{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,14]],"date-time":"2024-08-14T15:50:32Z","timestamp":1723650632070},"reference-count":37,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2019,2,19]],"date-time":"2019-02-19T00:00:00Z","timestamp":1550534400000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Numer Algor"],"published-print":{"date-parts":[[2020,1]]},"DOI":"10.1007\/s11075-019-00676-z","type":"journal-article","created":{"date-parts":[[2019,2,19]],"date-time":"2019-02-19T01:17:50Z","timestamp":1550539070000},"page":"165-199","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["A quadratic spline collocation method for the Dirichlet biharmonic problem"],"prefix":"10.1007","volume":"83","author":[{"given":"Bernard","family":"Bialecki","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6159-8948","authenticated-orcid":false,"given":"Graeme","family":"Fairweather","sequence":"additional","affiliation":[]},{"given":"Andreas","family":"Karageorghis","sequence":"additional","affiliation":[]},{"given":"Jonathan","family":"Maack","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,2,19]]},"reference":[{"key":"676_CR1","volume-title":"Modified nodal cubic spline collocation for Poisson\u2019s and biharmonic equations in the unit square","author":"AA Abushama","year":"2004","unstructured":"Abushama, A.A.: Modified nodal cubic spline collocation for Poisson\u2019s and biharmonic equations in the unit square. Ph.D. thesis, Colorado School of Mines, Golden (2004)"},{"key":"676_CR2","doi-asserted-by":"publisher","first-page":"331","DOI":"10.1007\/s11075-007-9064-8","volume":"43","author":"AA Abushama","year":"2006","unstructured":"Abushama, A.A., Bialecki, B.: Modified nodal cubic spline collocation for biharmonic equations. Numer. Algorithms 43, 331\u2013353 (2006)","journal-title":"Numer. Algorithms"},{"key":"676_CR3","doi-asserted-by":"publisher","first-page":"375","DOI":"10.1002\/(SICI)1098-2426(199707)13:4<375::AID-NUM5>3.0.CO;2-I","volume":"13","author":"M Arad","year":"1997","unstructured":"Arad, M., Yakhot, A., Ben-Dor, G.: A highly accurate numerical solution of a biharmonic equation. Numer. Methods Partial Differential Equations 13, 375\u2013391 (1997)","journal-title":"Numer. Methods Partial Differential Equations"},{"key":"676_CR4","doi-asserted-by":"publisher","first-page":"303","DOI":"10.1137\/070694168","volume":"31","author":"M Ben-Artzi","year":"2008","unstructured":"Ben-Artzi, M., Croisille, J., Fishelov, D.: A fast direct solver for the biharmonic problem in a rectangular grid. SIAM J. SCi. Comput. 31, 303\u2013333 (2008)","journal-title":"SIAM J. SCi. Comput."},{"key":"676_CR5","doi-asserted-by":"publisher","first-page":"601","DOI":"10.1016\/S0021-9991(03)00342-5","volume":"191","author":"B Bialecki","year":"2003","unstructured":"Bialecki, B.: A fast solver for the orthogonal spline collocation solution of the biharmonic Dirichlet problem on rectangles. J. Comput. Phys. 191, 601\u2013621 (2003)","journal-title":"J. Comput. Phys."},{"key":"676_CR6","doi-asserted-by":"publisher","first-page":"351","DOI":"10.1007\/s11075-012-9536-3","volume":"61","author":"B Bialecki","year":"2012","unstructured":"Bialecki, B.: A fourth order finite difference method for the Dirichlet biharmonic problem. Numer. Algorithms 61, 351\u2013375 (2012)","journal-title":"Numer. Algorithms"},{"key":"676_CR7","doi-asserted-by":"publisher","first-page":"55","DOI":"10.1016\/S0377-0427(00)00509-4","volume":"128","author":"B Bialecki","year":"2001","unstructured":"Bialecki, B., Fairweather, G.: Orthogonal spline collocation methods for partial differential equations, Numerical Analysis 2000, Vol. VII, Partial differential equations. J. Comput. Appl. Math. 128, 55\u201382 (2001)","journal-title":"J. Comput. Appl. Math."