{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,4]],"date-time":"2024-09-04T09:45:09Z","timestamp":1725443109219},"reference-count":19,"publisher":"Springer Science and Business Media LLC","issue":"10","license":[{"start":{"date-parts":[[2015,11,16]],"date-time":"2015-11-16T00:00:00Z","timestamp":1447632000000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100004733","name":"Universidade de Macau","doi-asserted-by":"publisher","award":["MYRG2015-00128-FST"],"id":[{"id":"10.13039\/501100004733","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Supercomput"],"published-print":{"date-parts":[[2016,10]]},"DOI":"10.1007\/s11227-015-1541-6","type":"journal-article","created":{"date-parts":[[2015,11,16]],"date-time":"2015-11-16T13:51:39Z","timestamp":1447681899000},"page":"3708-3728","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":41,"title":["Improving the classification performance of biological imbalanced datasets by swarm optimization algorithms"],"prefix":"10.1007","volume":"72","author":[{"given":"Jinyan","family":"Li","sequence":"first","affiliation":[]},{"given":"Simon","family":"Fong","sequence":"additional","affiliation":[]},{"given":"Sabah","family":"Mohammed","sequence":"additional","affiliation":[]},{"given":"Jinan","family":"Fiaidhi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2015,11,16]]},"reference":[{"key":"1541_CR1","doi-asserted-by":"crossref","unstructured":"Mehta M, Agrawal R, Rissanen J (1996) SLIQ: a fast scalable classifier for data mining. In: Advances in database technology\u2014EDBT\u201996. Springer, Berlin, Heidelberg, pp 18\u201332","DOI":"10.1007\/BFb0014141"},{"key":"1541_CR2","volume-title":"Data mining: concepts and techniques: concepts and techniques","author":"J Han","year":"2011","unstructured":"Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques: concepts and techniques. Elsevier, Amsterdam"},{"issue":"1","key":"1541_CR3","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1111\/j.0824-7935.2004.t01-1-00228.x","volume":"20","author":"A Estabrooks","year":"2004","unstructured":"Estabrooks A, Jo T, Japkowicz N (2004) A multiple resampling method for learning from imbalanced data sets. Comput Intell 20(1):18\u201336","journal-title":"Comput Intell"},{"key":"1541_CR4","unstructured":"Fan W et al (1999) AdaCost: misclassification cost-sensitive boosting. In: ICML"},{"key":"1541_CR5","doi-asserted-by":"crossref","unstructured":"Zadrozny B, Langford J, Abe N (2003) Cost-sensitive learning by cost-proportionate example weighting. In: Third IEEE international conference on data mining, 2003. ICDM 2003. IEEE","DOI":"10.1109\/ICDM.2003.1250950"},{"issue":"6","key":"1541_CR6","doi-asserted-by":"crossref","first-page":"786","DOI":"10.1109\/TKDE.2005.95","volume":"17","author":"G Wu","year":"2005","unstructured":"Wu G, Chang EY (2005) KBA: Kernel boundary alignment considering imbalanced data distribution. Knowl Data Eng IEEE Trans 17(6):786\u2013795","journal-title":"Knowl Data Eng IEEE Trans"},{"key":"1541_CR7","doi-asserted-by":"crossref","unstructured":"Joshi MV, Kumar V, Agarwal RC (2001) Evaluating boosting algorithms to classify rare classes: Comparison and improvements. In: Proceedings IEEE international conference on data mining, 2001. ICDM 2001. IEEE","DOI":"10.1109\/ICDM.2001.989527"},{"issue":"1","key":"1541_CR8","first-page":"46","volume":"1","author":"SB Kotsiantis","year":"2003","unstructured":"Kotsiantis SB, Pintelas PE (2003) Mixture of expert agents for handling imbalanced data sets. Ann Math Comput Teleinform 1(1):46\u201355","journal-title":"Ann Math Comput Teleinform"},{"key":"1541_CR9","doi-asserted-by":"crossref","unstructured":"Chawla NV et\u00a0al (2003) SMOTEBoost: improving prediction of the minority class in boosting. In: Knowledge discovery in databases: PKDD 2003. Springer, Berlin, Heidelberg, pp 107\u2013119","DOI":"10.1007\/978-3-540-39804-2_12"},{"key":"1541_CR10","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1613\/jair.953","volume":"16","author":"NV