{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T15:10:01Z","timestamp":1726413001047},"reference-count":27,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2022,6,2]],"date-time":"2022-06-02T00:00:00Z","timestamp":1654128000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2022,6,2]],"date-time":"2022-06-02T00:00:00Z","timestamp":1654128000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Numer Algor"],"published-print":{"date-parts":[[2023,1]]},"abstract":"Abstract<\/jats:title>The computation of n<\/jats:italic>-point Gaussian quadrature rules for symmetric weight functions is considered in this paper. It is shown that the nodes and the weights of the Gaussian quadrature rule can be retrieved from the singular value decomposition of a bidiagonal matrix of size n<\/jats:italic>\/2. The proposed numerical method allows to compute the nodes with high relative accuracy and a computational complexity of $ \\mathcal {O} (n^{2}). $<\/jats:tex-math>\n O<\/mml:mi>\n (<\/mml:mo>\n \n \n n<\/mml:mi>\n <\/mml:mrow>\n \n 2<\/mml:mn>\n <\/mml:mrow>\n <\/mml:msup>\n )<\/mml:mo>\n .<\/mml:mn>\n <\/mml:math><\/jats:alternatives><\/jats:inline-formula> We also describe an algorithm for computing the weights of a generic Gaussian quadrature rule with high relative accuracy. Numerical examples show the effectiveness of the proposed approach.<\/jats:p>","DOI":"10.1007\/s11075-022-01297-9","type":"journal-article","created":{"date-parts":[[2022,6,2]],"date-time":"2022-06-02T21:02:48Z","timestamp":1654203768000},"page":"767-793","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Computing Gaussian quadrature rules with high relative accuracy"],"prefix":"10.1007","volume":"92","author":[{"given":"Teresa","family":"Laudadio","sequence":"first","affiliation":[]},{"given":"Nicola","family":"Mastronardi","sequence":"additional","affiliation":[]},{"given":"Paul","family":"Van Dooren","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,6,2]]},"reference":[{"key":"1297_CR1","doi-asserted-by":"publisher","DOI":"10.1137\/1.9780898719604","volume-title":"LAPACK Users\u2019 Guide","author":"E Anderson","year":"1999","unstructured":"Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J. D. u., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users\u2019 Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999)","edition":"3rd edn."},{"issue":"6","key":"1297_CR2","doi-asserted-by":"publisher","first-page":"675","DOI":"10.1137\/0318051","volume":"18","author":"H Bart","year":"1980","unstructured":"Bart, H., Gohberg, I., Kaashoek, M., Van Dooren, P.: Factorization of transfer functions. SIAM J. Contr. 18(6), 675\u2013696 (1980)","journal-title":"SIAM J. Contr."},{"key":"1297_CR3","unstructured":"Bickley, W.G., Comrie, L.J., Sadler, D.H., Miller, J.C.P., Thompson, A.J.: British Association for the Advancement of Science Mathematical Tables: Volume 10, Bessel Functions, Part 2. Functions of Positive Integer Order. Cambridge University Press (1952)"},{"key":"1297_CR4","doi-asserted-by":"publisher","first-page":"293","DOI":"10.1007\/BF02166681","volume":"11","author":"H Bowdler","year":"1968","unstructured":"Bowdler, H., Martin, R.S., Reinsch, C., Wilkinson, J.H.: The QR and QL algorithms for symmetric matrices. Numer. Math. 11, 293\u2013306 (1968)","journal-title":"Numer. Math."},{"issue":"5","key":"1297_CR5","doi-asserted-by":"publisher","first-page":"873","DOI":"10.1137\/0911052","volume":"11","author":"J Demmel","year":"1990","unstructured":"Demmel, J., Kahan, W.: Accurate singular values of bidiagonal matrices. SIAM J. Sci. Stat. Comput. 11(5), 873\u2013912 (1990)","journal-title":"SIAM J. Sci. Stat. Comput."