{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T06:34:58Z","timestamp":1726122898814},"reference-count":41,"publisher":"Springer Science and Business Media LLC","issue":"8","license":[{"start":{"date-parts":[[2019,1,29]],"date-time":"2019-01-29T00:00:00Z","timestamp":1548720000000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,1,29]],"date-time":"2019-01-29T00:00:00Z","timestamp":1548720000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Supercomput"],"published-print":{"date-parts":[[2020,8]]},"DOI":"10.1007\/s11227-018-02738-w","type":"journal-article","created":{"date-parts":[[2019,1,29]],"date-time":"2019-01-29T06:11:50Z","timestamp":1548742310000},"page":"6219-6237","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":27,"title":["Effective large for gestational age prediction using machine learning techniques with monitoring biochemical indicators"],"prefix":"10.1007","volume":"76","author":[{"given":"Faheem","family":"Akhtar","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1995-9249","authenticated-orcid":false,"given":"Jianqiang","family":"Li","sequence":"additional","affiliation":[]},{"given":"Muhammad","family":"Azeem","sequence":"additional","affiliation":[]},{"given":"Shi","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Hui","family":"Pan","sequence":"additional","affiliation":[]},{"given":"Qing","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Ji-Jiang","family":"Yang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,1,29]]},"reference":[{"issue":"2","key":"2738_CR1","doi-asserted-by":"publisher","first-page":"159","DOI":"10.1016\/S0022-3476(67)80066-0","volume":"71","author":"FC Battaglia","year":"1967","unstructured":"Battaglia FC, Lubchenco LO (1967) A practical classification of newborn infants by weight and gestational age. J Pediatr 71(2):159\u2013163","journal-title":"J Pediatr"},{"issue":"6","key":"2738_CR2","first-page":"501","volume":"31","author":"S Lazer","year":"1986","unstructured":"Lazer S, Biale Y, Mazor M, Lewenthal H, Insler V (1986) Complications associated with the macrosomic fetus. J Reprod Med 31(6):501\u2013505","journal-title":"J Reprod Med"},{"issue":"2","key":"2738_CR3","first-page":"158","volume":"66","author":"W Spellacy","year":"1985","unstructured":"Spellacy W, Miller S, Winegar A, Peterson P (1985) Macrosomia-maternal characteristics and infant complications. Obstet Gynecol 66(2):158\u2013161","journal-title":"Obstet Gynecol"},{"issue":"4","key":"2738_CR4","doi-asserted-by":"publisher","first-page":"550","DOI":"10.1111\/j.1651-2227.2009.01674.x","volume":"99","author":"H Xu","year":"2010","unstructured":"Xu H, Simonet F, Luo Z-C (2010) Optimal birth weight percentile cut-offs in defining small-or large-for-gestational-age. Acta Paediatr 99(4):550\u2013555","journal-title":"Acta Paediatr"},{"issue":"1","key":"2738_CR5","doi-asserted-by":"publisher","first-page":"55","DOI":"10.3109\/00016349109006179","volume":"70","author":"I Wikstr\u00f6m","year":"1991","unstructured":"Wikstr\u00f6m I, Axelsson O, Bergstr\u00f6m R (1991) Maternal factors associated with high birth weight. Acta Obstet Gynecol Scand 70(1):55\u201361","journal-title":"Acta Obstet Gynecol Scand"},{"issue":"3","key":"2738_CR6","doi-asserted-by":"publisher","first-page":"215","DOI":"10.1016\/0020-7292(90)90348-O","volume":"32","author":"A Meshari","year":"1990","unstructured":"Meshari A, De Silva S, Rahman I (1990) Fetal macrosomiamaternal risks and fetal outcome. Int J Gynecol Obstet 32(3):215\u2013222","journal-title":"Int J Gynecol Obstet"},{"issue":"2","key":"2738_CR7","doi-asserted-by":"publisher","first-page":"167","DOI":"10.1016\/S0301-2115(01)00416-X","volume":"99","author":"E Oral","year":"2001","unstructured":"Oral E, Ca\u011fda\u015f A, Gezer A, Kaleli S, Aydinli K, \u00d6\u00e7er F (2001) Perinatal and maternal outcomes of fetal macrosomia. Eur J Obstet Gynecol Reprod Biol 99(2):167\u2013171","journal-title":"Eur J Obstet Gynecol Reprod Biol"},{"issue":"4","key":"2738_CR8","doi-asserted-by":"publisher","first-page":"319","DOI":"10.1111\/j.1479-828X.1990.tb02019.x","volume":"30","author":"T