{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:15:36Z","timestamp":1732040136032},"reference-count":67,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2021,1,8]],"date-time":"2021-01-08T00:00:00Z","timestamp":1610064000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,8]],"date-time":"2021-01-08T00:00:00Z","timestamp":1610064000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Numer Algor"],"published-print":{"date-parts":[[2021,10]]},"DOI":"10.1007\/s11075-020-01055-9","type":"journal-article","created":{"date-parts":[[2021,1,8]],"date-time":"2021-01-08T09:22:34Z","timestamp":1610097754000},"page":"729-766","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":10,"title":["A new computational method based on fractional Lagrange functions to solve multi-term fractional differential equations"],"prefix":"10.1007","volume":"88","author":[{"given":"Mehdi","family":"Delkhosh","sequence":"first","affiliation":[]},{"given":"Kourosh","family":"Parand","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,1,8]]},"reference":[{"key":"1055_CR1","doi-asserted-by":"crossref","unstructured":"Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: an Introduction to Mathematical Models. Imperial College Press, London (2010)","DOI":"10.1142\/p614"},{"key":"1055_CR2","unstructured":"Duarte, F., Machado, J. A. T.: Chaotic phenomena and fractional\u2013order dynamics in the trajectory control of redundant manipulators. Nonlinear Dyn. 29(1\u20134), 315\u2013342 (2002)"},{"key":"1055_CR3","doi-asserted-by":"crossref","unstructured":"Chester, W.: Resonant oscillations in closed tubes. J. Fluid Mech. 18, 44\u201364 (1964)","DOI":"10.1017\/S0022112064000040"},{"key":"1055_CR4","doi-asserted-by":"crossref","unstructured":"Keller, J. J.: Propagation of simple non\u2013linear waves in gas filled tubes with friction. Z.Angew. Math. Phys. 32, 170\u2013181 (1981)","DOI":"10.1007\/BF00946746"},{"key":"1055_CR5","doi-asserted-by":"crossref","unstructured":"Silva, M. F., Machado, J. A. T., Lopes, A. M.: Comparison of fractional and integer order control of an hexapod robot. Proc. Int. Design Eng. Tech. Conf. Comput. Info. Eng. Conf. 5, 667\u2013676 (2003)","DOI":"10.1115\/DETC2003\/VIB-48377"},{"key":"1055_CR6","unstructured":"Magin, R. L.: Fractional Calculus in Bioengineering. Begell House, Redding (2006)"},{"key":"1055_CR7","doi-asserted-by":"crossref","unstructured":"Lubich, C.: On the stability of linear multistep methods for Volterra convolution equations. IMA J. Numer. Anal. 3, 439\u2013465 (1983)","DOI":"10.1093\/imanum\/3.4.439"},{"key":"1055_CR8","doi-asserted-by":"crossref","unstructured":"Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704\u2013719 (1986)","DOI":"10.1137\/0517050"},{"key":"1055_CR9","doi-asserted-by":"crossref","unstructured":"Sanz-Serna, J. M.: A numerical method for a partial integro\u2013differential equation. SIAM J. Numer. Anal. 25, 319\u2013327 (1988)","DOI":"10.1137\/0725022"},{"key":"1055_CR10","doi-asserted-by":"crossref","unstructured":"Sugimoto, N.: Burgers equation with a fractional derivative: hereditary effects on nonlinear acoustic waves. J. Fluid Mech. 225, 631\u2013653 (1991)","DOI":"10.1017\/S0022112091002203"},{"key":"1055_CR11","doi-asserted-by":"crossref","unstructured":"Metzler, R., Klafter, J.: The random walk\u2019s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1\u201377 (2000)","DOI":"10.1016\/S0370-1573(00)00070-3"},{"key":"1055_CR12","doi-asserted-by":"crossref","unstructured":"Diethelm, K., Ford, N. J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229\u2013248 (2002)","DOI":"10.1006\/jmaa.2000.7194"},{"key":"1055_CR13","doi-asserted-by":"crossref","unstructured":"Diethelm, K., Ford, N. J., Freed, A. D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31\u201352 (2004)","DOI":"10.1023\/B:NUMA.0000027736.85078.be"},{"key":"1055_CR14","doi-asserted-by":"crossref","unstructured":"Langlands, T., Henry, B.