},{"issue":"2","key":"1297_CR6","doi-asserted-by":"publisher","first-page":"191","DOI":"10.1007\/s002110050024","volume":"67","author":"KV Fernando","year":"1994","unstructured":"Fernando, K.V., Parlett, B.N.: Accurate singular values and differential qd algorithms. Numer. Math. 67(2), 191\u2013230 (1994)","journal-title":"Numer. Math."},{"key":"1297_CR7","doi-asserted-by":"publisher","DOI":"10.1093\/oso\/9780198506720.001.0001","volume-title":"Orthogonal Polynomials: Computation and Approximation","author":"W Gautschi","year":"2004","unstructured":"Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Oxford University Press, Oxford (2004)"},{"key":"1297_CR8","doi-asserted-by":"publisher","first-page":"24","DOI":"10.1137\/1009002","volume":"9","author":"W Gautschi","year":"1967","unstructured":"Gautschi, W.: Computational aspects of three\u2013term recurrence relations. SIAM Rev. 9, 24\u201382 (1967)","journal-title":"SIAM Rev."},{"key":"1297_CR9","doi-asserted-by":"publisher","first-page":"215","DOI":"10.1016\/j.cam.2004.03.029","volume":"178","author":"W Gautschi","year":"2005","unstructured":"Gautschi, W.: Orthogonal polynomials (in Matlab). J. Comput. Appl. Math. 178, 215\u2013234 (2005)","journal-title":"J. Comput. Appl. Math."},{"key":"1297_CR10","doi-asserted-by":"publisher","first-page":"1420","DOI":"10.1137\/06067016X","volume":"29","author":"A Glaser","year":"2007","unstructured":"Glaser, A., Liu, X., Rokhlin, V.: A fast algorithm for the calculation of the roots of special functions. SIAM J. Sci. Comput. 29, 1420\u20131438 (2007)","journal-title":"SIAM J. Sci. Comput."},{"key":"1297_CR11","doi-asserted-by":"publisher","DOI":"10.56021\/9781421407944","volume-title":"Matrix Computations","author":"GH Golub","year":"2013","unstructured":"Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2013)","edition":"4th edn."},{"issue":"106","key":"1297_CR12","doi-asserted-by":"publisher","first-page":"221","DOI":"10.1090\/S0025-5718-69-99647-1","volume":"23","author":"GH Golub","year":"1969","unstructured":"Golub, G.H., Welsch, J.H.: Calculation of Gauss quadrature rules. Math. Comput. 23(106), 221\u2013230 (1969)","journal-title":"Math. Comput."},{"key":"1297_CR13","volume-title":"Table of Integrals, Series, and Products, 7th edn","author":"IS Gradshteyn","year":"2007","unstructured":"Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic Press, Boston (2007)"},{"key":"1297_CR14","doi-asserted-by":"publisher","first-page":"A652","DOI":"10.1137\/120889873","volume":"35","author":"N Hale","year":"2013","unstructured":"Hale, N., Townsend, A.: Fast and accurate computation of Gauss-Legendre and Gauss-Jacobi nodes and weights. SIAM J. Sci. Comput. 35, A652\u2013A674 (2013)","journal-title":"SIAM J. Sci. Comput."},{"issue":"9","key":"1297_CR15","doi-asserted-by":"publisher","first-page":"1749","DOI":"10.1007\/s11425-012-4474-z","volume":"55","author":"N Hale","year":"2012","unstructured":"Hale, N., Trefethen, L.N.: Chebfun and numerical quadrature. Sci. China Math. 55(9), 1749\u20131760 (2012)","journal-title":"Sci. China Math."},{"key":"1297_CR16","doi-asserted-by":"publisher","DOI":"10.1137\/1.9780898718027","volume-title":"Accuracy and Stability of Numerical Algorithms","author":"NJ Higham","year":"2002","unstructured":"Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2002)","edition":"2nd edn."},{"key":"1297_CR17","doi-asserted-by":"publisher","first-page":"733","DOI":"10.1134\/S0965542521050080","volume":"61","author":"T Laudadio","year":"2021","unstructured":"Laudadio, T., Mastronardi, N., Van Dooren, P.: Computing the eigenvectors of nonsymmetric tridiagonal matrices. Comput. Math. Math. Phys. 61, 733\u2013749 (2021)","journal-title":"Comput. Math. Math. Phys."