{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T07:27:33Z","timestamp":1740122853632,"version":"3.37.3"},"reference-count":45,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2024,2,13]],"date-time":"2024-02-13T00:00:00Z","timestamp":1707782400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2024,2,13]],"date-time":"2024-02-13T00:00:00Z","timestamp":1707782400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"crossref","award":["62271157"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100003453","name":"Natural Science Foundation of Guangdong Province","doi-asserted-by":"publisher","award":["2022A1515010005"],"id":[{"id":"10.13039\/501100003453","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Neural Process Lett"],"abstract":"Abstract<\/jats:title>This paper introduces a novel approach called Chebyshev mapping and strongly connected topology for optimization of echo state network (ESN). To enhance the predictive performance of ESNs for time series data, Chebyshev mapping is employed to optimize the irregular input weight matrix. And the reservoir of the ESN is also replaced using an adjacency matrix derived from a digital chaotic system, resulting in a reservoir with strong connectivity properties. Numerical experiments are conducted on various time series datasets, including the Mackey\u2013Glass time series, Lorenz time series and solar sunspot numbers, validating the effectiveness of the proposed optimization methods. Compared with the traditional ESNs, the optimization method proposed in this paper has higher predictive performance, and effectively reduce the reservoir\u2019s size and model complexity.<\/jats:p>","DOI":"10.1007\/s11063-024-11474-7","type":"journal-article","created":{"date-parts":[[2024,2,13]],"date-time":"2024-02-13T09:03:27Z","timestamp":1707815007000},"update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Time Series Prediction of ESN Based on Chebyshev Mapping and Strongly Connected Topology"],"prefix":"10.1007","volume":"56","author":[{"ORCID":"https:\/\/orcid.org\/0009-0009-9672-4217","authenticated-orcid":false,"given":"Minzhi","family":"Xie","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4063-5401","authenticated-orcid":false,"given":"Qianxue","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1192-6955","authenticated-orcid":false,"given":"Simin","family":"Yu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,2,13]]},"reference":[{"key":"11474_CR1","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1016\/j.neucom.2021.02.046","volume":"441","author":"PB Weerakody","year":"2021","unstructured":"Weerakody PB, Wong KW, Wang G, Ela W (2021) A review of irregular time series data handling with gated recurrent neural networks. Neurocomputing 441:161\u2013178","journal-title":"Neurocomputing"},{"issue":"7","key":"11474_CR2","doi-asserted-by":"crossref","first-page":"1229","DOI":"10.1109\/TNNLS.2014.2317880","volume":"25","author":"H Zhang","year":"2014","unstructured":"Zhang H, Wang Z, Liu D (2014) A comprehensive review of stability analysis of continuous-time recurrent neural networks. IEEE Trans Neural Netw Learn Syst 25(7):1229\u20131262","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"11474_CR3","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1016\/j.neunet.2019.03.005","volume":"115","author":"G Tanaka","year":"2019","unstructured":"Tanaka G, Yamane T, H\u00e9roux JB, Nakane R, Kanazawa N, Takeda S, Numata H, Nakano D, Hirose A (2019) Recent advances in physical reservoir computing: a review. Neural Netw 115:100\u2013123","journal-title":"Neural Netw"},{"key":"11474_CR4","unstructured":"Jaeger H (2001) The \u201cecho state\u201d approach to analysing and training recurrent neural networks\u2014with an erratum note, vol 148, p 13. GMD Technical Report, German National Research Center for Information