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719\u2013736 (2005)","DOI":"10.1016\/j.jcp.2004.11.025"},{"key":"1055_CR15","doi-asserted-by":"crossref","unstructured":"Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion\u2013wave system. Appl. Numer. Math. (2006) (2006) , 193\u2013209 (2006)","DOI":"10.1016\/j.apnum.2005.03.003"},{"key":"1055_CR16","doi-asserted-by":"crossref","unstructured":"Sugimoto, N.: Burgers equation with a fractional derivative: hereditary effects on nonlinear acoustic waves. J. Fluid Mech. 225, 631\u2013653 (1991)","DOI":"10.1017\/S0022112091002203"},{"key":"1055_CR17","unstructured":"Blank, L.: Numerical Treatment of Differential Equations of Fractional Order, Manchester Centre for Computational Mathematics. University of Manchester (1996)"},{"key":"1055_CR18","doi-asserted-by":"crossref","unstructured":"Lin, Y., Xu, C.: Finite difference\/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533\u20131552 (2007)","DOI":"10.1016\/j.jcp.2007.02.001"},{"key":"1055_CR19","doi-asserted-by":"crossref","unstructured":"Li, X., Xu, C.: A space\u2013time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108\u20132131 (2009)","DOI":"10.1137\/080718942"},{"key":"1055_CR20","doi-asserted-by":"crossref","unstructured":"Li, X., Xu, C.: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8, 1016\u20131051 (2010)","DOI":"10.4208\/cicp.020709.221209a"},{"key":"1055_CR21","doi-asserted-by":"crossref","unstructured":"Lischke, A., Zayernouri, M., EM Karniadakis, G.: A Petrov\u2013Galerkin spectral method of linear complexity for fractional multiterm ODEs on the half line. SIAM J. Sci. Comput. 39(3), A922\u2013A946 (2017)","DOI":"10.1137\/17M1113060"},{"key":"1055_CR22","doi-asserted-by":"crossref","unstructured":"Zayernouri, M., Karniadakis, G. E.: Exponentially accurate spectral and spectral element methods for fractional ODEs. J. Comput. Phys. 257, 460\u2013480 (2014)","DOI":"10.1016\/j.jcp.2013.09.039"},{"key":"1055_CR23","doi-asserted-by":"crossref","unstructured":"Zayernouri, M., Karniadakis, G. E.: Fractional Sturm\u2013Liouville eigen\u2013problems: theory and numerical approximations. J. Comput. Phys. 47, 2108\u20132131 (2013)","DOI":"10.1016\/j.jcp.2013.06.031"},{"key":"1055_CR24","doi-asserted-by":"crossref","unstructured":"Zayernouri, M., Karniadakis, G. E.: Fractional spectral collocation method. SIAM J. Sci. Comput. 36(1), A40\u2013A62 (2014)","DOI":"10.1137\/130933216"},{"key":"1055_CR25","doi-asserted-by":"crossref","unstructured":"Khosravian-Arab, H., Dehghan, M., Eslahchi, M. R.: Fractional spectral and pseudo\u2013spectral methods in unbounded domains: theory and applications. J. Comput. Phys. 338, 527\u2013566 (2017)","DOI":"10.1016\/j.jcp.2017.02.060"},{"key":"1055_CR26","doi-asserted-by":"crossref","unstructured":"Ford, N. J., Morgado, M. L., Rebelo, M.: Nonpolynomial collocation approximation of solutions to fractional differential equations. Fract. Calc. Appl. Anal. 16, 874\u2013891 (2013)","DOI":"10.2478\/s13540-013-0054-3"},{"key":"1055_CR27","doi-asserted-by":"crossref","unstructured":"Shen, J., Wang, Y.: Muntz\u2013Galerkin methods and applications to mixed Dirichlet\u2013Neumann boundary value problems. SIAM J. Sci. Comput. 