"S Nag","year":"2019","unstructured":"Nag S (2019) Vector quantization using the improved differential evolution algorithm for image compression. Genet Program Evol Mach 20(2):187\u2013212","journal-title":"Genet Program Evol Mach"},{"issue":"1","key":"5790_CR75","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s41074-020-00063-x","volume":"12","author":"T Nakane","year":"2020","unstructured":"Nakane T, Bold N, Sun H, Lu X, Akashi T, Zhang C (2020) Application of evolutionary and swarm optimization in computer vision: a literature survey. IPSJ Trans Comput Vis Appl 12(1):1\u201334","journal-title":"IPSJ Trans Comput Vis Appl"},{"issue":"4","key":"5790_CR76","doi-asserted-by":"crossref","first-page":"207","DOI":"10.1504\/IJBIC.2020.108597","volume":"15","author":"N Nedjah","year":"2020","unstructured":"Nedjah N, Mourelle LDM, Morais RG (2020) Inspiration-wise swarm intelligence meta-heuristics for continuous optimisation: a survey-part i. Int J Bio Inspir Comput 15(4):207\u2013223","journal-title":"Int J Bio Inspir Comput"},{"key":"5790_CR77","doi-asserted-by":"crossref","DOI":"10.1016\/j.swevo.2019.100591","volume":"51","author":"D Oliva","year":"2019","unstructured":"Oliva D, Nag S, Abd Elaziz M, Sarkar U, Hinojosa S (2019) Multilevel thresholding by fuzzy type ii sets using evolutionary algorithms. Swarm Evol Comput 51:100591","journal-title":"Swarm Evol Comput"},{"key":"5790_CR78","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1007\/978-3-319-91086-4_4","volume-title":"Handbook of metaheuristics","author":"D Pisinger","year":"2019","unstructured":"Pisinger D, Ropke S (2019) Large neighborhood search. Handbook of metaheuristics. Springer, Cham, pp 99\u2013127"},{"issue":"3","key":"5790_CR79","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1016\/j.cad.2010.12.015","volume":"43","author":"RV Rao","year":"2011","unstructured":"Rao RV, Savsani VJ, Vakharia D (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303\u2013315","journal-title":"Comput Aided Des"},{"issue":"13","key":"5790_CR80","doi-asserted-by":"crossref","first-page":"2232","DOI":"10.1016\/j.ins.2009.03.004","volume":"179","author":"E Rashedi","year":"2009","unstructured":"Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232\u20132248","journal-title":"Inf Sci"},{"key":"5790_CR81","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.physrep.2016.08.001","volume":"655","author":"S Salcedo-Sanz","year":"2016","unstructured":"Salcedo-Sanz S (2016) Modern meta-heuristics based on nonlinear physics processes: a review of models and design procedures. Phys Rep 655:1\u201370","journal-title":"Phys Rep"},{"key":"5790_CR82","doi-asserted-by":"crossref","unstructured":"Salem SA (2012) Boa: a novel optimization algorithm. In: 2012 International Conference on Engineering and Technology (ICET), IEEE, pp 1\u20135","DOI":"10.1109\/ICEngTechnol.2012.6396156"},{"key":"5790_CR83","first-page":"82","volume":"81","author":"B Selman","year":"2006","unstructured":"Selman B, Gomes CP (2006) Hill-climbing search. Encycl Cogn Sci 81:82","journal-title":"Encycl Cogn Sci"},{"issue":"4","key":"5790_CR84","first-page":"1","volume":"7","author":"SS Shaw","year":"2021","unstructured":"Shaw SS, Ahmed S, Malakar S, Garcia-Hernandez L, Abraham A, Sarkar R (2021) Hybridization of ring theory-based evolutionary algorithm and particle swarm optimization to solve class imbalance problem. Complex Intell Syst 7(4):1\u201323","journal-title":"Complex Intell Syst"},{"key":"5790_CR85","doi-asserted-by":"crossref","unstructured":"Shen J, Li Y (2009) Light ray optimization and its parameter analysis. In: 2009 International Joint Conference on Computational Sciences and Optimization, vol 2. IEEE, pp 918\u2013922","DOI":"10.1109\/CSO.2009.485"},{"key":"5790_CR86","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.114230","volume":"168","author":"SE Shukri","year":"2021","unstructured":"Shukri SE, Al-Sayyed R, Hudaib A, Mirjalili S (2021) Enhanced multi-verse optimizer for