Technology, Bonn, Germany"},{"issue":"5667","key":"11474_CR5","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1126\/science.1091277","volume":"304","author":"H Jaeger","year":"2004","unstructured":"Jaeger H, Haas H (2004) Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667):78\u201380","journal-title":"Science"},{"issue":"4","key":"11474_CR6","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.87.042809","volume":"87","author":"M Massar","year":"2013","unstructured":"Massar M, Massar S (2013) Mean-field theory of echo state networks. Phys Rev E 87(4):042809","journal-title":"Phys Rev E"},{"issue":"3","key":"11474_CR7","doi-asserted-by":"crossref","first-page":"373","DOI":"10.5194\/npg-27-373-2020","volume":"27","author":"A Chattopadhyay","year":"2020","unstructured":"Chattopadhyay A, Hassanzadeh P, Subramanian D (2020) Data-driven predictions of a multiscale Lorenz 96 chaotic system using machine-learning methods: reservoir computing, artificial neural network, and long short-term memory network. Nonlinear Process Geophys 27(3):373\u2013389","journal-title":"Nonlinear Process Geophys"},{"issue":"5","key":"11474_CR8","doi-asserted-by":"crossref","first-page":"787","DOI":"10.1109\/TNNLS.2012.2188414","volume":"23","author":"D Li","year":"2012","unstructured":"Li D, Han M, Wang J (2012) Chaotic time series prediction based on a novel robust echo state network. IEEE Trans Neural Netw Learn Syst 23(5):787\u2013799","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"11474_CR9","doi-asserted-by":"crossref","first-page":"729","DOI":"10.1016\/j.renene.2020.09.109","volume":"164","author":"H Hu","year":"2021","unstructured":"Hu H, Wang L, Tao R (2021) Wind speed forecasting based on variational mode decomposition and improved echo state network. Renew Energy 164:729\u2013751","journal-title":"Renew Energy"},{"issue":"6","key":"11474_CR10","doi-asserted-by":"crossref","first-page":"7833","DOI":"10.1109\/JSEN.2019.2923982","volume":"21","author":"Z Han","year":"2019","unstructured":"Han Z, Zhao J, Leung H, Ma KF, Wang W (2019) A review of deep learning models for time series prediction. IEEE Sens J 21(6):7833\u20137848","journal-title":"IEEE Sens J"},{"issue":"1","key":"11474_CR11","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1109\/TNN.2010.2089641","volume":"22","author":"A Rodan","year":"2010","unstructured":"Rodan A, Tino P (2010) Minimum complexity echo state network. IEEE Trans Neural Netw 22(1):131\u2013144","journal-title":"IEEE Trans Neural Netw"},{"issue":"2","key":"11474_CR12","doi-asserted-by":"crossref","first-page":"391","DOI":"10.1109\/TNNLS.2016.2514275","volume":"28","author":"J Qiao","year":"2016","unstructured":"Qiao J, Li F, Han H, Li W (2016) Growing echo-state network with multiple subreservoirs. IEEE Trans Neural Netw Learn Syst 28(2):391\u2013404","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"issue":"10","key":"11474_CR13","doi-asserted-by":"crossref","first-page":"2173","DOI":"10.1109\/TCYB.2015.2467167","volume":"46","author":"M Xu","year":"2016","unstructured":"Xu M, Han M (2016) Adaptive elastic echo state network for multivariate time series prediction. IEEE Trans Cybern 46(10):2173\u20132183","journal-title":"IEEE Trans Cybern"},{"key":"11474_CR14","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1016\/j.neucom.2018.02.036","volume":"290","author":"C Yang","year":"2018","unstructured":"Yang C, Qiao J, Han H, Wang L (2018) Design of polynomial echo state networks for time series prediction. Neurocomputing 290:148\u2013160","journal-title":"Neurocomputing"},{"key":"11474_CR15","doi-asserted-by":"crossref","first-page":"319","DOI":"10.1016\/j.neucom.2018.12.033","volume":"333","author":"G Shi","year":"2019","unstructured":"Shi G, Zhao B, Li C, Wei Q, Liu D (2019) An echo state network based approach to room classification of office buildings. Neurocomputing 