},{"key":"1297_CR18","doi-asserted-by":"crossref","unstructured":"Mastronardi, N., Taeter, H., Van Dooren, P.: On Computing Eigenvectors of Symmetric Tridiagonal Matrices. In: Bini, D, Di Benedetto, F, Tyrtyshnikov, E, Van Barel, M (eds.) , vol. 30, pp 181\u2013195. Springer INdAM Series, Cham (2019)","DOI":"10.1007\/978-3-030-04088-8_9"},{"issue":"3","key":"1297_CR19","doi-asserted-by":"publisher","first-page":"491","DOI":"10.1007\/s11075-013-9804-x","volume":"67","author":"G Meurant","year":"2014","unstructured":"Meurant, G., Sommariva, A.: Fast variants of the Golub and Welsch algorithm for symmetric weight functions in Matlab. Numer. Algor. 67(3), 491\u2013506 (2014)","journal-title":"Numer. Algor."},{"key":"1297_CR20","first-page":"65","volume":"18","author":"FWJ Olver","year":"1964","unstructured":"Olver, F.W.J.: Error analysis of Miller\u2019s recurrence equations. Math. Comput. 18, 65\u201374 (1964)","journal-title":"Math. Comput."},{"key":"1297_CR21","doi-asserted-by":"crossref","unstructured":"Parlett, B.N., Le, J.: Forward instability of tridiagonal QR. SIAM J. Matrix Anal. Appl. 14, 279\u2013316 (1993)","DOI":"10.1137\/0614022"},{"key":"1297_CR22","unstructured":"Parlett, B.N.: The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs (1980)"},{"key":"1297_CR23","volume-title":"Orthogonal Polynomials","author":"G Szeg\u00f6","year":"1975","unstructured":"Szeg\u00f6, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society, Providence (1975)","edition":"4th edn."},{"key":"1297_CR24","doi-asserted-by":"publisher","first-page":"629","DOI":"10.1090\/S0025-5718-1967-0221736-0","volume":"21","author":"R Tait","year":"1967","unstructured":"Tait, R.: Error analysis of recurrence equations. Math. Comput. 21, 629\u2013638 (1967)","journal-title":"Math. Comput."},{"key":"1297_CR25","first-page":"337","volume":"36","author":"A Townsend","year":"2016","unstructured":"Townsend, A., Trogdon, T., Olver, S.: Fast computation of Gauss quadrature nodes and weights on the whole real line. IMA J. Numer. Anal. 36, 337\u2013358 (2016)","journal-title":"IMA J. Numer. Anal."},{"key":"1297_CR26","volume-title":"Mathematics for the Physical Sciences","author":"HS Wilf","year":"1962","unstructured":"Wilf, H.S.: Mathematics for the Physical Sciences. Wiley, New York (1962)"},{"key":"1297_CR27","volume-title":"The Algebraic Eigenvalue Problem","author":"JH Wilkinson","year":"1965","unstructured":"Wilkinson, J.H.: The Algebraic Eigenvalue Problem. England, Oxford (1965)"}],"container-title":["Numerical Algorithms"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11075-022-01297-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11075-022-01297-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11075-022-01297-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,9]],"date-time":"2023-01-09T08:24:44Z","timestamp":1673252684000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11075-022-01297-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6,2]]},"references-count":27,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2023,1]]}},"alternative-id":["1297"],"URL":"https:\/\/doi.org\/10.1007\/s11075-022-01297-9","relation":{},"ISSN":["1017-1398","1572-9265"],"issn-type":[{"value":"1017-1398","type":"print"},{"value":"1572-9265","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,6,2]]},"assertion":[{"value":"24 November 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"7 March 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"2 June 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare no competing interests.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}