Cheung","year":"1990","unstructured":"Cheung T, Leung A, Chang A (1990) Macrosomic babies. Aust N Z J Obstet Gynaecol 30(4):319\u2013322","journal-title":"Aust N Z J Obstet Gynaecol"},{"issue":"5","key":"2738_CR9","doi-asserted-by":"publisher","first-page":"768","DOI":"10.1016\/S0022-3476(98)70302-6","volume":"132","author":"RC Whitaker","year":"1998","unstructured":"Whitaker RC, Dietz WH (1998) Role of the prenatal environment in the development of obesity. J Pediatr 132(5):768\u2013776","journal-title":"J Pediatr"},{"issue":"9041","key":"2738_CR10","doi-asserted-by":"publisher","first-page":"1542","DOI":"10.1016\/S0140-6736(96)03102-9","volume":"348","author":"KB Michels","year":"1996","unstructured":"Michels KB, Trichopoulos D, Robins JM, Rosner BA, Manson JE, Hunter DJ, Colditz GA, Hankinson SE, Speizer FE, Willett WC (1996) Birthweight as a risk factor for breast cancer. Lancet 348(9041):1542\u20131546","journal-title":"Lancet"},{"key":"2738_CR11","doi-asserted-by":"publisher","first-page":"89","DOI":"10.1016\/j.future.2017.09.067","volume":"80","author":"T Wang","year":"2018","unstructured":"Wang T, Xu J, Zhang W, Gu Z, Zhong H (2018) Self-adaptive cloud monitoring with online anomaly detection. Future Gener Comput Syst 80:89\u2013101","journal-title":"Future Gener Comput Syst"},{"issue":"1","key":"2738_CR12","doi-asserted-by":"publisher","first-page":"61","DOI":"10.1109\/TSMC.2015.2430834","volume":"46","author":"T Wang","year":"2016","unstructured":"Wang T, Zhang W, Ye C, Wei J, Zhong H, Huang T (2016) Fd4c: automatic fault diagnosis framework for web applications in cloud computing. IEEE Trans Syst Man Cybern Syst 46(1):61\u201375","journal-title":"IEEE Trans Syst Man Cybern Syst"},{"key":"2738_CR13","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1016\/j.jss.2013.03.060","volume":"89","author":"T Wang","year":"2014","unstructured":"Wang T, Wei J, Zhang W, Zhong H, Huang T (2014) Workload-aware anomaly detection for web applications. J Syst Softw 89:19\u201332","journal-title":"J Syst Softw"},{"key":"2738_CR14","doi-asserted-by":"publisher","first-page":"385","DOI":"10.1016\/j.neucom.2015.11.042","volume":"177","author":"J Li","year":"2016","unstructured":"Li J, Wang F (2016) Semi-supervised learning via mean field methods. Neurocomputing 177:385\u2013393","journal-title":"Neurocomputing"},{"issue":"1","key":"2738_CR15","doi-asserted-by":"publisher","first-page":"S150","DOI":"10.1016\/j.ajog.2016.11.146","volume":"216","author":"A Shmueli","year":"2017","unstructured":"Shmueli A, Nassie DI, Hiersch L, Ashwal E, Wiznitzer A, Yogev Y, Aviram A (2017) 241: prerecognition of large for gestational age (lga) fetus and its consequences. Am J Obstet Gynecol 216(1):S150\u2013S151","journal-title":"Am J Obstet Gynecol"},{"issue":"4","key":"2738_CR16","doi-asserted-by":"publisher","first-page":"314-e1","DOI":"10.1016\/j.ajog.2012.01.044","volume":"206","author":"GS Moore","year":"2012","unstructured":"Moore GS, Kneitel AW, Walker CK, Gilbert WM, Xing G (2012) Autism risk in small-and large-for-gestational-age infants. Am J Obstet Gynecol 206(4):314-e1","journal-title":"Am J Obstet Gynecol"},{"issue":"1","key":"2738_CR17","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1038\/sj.jp.7211013","volume":"24","author":"Y Littner","year":"2004","unstructured":"Littner Y, Mandel D, Mimouni FB, Dollberg S (2004) Decreased bone ultrasound velocity in large-for-gestational-age infants. J Perinatol 24(1):21","journal-title":"J Perinatol"},{"issue":"Suppl 4","key":"2738_CR18","first-page":"S71","volume":"98","author":"S Luangkwan","year":"2015","unstructured":"Luangkwan S, Vetchapanpasat S, Panditpanitcha P, Yimsabai R, Subhaluksuksakorn P, Loyd RA, Uengarporn N (2015) Risk factors of small for gestational age and large for gestational age at buriram hospital. J Med Assoc Thail 98(Suppl 4):S71\u2013S78","journal-title":"J Med Assoc Thail"},{"key":"2738_CR19","volume-title":"Weight gain during pregnancy: reexamining the guidelines","author":"Institute of Medicine","year":"2009","unstructured":"Institute