38, A2357\u2013A2381 (2016)","DOI":"10.1137\/15M1052391"},{"key":"1055_CR28","doi-asserted-by":"crossref","unstructured":"Esmaeili, S., Shamsi, M., Luchko, Y.: Numerical solution of fractional differential equations with a collocation method based on Muntz polynomials. Comput. Math. Appl. 62(3), 918\u2013929 (2011)","DOI":"10.1016\/j.camwa.2011.04.023"},{"key":"1055_CR29","doi-asserted-by":"crossref","unstructured":"Hou, D., Xu, C.: A fractional spectral method with applications to some singular problems. Adv. Comput. Math. 43(5), 911\u2013944 (2017)","DOI":"10.1007\/s10444-016-9511-y"},{"key":"1055_CR30","doi-asserted-by":"crossref","unstructured":"Kazem, S., Abbasbandy, S., Kumar, S.: Fractional\u2013order Legendre functions for solving fractional\u2013order differential equations. Appl. Math. Model. 37(7), 5498\u20135510 (2013)","DOI":"10.1016\/j.apm.2012.10.026"},{"key":"1055_CR31","doi-asserted-by":"crossref","unstructured":"Khosravian-Arab, H., Dehghan, M., Eslahchi, M.R.: Fractional Sturm\u2013Liouville boundary value problems in unbounded domains: theory and applications. J. Comput. Phys. 299, 526\u2013560 (2015)","DOI":"10.1016\/j.jcp.2015.06.030"},{"key":"1055_CR32","unstructured":"Delkhosh, M.: Introduction of derivatives and integrals of fractional order and its applications. Appl. Math. Phys. 1(4), 103\u2013119 (2013)"},{"key":"1055_CR33","unstructured":"Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)"},{"key":"1055_CR34","doi-asserted-by":"crossref","unstructured":"Li, C., Qian, D., Chen, Y.Q.: On Riemann\u2013Liouville and Caputo derivatives. Discrete Dyn. Nature Soc. 2011, 562494 (2011)","DOI":"10.1155\/2011\/562494"},{"key":"1055_CR35","doi-asserted-by":"publisher","unstructured":"Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics, Chap. 3, Vol. 2004. Springer, Berlin. https:\/\/doi.org\/10.1007\/978--3--642--14574--2_3 (2010)","DOI":"10.1007\/978--3--642--14574--2_3"},{"key":"1055_CR36","unstructured":"Hong-ci, H.: On the stability of interpolation. J. Comput. Math. 1(1), 34\u201344 (1983)"},{"key":"1055_CR37","doi-asserted-by":"publisher","unstructured":"Cohen, A., Chkifa, A.: On the stability of polynomial interpolation using hierarchical sampling. Sampling Theory \u2013 A renaissance. https:\/\/doi.org\/10.1007\/978-3-319-19749-4_12ff, hal-01353241, 437\u2013458","DOI":"10.1007\/978-3-319-19749-4_12ff"},{"key":"1055_CR38","doi-asserted-by":"crossref","unstructured":"Parand, K., Delkhosh, M.: Solving the nonlinear Schlomilch\u2019s integral equation arising in ionospheric problems. Afr. Mat. 28(3), 459\u2013480 (2017)","DOI":"10.1007\/s13370-016-0459-3"},{"key":"1055_CR39","unstructured":"Sauer, T.: Numerical analysis. Pearson Education, 2nd edn (2011)"},{"key":"1055_CR40","doi-asserted-by":"crossref","unstructured":"Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A.: Spectral Methods in Fluid Dynamics, Springer\u2013Verlag, New York (1987)","DOI":"10.1007\/978-3-642-84108-8"},{"key":"1055_CR41","unstructured":"Parand, K., Hemami, M.: A meta\u2013heuristic approaches to improve the shape parameter in meshless RBF method for solving Burgers equation. Second National Conf. Meta\u2013Heuristic Alg. Appl. Eng. Sci. 1\u20137 (2017)"},{"key":"1055_CR42","doi-asserted-by":"crossref","unstructured":"Parand, K., Delkhosh, M.: New numerical solution for solving nonlinear singular Thomas\u2013Fermi