task scheduling in cloud computing environments. Expert Syst Appl 168:114230","journal-title":"Expert Syst Appl"},{"key":"5790_CR87","doi-asserted-by":"crossref","DOI":"10.1201\/9781315118628","volume-title":"Nature-inspired computing: physics and chemistry-based algorithms","author":"NH Siddique","year":"2017","unstructured":"Siddique NH, Adeli H (2017) Nature-inspired computing: physics and chemistry-based algorithms. CRC Press, Boca Raton"},{"issue":"2","key":"5790_CR88","doi-asserted-by":"crossref","first-page":"1001","DOI":"10.1007\/s10115-018-1253-3","volume":"60","author":"M Tahani","year":"2019","unstructured":"Tahani M, Babayan N (2019) Flow regime algorithm (FRA): a physics-based meta-heuristics algorithm. Knowl Inf Syst 60(2):1001\u20131038","journal-title":"Knowl Inf Syst"},{"issue":"2","key":"5790_CR89","doi-asserted-by":"crossref","first-page":"71","DOI":"10.4316\/AECE.2017.02010","volume":"17","author":"E Tanyildizi","year":"2017","unstructured":"Tanyildizi E, Demir G (2017) Golden sine algorithm: a novel math-inspired algorithm. Adv Electr Comput Eng 17(2):71\u201378","journal-title":"Adv Electr Comput Eng"},{"key":"5790_CR90","unstructured":"Torres-Trevi\u00f1o L (2021) A 2020 taxonomy of algorithms inspired on living beings behavior. arXiv preprint arXiv:2106.04775"},{"key":"5790_CR91","doi-asserted-by":"publisher","first-page":"337","DOI":"10.1007\/978-3-030-49724-8_15","volume":"2020","author":"A Tzanetos","year":"2020","unstructured":"Tzanetos A, Dounias G (2020) A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Mach Learn Paradig 2020:337\u2013378. https:\/\/doi.org\/10.1007\/978-3-030-49724-8_15","journal-title":"Mach Learn Paradig"},{"issue":"3","key":"5790_CR92","doi-asserted-by":"crossref","first-page":"1841","DOI":"10.1007\/s10462-020-09893-8","volume":"54","author":"A Tzanetos","year":"2021","unstructured":"Tzanetos A, Dounias G (2021) Nature inspired optimization algorithms or simply variations of metaheuristics? Artif Intell Rev 54(3):1841\u20131862","journal-title":"Artif Intell Rev"},{"key":"5790_CR93","volume":"193","author":"EF Veysari","year":"2022","unstructured":"Veysari EF et al (2022) A new optimization algorithm inspired by the quest for the evolution of human society: human felicity algorithm. Expert Syst Appl 193:116468","journal-title":"Expert Syst Appl"},{"issue":"3","key":"5790_CR94","doi-asserted-by":"crossref","first-page":"611","DOI":"10.1287\/opre.1120.1048","volume":"60","author":"T Vidal","year":"2012","unstructured":"Vidal T, Crainic TG, Gendreau M, Lahrichi N, Rei W (2012) A hybrid genetic algorithm for multidepot and periodic vehicle routing problems. Oper Res 60(3):611\u2013624","journal-title":"Oper Res"},{"key":"5790_CR95","doi-asserted-by":"crossref","first-page":"66084","DOI":"10.1109\/ACCESS.2019.2918406","volume":"7","author":"Z Wei","year":"2019","unstructured":"Wei Z, Huang C, Wang X, Han T, Li Y (2019) Nuclear reaction optimization: a novel and powerful physics-based algorithm for global optimization. IEEE Access 7:66084\u201366109","journal-title":"IEEE Access"},{"key":"5790_CR96","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1007\/978-1-4612-4380-9_16","volume-title":"Breakthroughs in statistics","author":"F Wilcoxon","year":"1992","unstructured":"Wilcoxon F (1992) Individual comparisons by ranking methods. Breakthroughs in statistics. Springer, Cham, pp 196\u2013202"},{"key":"5790_CR97","volume-title":"No free lunch theorems for search","author":"DH Wolpert","year":"1995","unstructured":"Wolpert DH, Macready WG et al (1995) No free lunch theorems for search. Santa Fe Institute, Santa Fe"},{"key":"5790_CR98","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/j.swevo.2019.03.013","volume":"48","author":"A Yadav","year":"2019","unstructured":"Yadav A et al (2019) AEFA: artificial electric field algorithm for global optimization. Swarm Evol Comput 48:93\u2013108","journal-title":"Swarm Evol Comput"},{"key":"5790_CR99","doi-asserted-by":"crossref","unstructured":"Yang