},{"key":"676_CR8","doi-asserted-by":"publisher","first-page":"1733","DOI":"10.1137\/S106482750139964X","volume":"24","author":"B Bialecki","year":"2003","unstructured":"Bialecki, B., Fairweather, G., Karageorghis, A.: Matrix decomposition algorithms for modified spline collocation for Helmholtz problems. SIAM J. Sci. Comput. 24, 1733\u20131753 (2003)","journal-title":"SIAM J. Sci. Comput."},{"key":"676_CR9","doi-asserted-by":"publisher","first-page":"575","DOI":"10.1137\/040609793","volume":"27","author":"B Bialecki","year":"2005","unstructured":"Bialecki, B., Fairweather, G., Karageorghis, A.: Optimal superconvergent one step nodal cubic spline collocation methods. SIAM J. Sci. Comput. 27, 575\u2013598 (2005)","journal-title":"SIAM J. Sci. Comput."},{"key":"676_CR10","doi-asserted-by":"publisher","first-page":"253","DOI":"10.1007\/s11075-010-9384-y","volume":"56","author":"B Bialecki","year":"2011","unstructured":"Bialecki, B., Fairweather, G., Karageorghis, A.: Matrix decomposition algorithms for elliptic boundary value problems: a survey. Numer. Algorithms 56, 253\u2013295 (2011)","journal-title":"Numer. Algorithms"},{"key":"676_CR11","volume-title":"The method of projections as applied to the numerical solution of two point boundary value problems using cubic splines","author":"C Boor de","year":"1966","unstructured":"de Boor, C.: The method of projections as applied to the numerical solution of two point boundary value problems using cubic splines. Ph.D. Thesis, University of Michigan, Ann Arbor (1966)"},{"key":"676_CR12","doi-asserted-by":"publisher","first-page":"582","DOI":"10.1137\/0710052","volume":"10","author":"C Boor de","year":"1973","unstructured":"de Boor, C., Swartz, B.: Collocation at Gaussian points. SIAM J. Numer. Anal. 10, 582\u2013606 (1973)","journal-title":"SIAM J. Numer. Anal."},{"key":"676_CR13","doi-asserted-by":"publisher","first-page":"59","DOI":"10.1137\/0720004","volume":"20","author":"P Bjrstad","year":"1983","unstructured":"Bjrstad, P.: Fast numerical solution of the biharmonic Dirichlet problem on rectangles. SIAM J. Numer. Anal. 20, 59\u201371 (1983)","journal-title":"SIAM J. Numer. Anal."},{"key":"676_CR14","doi-asserted-by":"publisher","first-page":"753","DOI":"10.1137\/0711061","volume":"11","author":"BL Buzbee","year":"1974","unstructured":"Buzbee, B.L., Dorr, F.W.: The direct solution of the biharmonic equation on rectangular regions and the Poisson equation on irregular regions. SIAM J. Numer. Anal. 11, 753\u2013763 (1974)","journal-title":"SIAM J. Numer. Anal."},{"key":"676_CR15","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1007\/BF01935015","volume":"34","author":"CC Christara","year":"1994","unstructured":"Christara, C.C.: Quadratic spline collocation methods for elliptic partial differential equations. BIT 34, 33\u201361 (1994)","journal-title":"BIT"},{"key":"676_CR16","doi-asserted-by":"publisher","first-page":"511","DOI":"10.1007\/s11075-009-9317-9","volume":"53","author":"CC Christara","year":"2010","unstructured":"Christara, C.C., Chen, T., Dang, D.M.: Quadratic spline collocation for one-dimensional linear parabolic partial differential equations. Numer. Algorithms 53, 511\u2013553 (2010)","journal-title":"Numer. Algorithms"},{"key":"676_CR17","unstructured":"Christara, C., Liu, G.: Quartic spline collocation for second\u2013order boundary value problems. In: Proceedings of the 9th HERCMA Conference on Computer Mathematics and Applications, Athens University of Economics and Business, September 23-26, 2009, Athens, Greece,pp. 1\u20138"},{"key":"676_CR18","doi-asserted-by":"publisher","first-page":"227","DOI":"10.1007\/s00607-005-0140-4","volume":"76","author":"CC Christara","year":"2006","unstructured":"Christara, C.C., Ng, K.S.: Optimal quadratic and cubic