{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T15:25:47Z","timestamp":1726413947712},"reference-count":58,"publisher":"Springer Science and Business Media LLC","issue":"10","license":[{"start":{"date-parts":[[2021,3,22]],"date-time":"2021-03-22T00:00:00Z","timestamp":1616371200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,3,22]],"date-time":"2021-03-22T00:00:00Z","timestamp":1616371200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Supercomput"],"published-print":{"date-parts":[[2021,10]]},"DOI":"10.1007\/s11227-021-03717-4","type":"journal-article","created":{"date-parts":[[2021,3,22]],"date-time":"2021-03-22T10:03:03Z","timestamp":1616407383000},"page":"11228-11256","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["Burst: real-time events burst detection in social text stream"],"prefix":"10.1007","volume":"77","author":[{"given":"Tajinder","family":"Singh","sequence":"first","affiliation":[]},{"given":"Madhu","family":"Kumari","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,3,22]]},"reference":[{"key":"3717_CR1","doi-asserted-by":"crossref","unstructured":"Fedoryszak M, Frederick B, Rajaram V, Zhong C, (2019) Real-time event detection on social data streams. In: KDD \u201919, August 4\u20138, Anchorage, AK, USA","DOI":"10.1145\/3292500.3330689"},{"issue":"4","key":"3717_CR2","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3332185","volume":"13","author":"Carmela Comito","year":"2019","unstructured":"Comito C, Forestiero A, Pizzuti C (2019) Bursty event detection in twitter streams. ACM Trans Knowl Discov Data 13(4):1\u201328","journal-title":"ACM Trans Knowl Discov Data"},{"key":"3717_CR3","doi-asserted-by":"crossref","unstructured":"Feng W, Zhang C, Zhang W, Han J, Wang J, Aggarwal C, and Huang J, (2015) Streamcube: hierarchical spatio-temporal hashtag clustering for event exploration over the twitter stream. In: ICDE","DOI":"10.1109\/ICDE.2015.7113425"},{"issue":"4","key":"3717_CR4","doi-asserted-by":"publisher","first-page":"38","DOI":"10.1145\/2771588","volume":"47","author":"Muhammad Imran","year":"2015","unstructured":"Imran Muhammad, Castillo Carlos, Diaz Fernando, Vieweg Sarah (2015) Processing social media messages in massemergency: a survey. ACM Comput Surv 47(4):38","journal-title":"ACM Comput Surv"},{"key":"3717_CR5","unstructured":"Allan J, Carbonell J, Doddington G, Yamron J, and Yang Y, (1998) Topic Detection and Tracking Pilot Study Final Report. In: Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop"},{"key":"3717_CR6","doi-asserted-by":"crossref","unstructured":"Filatova E, Hatzivassiloglou V, McKeown K, (2006) Automatic creation of domain templates. In: Proceedings of the COLING\/ACL 2006 Main Conference Poster Sessions, Sydney (pp 207\u2013214)","DOI":"10.3115\/1273073.1273100"},{"issue":"3","key":"3717_CR7","doi-asserted-by":"publisher","first-page":"381","DOI":"10.1007\/s00778-013-0320-3","volume":"23","author":"X Zhou","year":"2014","unstructured":"Zhou X, Chen L (2014) Event detection over twitter social media streams. VLDB J 23(3):381\u2013400","journal-title":"VLDB J"},{"key":"3717_CR8","doi-asserted-by":"crossref","unstructured":"Aggarwal CC and Subbian K, (2012) Event detection in social streams. In: Proceedings of the 2012 SIAM International Conference on Data Mining (pp 624\u2013635)","DOI":"10.1137\/1.9781611972825.54"},{"key":"3717_CR9","doi-asserted-by":"crossref","unstructured":"Li C, Sun A, and Datta A, (2012) Twevent: segment-based event detection from tweets. In: Proceedingd of the 21st ACM International Conference on Information and Knowledge Management CIKM (pp 155\u2013164)","DOI":"10.1145\/2396761.2396785"},{"key":"3717_CR10","doi-asserted-by":"crossref","unstructured":"Xing C, Wang Y, Liu J, Huang Y, and Ma W-Y (2016) Hashtag-based sub-event discovery using mutually generative lda in twitter. In: Proceedings of the AAAI Conference on Artificial