differential equation. Bulletin Belgian Math. Soc. 24(3), 457\u2013476 (2017)","DOI":"10.36045\/bbms\/1506477694"},{"key":"1055_CR43","doi-asserted-by":"crossref","unstructured":"Parand, K., Delkhosh, M.: Accurate solution of the Thomas\u2013Fermi equation using the fractional order of rational Chebyshev functions. J. Comput. Appl. Math. 317, 624\u2013642 (2017)","DOI":"10.1016\/j.cam.2016.11.035"},{"key":"1055_CR44","doi-asserted-by":"crossref","unstructured":"Parand, K., Hemami, M.: Numerical study of astrophysics equations by meshless collocation method based on compactly supported radial basis function. Int. J. Appl. Comput. Math. 3(2), 1053\u20131075 (2017)","DOI":"10.1007\/s40819-016-0161-z"},{"key":"1055_CR45","doi-asserted-by":"crossref","unstructured":"Solomonoff, A., Turkel, E.: Global properties of pseudospectral methods, J. Comput. Phys. 81, 239\u2013276 (1989)","DOI":"10.1016\/0021-9991(89)90208-8"},{"key":"1055_CR46","doi-asserted-by":"crossref","unstructured":"Gottlieb, D.: The stability of pseudospectral\u2013Chebyshev methods, Math. Comput. 36(153), 107\u2013118 (1981)","DOI":"10.1090\/S0025-5718-1981-0595045-1"},{"key":"1055_CR47","doi-asserted-by":"crossref","unstructured":"Gottlieb, D., Orszag, S.A., Turkel, E.: Stability of pseudospectral and finite\u2013difference methods for variable coefficient problems, Math. Comput. 37(156), 293\u2013305 (1981)","DOI":"10.1090\/S0025-5718-1981-0628696-6"},{"key":"1055_CR48","doi-asserted-by":"crossref","unstructured":"Fornberg, B., Sloan, D.M.: A review of pseudospectral methods for solving partial differential equations, Acta Numerica 3, 203\u2013267 (1994)","DOI":"10.1017\/S0962492900002440"},{"key":"1055_CR49","doi-asserted-by":"crossref","unstructured":"Jackiewicz, Z., Renaut, R.A.: A note on stability of pseudospectral methods for wave propagation, J. Comput. Appl. Math. 143, 127\u2013139 (2002)","DOI":"10.1016\/S0377-0427(01)00495-2"},{"key":"1055_CR50","doi-asserted-by":"crossref","unstructured":"Bartels, R.H., Stewart, G.W.: Algorithm 432: solution of the matrix equation AX + XB = C. Comm. ACM. 15(9), 820\u2013826 (1972)","DOI":"10.1145\/361573.361582"},{"key":"1055_CR51","unstructured":"Jarlebring, E.: Lecture notes in numerical linear algebra: numerical methods for Lyapunov equations. https:\/\/people.kth.se\/~eliasj\/NLA\/matrixeqs.pdf"},{"key":"1055_CR52","doi-asserted-by":"crossref","unstructured":"Simoncini, V.: A new iterative method for solving large\u2013scale Lyapunov matrix equations. SIAM J. Sci. Comput. 29(3), 1268\u20131288 (2007)","DOI":"10.1137\/06066120X"},{"key":"1055_CR53","unstructured":"He, J.: Nonlinear oscillation with fractional derivative and its applications, in: International Conference on Vibrating Engineering\u201998, Dalian, pp. 288\u2013291 (1998)"},{"key":"1055_CR54","doi-asserted-by":"publisher","unstructured":"Keshavarz, E., Ordokhani, Y., Razzaghi, M.: A numerical solution for fractional optimal control problems via Bernoulli polynomials. J. Vibr. Contr. https:\/\/doi.org\/10.1177\/1077546314567181 (2015)","DOI":"10.1177\/1077546314567181"},{"key":"1055_CR55","doi-asserted-by":"crossref","unstructured":"Moaddy, K., Momani, S., Hashim, I.: The non\u2013standard finite difference scheme for linear fractional PDEs in fluid mechanics, Comput. Math. Appl. 61, 1209\u20131216 (2011)","DOI":"10.1016\/j.camwa.2010.12.072"},{"key":"1055_CR56","doi-asserted-by":"crossref","unstructured":"Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system, Phys. Rev. Lett. 