333:319\u2013328","journal-title":"Neurocomputing"},{"issue":"3","key":"11474_CR16","doi-asserted-by":"crossref","first-page":"391","DOI":"10.1016\/j.neunet.2007.04.003","volume":"20","author":"D Verstraeten","year":"2007","unstructured":"Verstraeten D, Schrauwen B, d\u2019Haene M, Stroobandt D (2007) An experimental unification of reservoir computing methods. Neural Netw 20(3):391\u2013403","journal-title":"Neural Netw"},{"issue":"1","key":"11474_CR17","volume":"7","author":"L Larger","year":"2017","unstructured":"Larger L, Bayl\u00f3n-Fuentes A, Martinenghi R, Udaltsov VS, Chembo YK, Jacquot M (2017) High-speed photonic reservoir computing using a time-delay-based architecture: million words per second classification. Phys Rev X 7(1):011015","journal-title":"Phys Rev X"},{"issue":"6","key":"11474_CR18","doi-asserted-by":"crossref","first-page":"5005","DOI":"10.1007\/s11063-022-10845-2","volume":"54","author":"K Zhao","year":"2022","unstructured":"Zhao K, Li L, Chen Z, Sun R, Yuan G, Li J (2022) A new multi-classifier ensemble algorithm based on DS evidence theory. Neural Process Lett 54(6):5005\u20135021","journal-title":"Neural Process Lett"},{"issue":"5","key":"11474_CR19","doi-asserted-by":"crossref","first-page":"3831","DOI":"10.1109\/TIE.2017.2652346","volume":"64","author":"Z Peng","year":"2017","unstructured":"Peng Z, Wang J, Wang D (2017) Distributed containment maneuvering of multiple marine vessels via neurodynamics-based output feedback. IEEE Trans Ind Electron 64(5):3831\u20133839","journal-title":"IEEE Trans Ind Electron"},{"key":"11474_CR20","doi-asserted-by":"crossref","first-page":"830","DOI":"10.1016\/j.asoc.2017.09.015","volume":"62","author":"Y-C Bo","year":"2018","unstructured":"Bo Y-C, Zhang X (2018) Online adaptive dynamic programming based on echo state networks for dissolved oxygen control. Appl Soft Comput 62:830\u2013839","journal-title":"Appl Soft Comput"},{"issue":"5","key":"11474_CR21","doi-asserted-by":"crossref","first-page":"3831","DOI":"10.1109\/TIE.2017.2652346","volume":"64","author":"Z Peng","year":"2017","unstructured":"Peng Z, Wang J, Wang D (2017) Distributed containment maneuvering of multiple marine vessels via neurodynamics-based output feedback. IEEE Trans Ind Electron 64(5):3831\u20133839","journal-title":"IEEE Trans Ind Electron"},{"key":"11474_CR22","doi-asserted-by":"crossref","first-page":"603","DOI":"10.1007\/s11063-020-10267-y","volume":"52","author":"X Yao","year":"2020","unstructured":"Yao X, Wang Z (2020) Fractional order echo state network for time series prediction. Neural Process Lett 52:603\u2013614","journal-title":"Neural Process Lett"},{"issue":"6","key":"11474_CR23","doi-asserted-by":"crossref","first-page":"5869","DOI":"10.1109\/JSEN.2022.3148742","volume":"22","author":"X Li","year":"2022","unstructured":"Li X, Bi F, Yang X, Bi X (2022) An echo state network with improved topology for time series prediction. IEEE Sens J 22(6):5869\u20135878","journal-title":"IEEE Sens J"},{"issue":"9","key":"11474_CR24","doi-asserted-by":"crossref","first-page":"3794","DOI":"10.1109\/TCSI.2021.3091404","volume":"68","author":"Q Wang","year":"2021","unstructured":"Wang Q, Yu S, Guyeux C, Wang W (2021) Constructing higher-dimensional digital chaotic systems via loop-state contraction algorithm. IEEE Trans Circuits Syst I Regul Pap 68(9):3794\u20133807","journal-title":"IEEE Trans Circuits Syst I Regul Pap"},{"key":"11474_CR25","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/j.neucom.2016.12.089","volume":"268","author":"C Gallicchio","year":"2017","unstructured":"Gallicchio C, Micheli A, Pedrelli L (2017) Deep reservoir computing: a critical experimental analysis. Neurocomputing 268:87\u201399","journal-title":"Neurocomputing"},{"issue":"3","key":"11474_CR26","doi-asserted-by":"crossref","first-page":"693","DOI":"10.1109\/TCDS.2021.3062177","volume":"13","author":"Z