Chawla","year":"2002","unstructured":"Chawla NV et al (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321\u2013357","journal-title":"J Artif Intell Res"},{"key":"1541_CR11","volume-title":"Particle swarm optimization. Encyclopedia of machine learning","author":"J Kennedy","year":"2010","unstructured":"Kennedy J (2010) Particle swarm optimization. Encyclopedia of machine learning. Springer, New York"},{"key":"1541_CR12","unstructured":"Xin-She Y (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO, 2010). Springer, Berlin, Heidelberg, pp 65\u201374"},{"issue":"2","key":"1541_CR13","doi-asserted-by":"crossref","first-page":"409","DOI":"10.2214\/AJR.05.1918","volume":"188","author":"T Ichikawa","year":"2007","unstructured":"Ichikawa T et al (2007) High-b value diffusion-weighted MRI for detecting pancreatic adenocarcinoma: preliminary results. Am J Roentgenol 188(2):409\u2013414","journal-title":"Am J Roentgenol"},{"key":"1541_CR14","unstructured":"Lichman M (2013) UCI Machine learning repository. University of California, School of Information and Computer Science, Irvine. http:\/\/archive.ics.uci.edu\/ml . Accessed 11 Nov 2015"},{"key":"1541_CR15","unstructured":"Maciej Z, Tomczak JM, Lubicz M, Witek J (2014) Boosted SVM for extracting rules from imbalanced data in application to prediction of the post-operative life expectancy in the lung cancer patients. In: Applied soft computing, vol 14, Elsevier, pp 99\u2013108"},{"key":"1541_CR16","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/1758-2946-1-21","volume":"1","author":"AC Schierz","year":"2009","unstructured":"Schierz AC (2009) Virtual screening of bioassay data. J Cheminform 1:1\u201321","journal-title":"J Cheminform"},{"issue":"1","key":"1541_CR17","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1002\/widm.14","volume":"1","author":"X Chen","year":"2011","unstructured":"Chen X, Wang M, Zhang H (2011) The use of classification trees for bioinformatics. Wiley Interdiscip Rev Data Min Knowl Discov 1(1):55\u201363","journal-title":"Wiley Interdiscip Rev Data Min Knowl Discov"},{"issue":"2","key":"1541_CR18","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1007\/s10822-010-9321-0","volume":"24","author":"XH Ma","year":"2010","unstructured":"Ma XH, Yap CW (2010) Consensus model for identification of novel PI3K inhibitors in large chemical library. J Comput-Aided Mol Des 24(2):131\u2013141","journal-title":"J Comput-Aided Mol Des"},{"issue":"1\u20134","key":"1541_CR19","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1007\/s13042-010-0004-x","volume":"1","author":"DL Tong","year":"2010","unstructured":"Tong DL, Mintram R (2010) Genetic algorithm-neural network (GANN): a study of neural network activation functions and depth of genetic algorithm search applied to feature selection. Int J Mach Learn Cybern 1(1\u20134):75\u201387","journal-title":"Int J Mach Learn Cybern"}],"container-title":["The Journal of Supercomputing"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11227-015-1541-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s11227-015-1541-6\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11227-015-1541-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11227-015-1541-6","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,9,1]],"date-time":"2019-09-01T15:43:17Z","timestamp":1567352597000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s11227-015-1541-6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,11,16]]},"references-count":19,"journal-issue":{"issue":"10","published-print":{"date-parts":[[2016,10]]}},"alternative-id":["1541"],"URL":"https:\/\/doi.org\/10.1007\/s11227-015-1541-6","relation":{},"ISSN":["0920-8542","1573-0484"],"issn-type":[{"value":"0920-8542","type":"print"},{"value":"1573-0484","type":"electronic"}],"subject":[],"published":{"date-parts":[[2015,11,16]]}}}