spline collocation on nonuniform partitions. Computing 76, 227\u2013257 (2006)","journal-title":"Computing"},{"key":"676_CR19","unstructured":"Christara, C.C., Zhu, Y., Zhang, J.: Quartic spline collocation for fourth-order boundary value problems. In: Proceedings of the 2008 Numerical Analysis conference, September 1-5 Kalamata, Greece, pp. 62\u201367 (2008)"},{"key":"676_CR20","doi-asserted-by":"publisher","first-page":"161","DOI":"10.1093\/imamat\/16.2.161","volume":"16","author":"JW Daniel","year":"1975","unstructured":"Daniel, J.W., Swartz, B.K.: Extrapolated collocation for two\u2013point boundary value problems using cubic splines. J. Inst. Math. Appl. 16, 161\u2013174 (1975)","journal-title":"J. Inst. Math. Appl."},{"key":"676_CR21","doi-asserted-by":"publisher","first-page":"278","DOI":"10.1137\/0708029","volume":"8","author":"LW Ehrlich","year":"1971","unstructured":"Ehrlich, L.W.: Solving the biharmonic equation as coupled finite difference equations. SIAM J. Numer. Anal. 8, 278\u2013287 (1971)","journal-title":"SIAM J. Numer. Anal."},{"key":"676_CR22","first-page":"386","volume":"247","author":"M El-Gamel","year":"2014","unstructured":"El-Gamel, M., Mohsen, A., El-Mohsen, A.: Sinc-Galerkin method for solving biharmonic problems. Appl. Math. Comput. 247, 386\u2013396 (2014)","journal-title":"Appl. Math. Comput."},{"key":"676_CR23","doi-asserted-by":"publisher","first-page":"2880","DOI":"10.1016\/j.jcp.2010.12.041","volume":"230","author":"G Fairweather","year":"2011","unstructured":"Fairweather, G., Karageorghis, A., Maack, J.: Compact optimal quadratic spline collocation methods for the Helmholtz equation. J. Comput. Phys. 230, 2880\u20132895 (2011)","journal-title":"J. Comput. Phys."},{"key":"676_CR24","doi-asserted-by":"publisher","first-page":"236","DOI":"10.1016\/0021-9991(79)90018-4","volume":"33","author":"MM Gupta","year":"1979","unstructured":"Gupta, M.M., Manohar, R.P.: The direct solution of the biharmonic equation using noncoupled approach. J. Comput. Phys. 33, 236\u2013248 (1979)","journal-title":"J. Comput. Phys."},{"key":"676_CR25","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-11490-8","volume-title":"Elliptic differential equations, theory and numerical treatment","author":"W Hackbusch","year":"1992","unstructured":"Hackbusch, W.: Elliptic differential equations, theory and numerical treatment. Springer, New York (1992)"},{"key":"676_CR26","doi-asserted-by":"publisher","first-page":"935","DOI":"10.1002\/nme.1620260412","volume":"26","author":"EN Houstis","year":"1988","unstructured":"Houstis, E.N., Christara, C.C., Rice, J.R.: Quadratic-spline collocation methods for two-point boundary value problems. Internat. J. Numer. Methods Engrg. 26, 935\u2013952 (1988)","journal-title":"Internat. J. Numer. Methods Engrg."},{"key":"676_CR27","volume-title":"A piecewise Hermite bicubic finite element Galerkin method for the biharmonic Dirichlet Problem","author":"DB Knudson","year":"1997","unstructured":"Knudson, D.B.: A piecewise Hermite bicubic finite element Galerkin method for the biharmonic Dirichlet Problem. Ph.D. Thesis, Colorado School of Mines, Golden (1997)"},{"key":"676_CR28","doi-asserted-by":"publisher","first-page":"187","DOI":"10.1016\/j.matcom.2004.10.009","volume":"71","author":"AT Layton","year":"2006","unstructured":"Layton, A.T., Christara, C.C., Jackson, K.R.: Optimal quadratic spline collocation methods for the shallow water equations. Math. Comput. Simul. 71, 187\u2013205 (2006)","journal-title":"Math. Comput. Simul."},{"key":"676_CR29","doi-asserted-by":"publisher","first-page":"267","DOI":"10.1007\/s002110050368","volume":"80","author":"ZM Lou","year":"1998","unstructured":"Lou, Z.M., Bialecki, B., Fairweather, G.: Orthogonal sploine collocation methods for biharmonic prob;lems. Numer. Math. 80, 267\u2013303 (1998)","journal-title":"Numer. Math."