Intelligence","DOI":"10.1609\/aaai.v30i1.10326"},{"issue":"sup1","key":"3717_CR11","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1080\/18756891.2013.818184","volume":"6","author":"JM Cadenas","year":"2013","unstructured":"Cadenas JM, Garrido MC, Mart\u00ednez R (2013) NIP - an imperfection processor to data mining datasets. Int J Comput Intell Syst 6(sup1):3\u201317","journal-title":"Int J Comput Intell Syst"},{"key":"3717_CR12","doi-asserted-by":"crossref","unstructured":"Lee P, Lakshmanan LV, and Milios EE (2014) Incremental cluster evolution tracking from highly dynamic network data. In Data Engineering (ICDE), 30th International Conference on IEEE (pp 3\u201314)","DOI":"10.1109\/ICDE.2014.6816635"},{"key":"3717_CR13","doi-asserted-by":"crossref","first-page":"126","DOI":"10.14257\/astl.2014.48.21","volume":"48","author":"Z Fu","year":"2014","unstructured":"Fu Z, Sun X, Shu J, Zhou L (2014) Plain text zero knowledge watermarking detection based on asymmetric encryption. Adv Sci Technol 48:126\u2013134","journal-title":"Adv Sci Technol"},{"key":"3717_CR14","doi-asserted-by":"crossref","unstructured":"Becker H, Naaman M, and Gravano L (2011) Beyond trending topics: real-world event identification on twitter. In: Proceedings of the International AAAI Conference on Web and Social Media, Icwsm (pp 438\u2013441)","DOI":"10.1609\/icwsm.v5i1.14146"},{"key":"3717_CR15","doi-asserted-by":"publisher","first-page":"549","DOI":"10.1016\/j.procs.2016.06.095","volume":"89","author":"T Singh","year":"2016","unstructured":"Singh T, Kumari M (2016) Role of text pre-processing in twitter sentiment analysis. Procedia Comput Scis 89:549\u2013554","journal-title":"Procedia Comput Scis"},{"issue":"6","key":"3717_CR16","doi-asserted-by":"publisher","first-page":"11","DOI":"10.14257\/ijgdc.2017.10.6.02","volume":"10","author":"T Singh","year":"2017","unstructured":"Singh T, Kumari M, Pal TL, Chauhan A (2017) Current trends in text mining for social media. Int J Grid Distrib Comput 10(6):11\u201328","journal-title":"Int J Grid Distrib Comput"},{"key":"3717_CR17","unstructured":"Carbonell JG, Yang Y, Lafferty J, Brown R, Pierce T, and Liu X, (1999) CMU Approach to TDT-2: Segmentation, Detection, and Tracking. In: Proceedings of the 1999 DARPA Broadcast News Conference"},{"key":"3717_CR18","doi-asserted-by":"crossref","unstructured":"Orr JW, Tadepalli P, and Fern X (2018). Event detection with neural networks: a rigorous empirical evaluation. arXiv preprint","DOI":"10.18653\/v1\/D18-1122"},{"key":"3717_CR19","doi-asserted-by":"crossref","unstructured":"McMinn AJ and Jose JM (2015). Real-time entity-based event detection for twitter. In: International Conference of the Cross-Language Evaluation Forum for European Languages. Springer, (PP 65\u201377)","DOI":"10.1007\/978-3-319-24027-5_6"},{"issue":"1","key":"3717_CR20","doi-asserted-by":"publisher","first-page":"18","DOI":"10.1007\/s13278-015-0258-0","volume":"5","author":"Adrien Guille","year":"2015","unstructured":"Guille A, Favre C (2015) Event detection, tracking, and visualization in twitter: a mention-anomaly-based approach. Soc Netw Anal Min 5(1):18","journal-title":"Soc Netw Anal Min"},{"key":"3717_CR21","doi-asserted-by":"publisher","DOI":"10.1177\/0165551517698564","author":"Mahmud Hasan","year":"2017","unstructured":"Hasan M, Orgun MA, Schwitter Rolf (2017) A survey on realtimeevent detection from the twitter data stream. J Inf Sci. https:\/\/doi.org\/10.1177\/0165551517698564","journal-title":"J Inf Sci"},{"issue":"1","key":"3717_CR22","doi-asserted-by":"publisher","first-page":"132","DOI":"10.1111\/coin.12017","volume":"31","author":"Farzindar Atefeh","year":"2015","unstructured":"Atefeh F, Khreich W (2015) A survey of techniques for event detection in twitter. Comput Intell 31(1):132\u2013164","journal-title":"Comput Intell"},{"key":"3717_CR23","doi-asserted-by":"publisher","DOI":"10.1007\/978-0-387-47534-9","volume-title":"Data streams: models and algorithms data