Wang","year":"2021","unstructured":"Wang Z, Yao X, Huang Z, Liu L (2021) Deep echo state network with multiple adaptive reservoirs for time series prediction. IEEE Trans Cogn Dev Syst 13(3):693\u2013704","journal-title":"IEEE Trans Cogn Dev Syst"},{"key":"11474_CR27","doi-asserted-by":"crossref","first-page":"17769","DOI":"10.1007\/s00521-020-04948-x","volume":"32","author":"T Kim","year":"2020","unstructured":"Kim T, King BR (2020) Time series prediction using deep echo state networks. Neural Comput Appl 32:17769\u201317787","journal-title":"Neural Comput Appl"},{"key":"11474_CR28","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.neucom.2021.08.122","volume":"467","author":"Z Li","year":"2022","unstructured":"Li Z, Tanaka G (2022) Multi-reservoir echo state networks with sequence resampling for nonlinear time-series prediction. Neurocomputing 467:115\u2013129","journal-title":"Neurocomputing"},{"key":"11474_CR29","volume":"222","author":"H Zhang","year":"2021","unstructured":"Zhang H, Hu B, Wang X, Xu J, Wang L, Sun Q, Wang Z (2021) Self-organizing deep belief modular echo state network for time series prediction. Knowl Based Syst 222:107007","journal-title":"Knowl Based Syst"},{"key":"11474_CR30","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1016\/j.asoc.2017.01.049","volume":"55","author":"N Chouikhi","year":"2017","unstructured":"Chouikhi N, Ammar B, Rokbani N, Alimi AM (2017) PSO-based analysis of echo state network parameters for time series forecasting. Applied Soft Computing 55:211\u2013225","journal-title":"Applied Soft Computing"},{"key":"11474_CR31","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1016\/j.neucom.2022.03.018","volume":"489","author":"H Wang","year":"2022","unstructured":"Wang H, Liu Y, Lu P, Luo Y, Wang D, Xu X (2022) Echo state network with logistic mapping and bias dropout for time series prediction. Neurocomputing 489:196\u2013210","journal-title":"Neurocomputing"},{"issue":"10","key":"11474_CR32","doi-asserted-by":"crossref","first-page":"4172","DOI":"10.1016\/j.eswa.2013.01.029","volume":"40","author":"AA Ferreira","year":"2013","unstructured":"Ferreira AA, Ludermir TB, De Aquino RR (2013) An approach to reservoir computing design and training. Expert Syst Appl 40(10):4172\u20134182","journal-title":"Expert Syst Appl"},{"issue":"10","key":"11474_CR33","doi-asserted-by":"crossref","first-page":"2173","DOI":"10.1109\/TCYB.2015.2467167","volume":"46","author":"M Xu","year":"2016","unstructured":"Xu M, Han M (2016) Adaptive elastic echo state network for multivariate time series prediction. IEEE Trans Cybern 46(10):2173\u20132183","journal-title":"IEEE Trans Cybern"},{"issue":"8","key":"11474_CR34","doi-asserted-by":"crossref","first-page":"1743","DOI":"10.1109\/JAS.2023.123489","volume":"10","author":"X Chen","year":"2023","unstructured":"Chen X, Liu M, Li S (2023) Echo state network with probabilistic regularization for time series prediction. IEEE\/CAA J Autom Sin 10(8):1743\u20131753","journal-title":"IEEE\/CAA J Autom Sin"},{"key":"11474_CR35","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1016\/j.neucom.2022.11.044","volume":"522","author":"J Viehweg","year":"2023","unstructured":"Viehweg J, Worthmann K, M\u00e4der P (2023) Parameterizing echo state networks for multi-step time series prediction. Neurocomputing 522:214\u2013228","journal-title":"Neurocomputing"},{"key":"11474_CR36","volume":"135","author":"Z Li","year":"2023","unstructured":"Li Z, Liu Y, Tanaka G (2023) Multi-reservoir echo state networks with Hodrick\u2013Prescott filter for nonlinear time-series prediction. Appl Soft Comput 135:110021","journal-title":"Appl Soft Comput"},{"key":"11474_CR37","doi-asserted-by":"crossref","unstructured":"Luko\u0161evi\u010dius M (2012) A practical guide to applying echo state networks, pp 