XS, Deb S (2009) Cuckoo search via l\u00e9vy flights. In: 2009 World Congress on Nature and Biologically Inspired Computing (NaBIC), IEEE, pp 210\u2013214","DOI":"10.1109\/NABIC.2009.5393690"},{"issue":"5","key":"5790_CR100","doi-asserted-by":"crossref","first-page":"464","DOI":"10.1108\/02644401211235834","volume":"29","author":"XS Yang","year":"2012","unstructured":"Yang XS, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464\u2013483","journal-title":"Eng Comput"},{"issue":"9","key":"5790_CR101","doi-asserted-by":"crossref","first-page":"1222","DOI":"10.1080\/0305215X.2013.832237","volume":"46","author":"XS Yang","year":"2014","unstructured":"Yang XS, Karamanoglu M, He X (2014) Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Optim 46(9):1222\u20131237","journal-title":"Eng Optim"},{"issue":"2","key":"5790_CR102","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1109\/4235.771163","volume":"3","author":"X Yao","year":"1999","unstructured":"Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82\u2013102","journal-title":"IEEE Trans Evol Comput"},{"key":"5790_CR103","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.105889","volume":"197","author":"D Yousri","year":"2020","unstructured":"Yousri D, Abd Elaziz M, Mirjalili S (2020) Fractional-order calculus-based flower pollination algorithm with local search for global optimization and image segmentation. Knowl Based Syst 197:105889","journal-title":"Knowl Based Syst"},{"key":"5790_CR104","doi-asserted-by":"crossref","DOI":"10.1016\/j.cma.2021.114194","volume":"388","author":"W Zhao","year":"2022","unstructured":"Zhao W, Wang L, Mirjalili S (2022) Artificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applications. Comput Methods Appl Mech Eng 388:114194","journal-title":"Comput Methods Appl Mech Eng"},{"key":"5790_CR105","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1016\/j.knosys.2018.08.030","volume":"163","author":"W Zhao","year":"2019","unstructured":"Zhao W, Wang L, Zhang Z (2019) Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl Based Syst 163:283\u2013304","journal-title":"Knowl Based Syst"},{"key":"5790_CR106","doi-asserted-by":"crossref","first-page":"4542","DOI":"10.1109\/ACCESS.2020.3047912","volume":"9","author":"F Zitouni","year":"2020","unstructured":"Zitouni F, Harous S, Maamri R (2020) The solar system algorithm: a novel metaheuristic method for global optimization. IEEE Access 9:4542\u20134565","journal-title":"IEEE Access"}],"container-title":["The Journal of Supercomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11227-023-05790-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11227-023-05790-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11227-023-05790-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,6]],"date-time":"2024-05-06T10:55:59Z","timestamp":1714992959000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11227-023-05790-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1,4]]},"references-count":106,"journal-issue":{"issue":"8","published-print":{"date-parts":[[2024,5]]}},"alternative-id":["5790"],"URL":"https:\/\/doi.org\/10.1007\/s11227-023-05790-3","relation":{},"ISSN":["0920-8542","1573-0484"],"issn-type":[{"value":"0920-8542","type":"print"},{"value":"1573-0484","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,1,4]]},"assertion":[{"value":"3 November 2023","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"4 January 2024","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"All the authors declare that there is no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}},{"value":"This article does not contain any studies with human participants or animals performed by any of the authors.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethical approval"}},{"value":"Informed consent was obtained from all individual participants included in the study.","order":4,"name":"Ethics","group":{"name":"EthicsHeading","label":"Informed consent"}}]}}