of Medicine (2009) Weight gain during pregnancy: reexamining the guidelines. National Academies Press, Washington, DC"},{"issue":"5","key":"2738_CR20","doi-asserted-by":"publisher","first-page":"462","DOI":"10.1038\/s41372-018-0051-9","volume":"38","author":"MA Kominiarek","year":"2018","unstructured":"Kominiarek MA, Grobman W, Adam E, Buss C, Culhane J, Entringer S, Simhan H, Wadhwa PD, Kim KY, Keenan-Devlin L, Borders A (2018) Stress during pregnancy and gestational weight gain. J Perinatol 38(5):462\u2013467","journal-title":"J Perinatol"},{"issue":"1","key":"2738_CR21","doi-asserted-by":"publisher","first-page":"42","DOI":"10.1186\/s13052-016-0254-7","volume":"42","author":"V Chiavaroli","year":"2016","unstructured":"Chiavaroli V, Castorani V, Guidone P, Derraik JG, Liberati M, Chiarelli F, Mohn A (2016) Incidence of infants born small-and large-for-gestational-age in an italian cohort over a 20-year period and associated risk factors. Ital J Pediatr 42(1):42","journal-title":"Ital J Pediatr"},{"issue":"7","key":"2738_CR22","doi-asserted-by":"publisher","first-page":"2677","DOI":"10.1016\/j.eswa.2012.11.007","volume":"40","author":"R Stoean","year":"2013","unstructured":"Stoean R, Stoean C (2013) Modeling medical decision making by support vector machines, explaining by rules of evolutionary algorithms with feature selection. Expert Syst Appl 40(7):2677\u20132686","journal-title":"Expert Syst Appl"},{"issue":"9","key":"2738_CR23","doi-asserted-by":"publisher","first-page":"97","DOI":"10.1007\/s10916-014-0097-y","volume":"38","author":"C Lu","year":"2014","unstructured":"Lu C, Zhu Z, Gu X (2014) An intelligent system for lung cancer diagnosis using a new genetic algorithm based feature selection method. J Med Syst 38(9):97","journal-title":"J Med Syst"},{"issue":"3","key":"2738_CR24","doi-asserted-by":"publisher","first-page":"195","DOI":"10.1504\/IJMIC.2014.065338","volume":"22","author":"AT Azar","year":"2014","unstructured":"Azar AT (2014) Neuro-fuzzy feature selection approach based on linguistic hedges for medical diagnosis. Int J Model Identif Control 22(3):195\u2013206","journal-title":"Int J Model Identif Control"},{"issue":"22","key":"2738_CR25","doi-asserted-by":"publisher","first-page":"8520","DOI":"10.1016\/j.eswa.2015.07.007","volume":"42","author":"M Bennasar","year":"2015","unstructured":"Bennasar M, Hicks Y, Setchi R (2015) Feature selection using joint mutual information maximisation. Expert Syst Appl 42(22):8520\u20138532","journal-title":"Expert Syst Appl"},{"issue":"3","key":"2738_CR26","doi-asserted-by":"publisher","first-page":"514","DOI":"10.1109\/TCBB.2016.2591545","volume":"14","author":"J Li","year":"2017","unstructured":"Li J, Wang F (2017) Towards unsupervised gene selection: a matrix factorization framework. IEEE\/ACM Trans Comput Biol Bioinf: TCBB 14(3):514\u2013521","journal-title":"IEEE\/ACM Trans Comput Biol Bioinf: TCBB"},{"issue":"1","key":"2738_CR27","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1214\/aoms\/1177729694","volume":"22","author":"S Kullback","year":"1951","unstructured":"Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79\u201386","journal-title":"Ann Math Stat"},{"issue":"1","key":"2738_CR28","doi-asserted-by":"publisher","first-page":"S11","DOI":"10.1016\/j.jasc.2012.08.017","volume":"1","author":"R Raju","year":"2012","unstructured":"Raju R (2012) Relative importance of fine needle aspiration features for breast cancer diagnosis: a study using information gain evaluation and machine learning. J Am Soc Cytopathol 1(1):S11","journal-title":"J Am Soc Cytopathol"},{"key":"2738_CR29","doi-asserted-by":"publisher","DOI":"10.1109\/TBDATA.2016.2620981","author":"J Li","year":"2016","unstructured":"Li J, Liu L, Sun J, Mo H, Yang J, Chen S, Liu H, Wang Q, Pan H (2016) Comparison of different machine learning approaches to predict small for gestational age infants. IEEE Trans Big Data. \n https:\/\/doi.org\/10.1109\/TBDATA.2016.2620981","journal-title":"IEEE Trans Big Data"},{"issue":"3","key":"2738_CR30","first-page":"162","volume":"95","author":"S