659\u2013686. Springer","DOI":"10.1007\/978-3-642-35289-8_36"},{"key":"11474_CR38","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.neunet.2012.07.005","volume":"35","author":"IB Yildiz","year":"2012","unstructured":"Yildiz IB, Jaeger H, Kiebel SJ (2012) Re-visiting the echo state property. Neural Netw 35:1\u20139","journal-title":"Neural Netw"},{"issue":"10","key":"11474_CR39","doi-asserted-by":"crossref","first-page":"6525","DOI":"10.1109\/TCOMM.2020.3007757","volume":"68","author":"H-P Ren","year":"2020","unstructured":"Ren H-P, Yin H-P, Bai C, Yao J-L (2020) Performance improvement of chaotic baseband wireless communication using echo state network. IEEE Trans Commun 68(10):6525\u20136536","journal-title":"IEEE Trans Commun"},{"issue":"03","key":"11474_CR40","doi-asserted-by":"crossref","first-page":"1750033","DOI":"10.1142\/S021812741750033X","volume":"27","author":"Y Liu","year":"2017","unstructured":"Liu Y, Luo Y, Song S, Cao L, Liu J, Harkin J (2017) Counteracting dynamical degradation of digital chaotic Chebyshev map via perturbation. Int J Bifurc Chaos 27(03):1750033","journal-title":"Int J Bifurc Chaos"},{"key":"11474_CR41","doi-asserted-by":"crossref","first-page":"310","DOI":"10.1016\/j.neucom.2019.12.069","volume":"385","author":"J Liu","year":"2020","unstructured":"Liu J, Sun T, Luo Y, Yang S, Cao Y, Zhai J (2020) Echo state network optimization using binary grey wolf algorithm. Neurocomputing 385:310\u2013318","journal-title":"Neurocomputing"},{"key":"11474_CR42","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.neucom.2020.10.048","volume":"426","author":"W Chen","year":"2021","unstructured":"Chen W, Xu H, Chen Z, Jiang M (2021) A novel method for time series prediction based on error decomposition and nonlinear combination of forecasters. Neurocomputing 426:85\u2013103","journal-title":"Neurocomputing"},{"key":"11474_CR43","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/j.neucom.2016.12.089","volume":"268","author":"C Gallicchio","year":"2017","unstructured":"Gallicchio C, Micheli A, Pedrelli L (2017) Deep reservoir computing: a critical experimental analysis. Neurocomputing 268:87\u201399","journal-title":"Neurocomputing"},{"issue":"7","key":"11474_CR44","doi-asserted-by":"crossref","first-page":"4928","DOI":"10.1109\/TII.2019.2938884","volume":"16","author":"J Long","year":"2019","unstructured":"Long J, Zhang S, Li C (2019) Evolving deep echo state networks for intelligent fault diagnosis. IEEE Trans Ind Inform 16(7):4928\u20134937","journal-title":"IEEE Trans Ind Inform"},{"issue":"8","key":"11474_CR45","doi-asserted-by":"crossref","first-page":"845","DOI":"10.1103\/PhysRevLett.59.845","volume":"59","author":"JD Farmer","year":"1987","unstructured":"Farmer JD, Sidorowich JJ (1987) Predicting chaotic time series. Phys Rev Lett 59(8):845","journal-title":"Phys Rev Lett"}],"container-title":["Neural Processing Letters"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11063-024-11474-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11063-024-11474-7\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11063-024-11474-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,29]],"date-time":"2024-02-29T20:14:09Z","timestamp":1709237649000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11063-024-11474-7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,2,13]]},"references-count":45,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2024,2]]}},"alternative-id":["11474"],"URL":"https:\/\/doi.org\/10.1007\/s11063-024-11474-7","relation":{"has-preprint":[{"id-type":"doi","id":"10.21203\/rs.3.rs-3350392\/v1","asserted-by":"object"}]},"ISSN":["1573-773X"],"issn-type":[{"type":"electronic","value":"1573-773X"}],"subject":[],"published":{"date-parts":[[2024,2,13]]},"assertion":[{"value":"27 November 2023","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"13 February 2024","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}],"article-number":"30"}}