streams","author":"CC Aggarwal","year":"2007","unstructured":"Aggarwal CC, Wang J (2007) Data streams: models and algorithms data streams. Kluwer Academic Publishers, Boston, Dordrecht, London"},{"key":"3717_CR24","doi-asserted-by":"crossref","unstructured":"Allan J, Papka R, and Lavrenko V, (1998) On-line New Event Detection and Tracking. In: SIGIR\u201898, Melbourne, Australia, 1998 ACM, (pp 37\u201348)","DOI":"10.1145\/290941.290954"},{"key":"3717_CR25","doi-asserted-by":"crossref","unstructured":"Aggarwal CC and Subbian K, (2012) Event detection in social streams. In: Proceeding 2012 SIAM International Conference Data Mining, (pp 624\u2013635)","DOI":"10.1137\/1.9781611972825.54"},{"issue":"5","key":"3717_CR26","doi-asserted-by":"publisher","first-page":"1374","DOI":"10.1007\/s10618-015-0421-2","volume":"29","author":"Dong Xiaowen","year":"2015","unstructured":"Dong X, Mavroeidis D, Calabrese F, Frossard P (2015) Multiscale event detection in social media. Data Min Knowl Discov 29(5):1374\u20131405","journal-title":"Data Min Knowl Discov"},{"key":"3717_CR27","doi-asserted-by":"crossref","unstructured":"Becker H and Gravano L, (2010) Learning similarity metrics for event identification in social media categories and subject descriptors. In: WSDM\u201810, February 4\u20136, 2010, New York City, New York, USA","DOI":"10.1145\/1718487.1718524"},{"key":"3717_CR28","doi-asserted-by":"crossref","unstructured":"Mathioudakis M and Koudas N (2010) Twittermonitor: trend detection over the twitter stream. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of data ACM, (pp 1155\u20131158)","DOI":"10.1145\/1807167.1807306"},{"key":"3717_CR29","doi-asserted-by":"crossref","unstructured":"Osborne M, Moran S, McCreadie R, Von Lunen A, Sykora MD, Cano E, Ireson N, Macdonald C, Ounis I, He Y, et al (2014) Real-time detection, tracking, and monitoring of automatically discoveredevents in social media","DOI":"10.3115\/v1\/P14-5007"},{"key":"3717_CR30","unstructured":"Petrovi\u0107 S, Osborne M, and Lavrenko V (2010) Streaming first story detection with application to twitter. In Human language technologies: the 2010 annual conference of the North American chapter of the association for computational linguistics. Association for Computational Linguistics, (pp 181\u2013189)"},{"key":"3717_CR31","first-page":"e2297v1","volume":"4","author":"M Hasan","year":"2016","unstructured":"Hasan M, Orgun MA, Schwitter R (2016) TwitterNews: realtime event detection from the Twitter data stream. Peer J PrePrints 4:e2297v1","journal-title":"Peer J PrePrints"},{"key":"3717_CR32","doi-asserted-by":"crossref","unstructured":"Paul D, Li F, Teja MK, Yu X, and Frost R (2017) Compass: spatio temporal sentiment analysis of US election what twitter says. In: KDD.ACM (pp 1585\u20131594)","DOI":"10.1145\/3097983.3098053"},{"key":"3717_CR33","unstructured":"Fung GPC, Yu JX, Yu PS, and Lu H (2005) Parameter free bursty events detection in text streams. In: Proceedings of the 31st International Conference on Very Large Data Bases (VLDB\u201905) (pp 181\u2013192)"},{"key":"3717_CR34","unstructured":"Qiaozhu M and Zhai CX (2005) Discovering evolutionary theme patterns from text: an exploration of temporaltext mining. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (KDD\u201905). ACM, New York, NY (pp 198\u2013207)"},{"issue":"4","key":"3717_CR35","doi-asserted-by":"publisher","first-page":"919","DOI":"10.1109\/TKDE.2012.29","volume":"25","author":"T Sakaki","year":"2013","unstructured":"Sakaki T, Okazaki M, Matsuo Y (2013) Tweet analysis for real-time event detection and earthquake reporting system development. IEEE Trans Knowl Data Eng 25(4):919\u2013931","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"3717_CR36","doi-asserted-by":"crossref","unstructured":"Thorsten J (1998) Text categorization with support vector machines: Learning with many relevant features. In: Proceedings of the 10th European Conference on