91, 034101\u2013034104 (2003)","DOI":"10.1103\/PhysRevLett.91.034101"},{"key":"1055_CR57","doi-asserted-by":"crossref","unstructured":"Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)","DOI":"10.1007\/978-3-642-14574-2"},{"key":"1055_CR58","unstructured":"Miller, K.S., Ross, B.: An Introduction to The Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)"},{"key":"1055_CR59","unstructured":"Odibat, Z. M., Momani, S.: An algorithm for the numerical solution of differential equations of fractional order. J. Appl. Math. Inf. 26, 15\u201327 (2008)"},{"key":"1055_CR60","unstructured":"Carpinteri, A., Mainardi, F.: Fractals and Fractional Calculus in Continuum Mechanics, vol. 378. Springer (2014)"},{"key":"1055_CR61","doi-asserted-by":"crossref","unstructured":"Liu, F., Meerschaert, M. M., McGough, R. J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi\u2013term time fractional wave\u2013diffusion equation. Fract. Calc. Appl. Anal. 16(1), 9\u201325 (2013)","DOI":"10.2478\/s13540-013-0002-2"},{"key":"1055_CR62","doi-asserted-by":"crossref","unstructured":"Boyd, J. P.: Rational Chebyshev series for the Thomas\u2013Fermi function: endpoint singularities and spectral methods. J. Comput. Appl. Math. 244, 90\u2013101 (2013)","DOI":"10.1016\/j.cam.2012.11.015"},{"key":"1055_CR63","doi-asserted-by":"crossref","unstructured":"Lin, F.R., Yang, S.W., Jin, X.Q.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109\u2013117 (2014)","DOI":"10.1016\/j.jcp.2013.07.040"},{"key":"1055_CR64","doi-asserted-by":"crossref","unstructured":"Gong, C., Bao, W., Tang, G., Jiang, Y., Liu, J.: Computational challenge of fractional differential equations and the potential solutions: a survey. Math. Problems Eng. ID 258265, pp. 13 (2015)","DOI":"10.1155\/2015\/258265"},{"key":"1055_CR65","unstructured":"Du, K.: Preconditioning fractional spectral collocation. arXiv:1510.05776v1 (2015)"},{"key":"1055_CR66","doi-asserted-by":"crossref","unstructured":"Jiao, Y., Wang, L.L., Huang, C.: Well\u2013conditioned fractional collocation methods using fractional Birkhoff interpolation basis. J. Comput. Phys. 305, 1\u201328 (2016)","DOI":"10.1016\/j.jcp.2015.10.029"},{"key":"1055_CR67","doi-asserted-by":"crossref","unstructured":"Wang, L.L., Samson, M.D., Zhao, X.: A well\u2013conditioned collocation method using a pseudospectral integration matrix. SIAM J. Sci. Comput. 36, A907\u2013A929 (2014)","DOI":"10.1137\/130922409"}],"container-title":["Numerical Algorithms"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11075-020-01055-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11075-020-01055-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11075-020-01055-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,9,13]],"date-time":"2021-09-13T10:33:10Z","timestamp":1631529190000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11075-020-01055-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,1,8]]},"references-count":67,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2021,10]]}},"alternative-id":["1055"],"URL":"https:\/\/doi.org\/10.1007\/s11075-020-01055-9","relation":{},"ISSN":["1017-1398","1572-9265"],"issn-type":[{"value":"1017-1398","type":"print"},{"value":"1572-9265","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,1,8]]},"assertion":[{"value":"22 April 2019","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"7 December 2020","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"8 January 2021","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}