},{"key":"676_CR30","unstructured":"Luo, W.-H., Huang, T.-Z., Gu, X.-M.: A Lagrange-quadratic spline compact optimal collocation method for the time tempered fractional diffusion equation, submitted"},{"key":"676_CR31","doi-asserted-by":"crossref","first-page":"252","DOI":"10.1016\/j.amc.2015.12.020","volume":"276","author":"W-H Luo","year":"2016","unstructured":"Luo, W.-H., Huang, T.-Z., Wu, G.-C., Gu, X.-M.: Quadratic spline collocation for the time fractional subdiffusion equation. Appl. Math. Comput. 276, 252\u2013265 (2016)","journal-title":"Appl. Math. Comput."},{"key":"676_CR32","volume-title":"Quadratic spline collocation for Poisson\u2019s and biharmonic equations in the unit square","author":"J Maack","year":"2009","unstructured":"Maack, J.: Quadratic spline collocation for Poisson\u2019s and biharmonic equations in the unit square. M.S. Thesis, Colorado School of Mines, Golden (2009)"},{"key":"676_CR33","doi-asserted-by":"publisher","first-page":"217","DOI":"10.1023\/A:1000783619393","volume":"58","author":"VV Meleshko","year":"1998","unstructured":"Meleshko, V.V.: Biharmonic problem in a rectangle. Appl. Sci. Res. 58, 217\u2013249 (1998)","journal-title":"Appl. Sci. Res."},{"key":"676_CR34","doi-asserted-by":"publisher","first-page":"655","DOI":"10.1051\/m2an\/1988220406551","volume":"22","author":"P Peisker","year":"1988","unstructured":"Peisker, P.: On the numerical solution of the first biharmonic equation. Model. Math. Anal. Numer. 22, 655\u2013676 (1988)","journal-title":"Model. Math. Anal. Numer."},{"key":"676_CR35","doi-asserted-by":"publisher","first-page":"65","DOI":"10.1016\/0021-9991(84)90015-9","volume":"55","author":"JW Stephenson","year":"1984","unstructured":"Stephenson, J.W.: Single cell discretizations of order two and four for biharmonic problems. J. Comput. Phys. 55, 65\u201380 (1984)","journal-title":"J. Comput. Phys."},{"key":"676_CR36","doi-asserted-by":"publisher","first-page":"621","DOI":"10.1137\/0915041","volume":"15","author":"X Zhang","year":"1994","unstructured":"Zhang, X.: Multilevel Schwarz methods for the biharmonic Dirichlet problem. SIAM J. Sci. Comput. 15, 621\u2013644 (1994)","journal-title":"SIAM J. Sci. Comput."},{"key":"676_CR37","volume-title":"Bi-quartic spline collocation methods for fourth-order boundary value problems with an application to the biharmonic Dirichlet problem","author":"J Zhang","year":"2008","unstructured":"Zhang, J.: Bi-quartic spline collocation methods for fourth-order boundary value problems with an application to the biharmonic Dirichlet problem. Ph.D. Thesis, University of Toronto, Toronto, Ontario (2008)"}],"container-title":["Numerical Algorithms"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s11075-019-00676-z\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11075-019-00676-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11075-019-00676-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,12]],"date-time":"2022-09-12T02:15:03Z","timestamp":1662948903000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s11075-019-00676-z"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,2,19]]},"references-count":37,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2020,1]]}},"alternative-id":["676"],"URL":"https:\/\/doi.org\/10.1007\/s11075-019-00676-z","relation":{},"ISSN":["1017-1398","1572-9265"],"issn-type":[{"value":"1017-1398","type":"print"},{"value":"1572-9265","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,2,19]]},"assertion":[{"value":"27 June 2018","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"3 February 2019","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"19 February 2019","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}