Machine Learning (ECML\u201998). (pp 137\u2013142)","DOI":"10.1007\/BFb0026683"},{"issue":"2","key":"3717_CR37","doi-asserted-by":"publisher","first-page":"372","DOI":"10.1007\/s10618-015-0412-3","volume":"30","author":"G Stilo","year":"2016","unstructured":"Stilo G, Velardi P (2016) Efficient temporal mining of micro-blog texts and its application to event discovery. Data Min Knowl Discov 30(2):372\u2013402","journal-title":"Data Min Knowl Discov"},{"issue":"8","key":"3717_CR38","doi-asserted-by":"publisher","first-page":"2216","DOI":"10.1109\/TKDE.2016.2556661","volume":"28","author":"W Xie","year":"2016","unstructured":"Xie W, Zhu F, Jiang J, Lim EP, Wang K (2016) TopicSketch: real-time bursty topic detection from Twitter. IEEE Trans Knowl Data Eng 28(8):2216\u20132229","journal-title":"IEEE Trans Knowl Data Eng"},{"issue":"6","key":"3717_CR39","doi-asserted-by":"publisher","first-page":"52","DOI":"10.1109\/MIS.2012.6","volume":"27","author":"J Yin","year":"2012","unstructured":"Yin Jie, Lampert Andrew, Cameron Mark A, Robinson Bella, Power Robert (2012) Using social media to enhance emergency situation awareness. IEEE Intell Syst 27(6):52\u201359","journal-title":"IEEE Intell Syst"},{"key":"3717_CR40","doi-asserted-by":"crossref","unstructured":"He Q, Chang K, and Lim E, (2007) Analyzing feature trajectories for event detection. In: SIGIR'07, July 23\u201327, 2007, Amsterdam, The Netherlands. Copyright 2007 ACM, (pp 207\u2013214)","DOI":"10.1145\/1277741.1277779"},{"key":"3717_CR41","doi-asserted-by":"crossref","unstructured":"Kleinberg J, (2002) Bursty and hierarchical structure in streams. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (pp 1\u201325)","DOI":"10.1145\/775047.775061"},{"key":"3717_CR42","doi-asserted-by":"crossref","unstructured":"Wang X, Zhai C, Hu X, and Sproat R, (2007) Mining correlated bursty topic patterns from coordinated text streams. In: KDD\u201807, August 12\u201315, 2007, San Jose, California, USA","DOI":"10.1145\/1281192.1281276"},{"key":"3717_CR43","doi-asserted-by":"publisher","first-page":"1015","DOI":"10.1007\/s11227-020-03294-y","volume":"77","author":"RK Kaliyar","year":"2021","unstructured":"Kaliyar RK, Goswami A, Narang P (2021) DeepFakE: improving fake news detection using tensor decomposition-based deep neural network. J Supercomput 77:1015\u20131037","journal-title":"J Supercomput"},{"key":"3717_CR44","doi-asserted-by":"publisher","first-page":"3555","DOI":"10.1007\/s11227-018-2714-x","volume":"76","author":"I Ahmad","year":"2020","unstructured":"Ahmad I, Ahmed G, Shah SAA et al (2020) A decade of big data literature: analysis of trends in light of bibliometrics. J Supercomput 76:3555\u20133571","journal-title":"J Supercomput"},{"key":"3717_CR45","doi-asserted-by":"publisher","first-page":"756","DOI":"10.1007\/s11227-019-02913-7","volume":"76","author":"S Venkatraman","year":"2020","unstructured":"Venkatraman S, Surendiran B, Arun Raj Kumar P (2020) Spam e-mail classification for the Internet of Tfhings environment using semantic similarity approach. J Supercomput 76:756\u2013776","journal-title":"J Supercomput"},{"key":"3717_CR46","doi-asserted-by":"publisher","first-page":"3882","DOI":"10.1007\/s11227-018-02737-x","volume":"76","author":"H Lee","year":"2020","unstructured":"Lee H, Lee N, Seo H et al (2020) Developing a supervised learning-based social media business sentiment index. J Supercomput 76:3882\u20133897","journal-title":"J Supercomput"},{"key":"3717_CR47","unstructured":"Daniel Jurafsky, James H. Martin, Parsing D, (2018) Dependency Parsing. Speech and Language Processing, (pp 1\u201327)"},{"key":"3717_CR48","doi-asserted-by":"crossref","unstructured":"Hamdan H, Bellot P, and Bechet F, (2015) Lsislif\u202f: feature extraction and label weighting for sentiment analysis in twitter. In: SemEval, (pp 568\u2013573)","DOI":"10.18653\/v1\/S15-2095"},{"key":"3717_CR49","volume-title":"The art of computer programming: seminumerical algorithms","author":"DE Knuth","year":"1997","unstructured":"Knuth DE (1997) The art of computer programming: seminumerical algorithms, 3rd edn. Addison-Wesley Longman Publishing Co. Inc, Boston, MA","edition":"3"},{"key":"3717_CR50","doi-asserted-by":"crossref","unstructured":"Kenter T, and de Rijke M, (2015) Short text similarity with word embeddings categories and subject descriptors. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management (CIKM 2015) (pp. 1411\u20131420)","DOI":"10.1145\/2806416.2806475"},{"key":"3717_CR51","doi-asserted-by":"crossref","unstructured":"Tang Q, Jian Q, Meng M, (2015) PTE\u202f: predictive text embedding through large-scale heterogeneous text networks categories and subject descriptors. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1165\u20131174)","DOI":"10.1145\/2783258.2783307"},{"issue":"6","key":"3717_CR52","doi-asserted-by":"publisher","first-page":"1268","DOI":"10.1109\/TMM.2013.2265080","volume":"15","author":"LM Aiello","year":"2013","unstructured":"Aiello Luca Maria, Petkos Georgios, Martin Carlos, Corney David, Papadopoulos Symeon, Skraba Ryan, Goker Ayse, Kompatsiaris Ioannis, Jaimes Alejandro (2013) Sensing trending topics in Twitter. IEEE Trans Multimed 15(6):1268\u20131282","journal-title":"IEEE Trans Multimed"},{"key":"3717_CR53","doi-asserted-by":"crossref","unstructured":"Aggarwal CC and Subbian K, (2012) Event detection in social streams. In: Proceedings of the 2012 SIAM International Conference on Data Mining (pp 624\u2013635)","DOI":"10.1137\/1.9781611972825.54"},{"key":"3717_CR54","first-page":"993","volume":"3","author":"DM Blei","year":"2003","unstructured":"Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3:993\u20131022","journal-title":"J Mach Learn Res"},{"key":"3717_CR55","unstructured":"Petrovic S, Osborne M, and Lavrenko V, (2010) Streaming first story \u00b4 detection with application to twitter. In: HLT: Annual Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, (pp 181\u2013189)"},{"key":"3717_CR56","doi-asserted-by":"crossref","unstructured":"Xu X, Yuruk N, Feng Z, Schweiger TAJ (2007) SCAN: a structural clustering algorithm for networks. In: KDD: 13th ACM International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, (pp 824\u2013833)","DOI":"10.1145\/1281192.1281280"},{"key":"3717_CR57","doi-asserted-by":"crossref","unstructured":"O\u2019Connor B, Krieger M, Ahn D (2010) TweetMotif: exploratory search and topic summarization for twitter. In: ICWSM, WW Cohen, S Gosling, WW Cohen, and S Gosling, (Eds). The AAAI Press","DOI":"10.1609\/icwsm.v4i1.14008"},{"key":"3717_CR58","first-page":"266","volume":"31","author":"E Winarko","year":"2019","unstructured":"E Winarko, R Pulungan (2019) Trending topics detection of Indonesian tweets using BN-grams and Doc-p. J King Saud Univ Comput Inf Sci 31:266\u2013274","journal-title":"J King Saud Univ Comput Inf Sci"}],"container-title":["The Journal of Supercomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11227-021-03717-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11227-021-03717-4\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11227-021-03717-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,22]],"date-time":"2022-12-22T03:38:35Z","timestamp":1671680315000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11227-021-03717-4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,3,22]]},"references-count":58,"journal-issue":{"issue":"10","published-print":{"date-parts":[[2021,10]]}},"alternative-id":["3717"],"URL":"https:\/\/doi.org\/10.1007\/s11227-021-03717-4","relation":{},"ISSN":["0920-8542","1573-0484"],"issn-type":[{"type":"print","value":"0920-8542"},{"type":"electronic","value":"1573-0484"}],"subject":[],"published":{"date-parts":[[2021,3,22]]},"assertion":[{"value":"25 February 2021","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 March 2021","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}