Zhang","year":"2015","unstructured":"Zhang S, Wang Q, Shen H (2015) Design implementation and significance of chinese free pre-pregnancy eugenics checks project. Natl Med J China 95(3):162\u2013165","journal-title":"Natl Med J China"},{"key":"2738_CR31","doi-asserted-by":"publisher","first-page":"35","DOI":"10.1109\/ACCESS.2016.2600258","volume":"5","author":"J Li","year":"2017","unstructured":"Li J, Yang J-J, Zhao Y, Liu B, Zhou M, Bi J, Wang Q (2017) Enforcing differential privacy for shared collaborative filtering. IEEE Access 5:35\u201349","journal-title":"IEEE Access"},{"issue":"2","key":"2738_CR32","first-page":"97","volume":"53","author":"L Zhu","year":"2015","unstructured":"Zhu L, Zhang R, Zhang S, Shi W, Yan W, Wang X, Lyu Q, Liu L, Zhou Q, Qiu Q et al (2015) Chinese neonatal birth weight curve for different gestational age. Chin J Pediatr 53(2):97\u2013103","journal-title":"Chin J Pediatr"},{"key":"2738_CR33","doi-asserted-by":"publisher","first-page":"81","DOI":"10.1016\/j.compind.2014.09.004","volume":"69","author":"J Li","year":"2015","unstructured":"Li J, Liu C, Liu B, Mao R, Wang Y, Chen S, Yang J-J, Pan H, Wang Q (2015) Diversity-aware retrieval of medical records. Comput Ind 69:81\u201391","journal-title":"Comput Ind"},{"key":"2738_CR34","first-page":"9","volume":"1","author":"M Khashei","year":"2012","unstructured":"Khashei M, Eftekhari S, Parvizian J (2012) Diagnosing diabetes type ii using a soft intelligent binary classification model. Rev Bioinf Biom 1:9\u201323","journal-title":"Rev Bioinf Biom"},{"issue":"4","key":"2738_CR35","doi-asserted-by":"publisher","first-page":"18","DOI":"10.1109\/5254.708428","volume":"13","author":"MA Hearst","year":"1998","unstructured":"Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B (1998) Support vector machines. IEEE Intell Syst Appl 13(4):18\u201328","journal-title":"IEEE Intell Syst Appl"},{"issue":"3","key":"2738_CR36","doi-asserted-by":"publisher","first-page":"943","DOI":"10.1111\/j.1541-0420.2006.00588_4.x","volume":"62","author":"K Bammann","year":"2006","unstructured":"Bammann K (2006) Statistical models: theory and practice. Biometrics 62(3):943\u2013943","journal-title":"Biometrics"},{"key":"2738_CR37","doi-asserted-by":"crossref","unstructured":"Zhang H, Su J (2004) Naive bayesian classifiers for ranking. In: European Conference on Machine Learning. Springer, pp 501\u2013512","DOI":"10.1007\/978-3-540-30115-8_46"},{"issue":"1","key":"2738_CR38","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman L (2001) Random forests. Mach Learn 45(1):5\u201332","journal-title":"Mach Learn"},{"key":"2738_CR39","unstructured":"Corp N\u00a0IBM (2013) Ibm spss statistics for windows. Version, vol 22"},{"issue":"Oct","key":"2738_CR40","first-page":"2825","volume":"12","author":"F Pedregosa","year":"2011","unstructured":"Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12(Oct):2825\u20132830","journal-title":"J Mach Learn Res"},{"key":"2738_CR41","volume-title":"Biostatistical analysis","author":"JH Zar","year":"1999","unstructured":"Zar JH et al (1999) Biostatistical analysis. Pearson Education India, Bengaluru"}],"container-title":["The Journal of Supercomputing"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s11227-018-02738-w\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11227-018-02738-w.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11227-018-02738-w.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,7,20]],"date-time":"2020-07-20T14:19:51Z","timestamp":1595254791000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s11227-018-02738-w"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,1,29]]},"references-count":41,"journal-issue":{"issue":"8","published-print":{"date-parts":[[2020,8]]}},"alternative-id":["2738"],"URL":"https:\/\/doi.org\/10.1007\/s11227-018-02738-w","relation":{},"ISSN":["0920-8542","1573-0484"],"issn-type":[{"value":"0920-8542","type":"print"},{"value":"1573-0484","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,1,29]]},"assertion":[{"value":"29 January 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}