{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,12,28]],"date-time":"2023-12-28T00:09:58Z","timestamp":1703722198040},"reference-count":63,"publisher":"Springer Science and Business Media LLC","issue":"9","license":[{"start":{"date-parts":[[2023,11,2]],"date-time":"2023-11-02T00:00:00Z","timestamp":1698883200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,11,2]],"date-time":"2023-11-02T00:00:00Z","timestamp":1698883200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"name":"Zhejiang Provincial Natural Science Foundation of China","award":["LY21F010009","LQ23F030016"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Neural Process Lett"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1007\/s11063-023-11435-6","type":"journal-article","created":{"date-parts":[[2023,11,2]],"date-time":"2023-11-02T15:02:41Z","timestamp":1698937361000},"page":"12625-12645","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Point Cloud Registration Network Based on Convolution Fusion and Attention Mechanism"],"prefix":"10.1007","volume":"55","author":[{"given":"Wei","family":"Zhu","sequence":"first","affiliation":[]},{"given":"Yue","family":"Ying","sequence":"additional","affiliation":[]},{"given":"Jin","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Xiuli","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yayu","family":"Zheng","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,11,2]]},"reference":[{"key":"11435_CR1","unstructured":"Huang X, Mei G, Zhang J, Abbas R (2021) A comprehensive survey on point cloud registration. arXiv preprint arXiv:2103.02690"},{"key":"11435_CR2","doi-asserted-by":"publisher","first-page":"11","DOI":"10.1016\/j.mechatronics.2015.10.014","volume":"35","author":"R Y Takimoto","year":"2016","unstructured":"Takimoto R Y, Tsuzuki MdSG, Vogelaar R, Castro\u00a0Martins T, Sato A K, Iwao Y, Gotoh T, Kagei S (2016) 3d reconstruction and multiple point cloud registration using a low precision RGB-D sensor. Mechatronics 35:11\u201322","journal-title":"Mechatronics"},{"key":"11435_CR3","doi-asserted-by":"crossref","unstructured":"Dang Z, Wang L, Guo Y, Salzmann M (2022) Learning-based point cloud registration for 6d object pose estimation in the real world. In: European conference on computer vision, pp. 19\u2013 37 . Springer","DOI":"10.1007\/978-3-031-19769-7_2"},{"key":"11435_CR4","doi-asserted-by":"crossref","unstructured":"Choy C, Park J, Koltun V (2019) Fully convolutional geometric features. In: Proceedings of the IEEE\/CVF international conference on computer vision, pp. 8958\u2013 8966","DOI":"10.1109\/ICCV.2019.00905"},{"key":"11435_CR5","doi-asserted-by":"crossref","unstructured":"Zeng A, Song S, Nie\u00dfner M, Fisher M, Xiao J, Funkhouser T (2017) 3dmatch: learning local geometric descriptors from RGB-D reconstructions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1802\u2013 1811","DOI":"10.1109\/CVPR.2017.29"},{"key":"11435_CR6","doi-asserted-by":"crossref","unstructured":"Deng H, Birdal T, Ilic S (2018) Ppfnet: global context aware local features for robust 3d point matching. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 195\u2013 205","DOI":"10.1109\/CVPR.2018.00028"},{"key":"11435_CR7","doi-asserted-by":"crossref","unstructured":"Bai X, Luo Z, Zhou L, Fu H, Quan L, Tai C-L (2020) D3feat: joint learning of dense detection and description of 3d local features. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp. 6359\u2013 6367","DOI":"10.1109\/CVPR42600.2020.00639"},{"key":"11435_CR8","doi-asserted-by":"crossref","unstructured":"Yew ZJ, Lee GH (2018) 3dfeat-net: weakly supervised local 3d features for point cloud registration. In: Proceedings of the european conference on computer vision (ECCV), pp. 607\u2013 623","DOI":"10.1007\/978-3-030-01267-0_37"},{"key":"11435_CR9","doi-asserted-by":"crossref","unstructured":"Huang S, Gojcic Z, Usvyatsov M, Wieser A, Schindler K (2021) Predator: registration of 3d point clouds with low overlap. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp. 4267\u2013 4276","DOI":"10.1109\/CVPR46437.2021.00425"},{"issue":"6","key":"11435_CR10","doi-asserted-by":"publisher","first-page":"381","DOI":"10.1145\/358669.358692","volume":"24","author":"MA Fischler","year":"1981","unstructured":"Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381\u2013395","journal-title":"Commun ACM"},{"key":"11435_CR11","doi-asserted-by":"crossref","unstructured":"Deng H, Birdal T, Ilic S (2018) Ppf-foldnet: unsupervised learning of rotation invariant 3d local descriptors. In: Proceedings of the European conference on computer vision (ECCV), pp. 602\u2013 618","DOI":"10.1007\/978-3-030-01228-1_37"},{"key":"11435_CR12","doi-asserted-by":"crossref","unstructured":"Gojcic Z, Zhou C, Wegner JD, Wieser A (2019) The perfect match: 3d point cloud matching with smoothed densities. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp. 5545\u2013 5554","DOI":"10.1109\/CVPR.2019.00569"},{"key":"11435_CR13","doi-asserted-by":"crossref","unstructured":"Shi S, Wang X, Li H (2019) Pointrcnn: 3d object proposal generation and detection from point cloud. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp. 770\u2013 779","DOI":"10.1109\/CVPR.2019.00086"},{"key":"11435_CR14","doi-asserted-by":"crossref","unstructured":"Hu Q , Yang B, Xie L, Rosa S, Guo Y, Wang Z, Trigoni N, Markham A (2020) Randla-net: efficient semantic segmentation of large-scale point clouds. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp. 11108\u2013 11117","DOI":"10.1109\/CVPR42600.2020.01112"},{"issue":"5","key":"11435_CR15","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3326362","volume":"38","author":"Y Wang","year":"2019","unstructured":"Wang Y, Sun Y, Liu Z, Sarma SE, Bronstein MM, Solomon JM (2019) Dynamic graph CNN for learning on point clouds. ACM Trans Gr (TOG) 38(5):1\u201312","journal-title":"ACM Trans Gr (TOG)"},{"key":"11435_CR16","unstructured":"Qi CR, Yi L, Su H, Guibas LJ (2017) Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in neural information processing systems 30"},{"key":"11435_CR17","unstructured":"Li Y, Bu R, Sun M, Wu W, Di X, Chen B (2018) Pointcnn: convolution on x-transformed points. In: Advances in neural information processing systems 31"},{"key":"11435_CR18","doi-asserted-by":"crossref","unstructured":"Wu W, Qi Z, Fuxin L (2019) Pointconv: deep convolutional networks on 3d point clouds. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp. 9621\u2013 9630","DOI":"10.1109\/CVPR.2019.00985"},{"key":"11435_CR19","doi-asserted-by":"crossref","unstructured":"Xu Q, Sun X, Wu C-Y, Wang P, Neumann U (2020) Grid-gcn for fast and scalable point cloud learning. in: proceedings of the ieee\/cvf Conference on Computer Vision and Pattern Recognition, pp. 5661\u2013 5670","DOI":"10.1109\/CVPR42600.2020.00570"},{"key":"11435_CR20","doi-asserted-by":"crossref","unstructured":"Zhou H, Feng Y, Fang M, Wei M, Qin J, Lu T (2021) Adaptive graph convolution for point cloud analysis. In: Proceedings of the IEEE\/CVF international conference on computer vision, pp. 4965\u2013 4974","DOI":"10.1109\/ICCV48922.2021.00492"},{"key":"11435_CR21","doi-asserted-by":"crossref","unstructured":"Yew ZJ, Lee GH (2022) Regtr: end-to-end point cloud correspondences with transformers. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp. 6677\u2013 6686","DOI":"10.1109\/CVPR52688.2022.00656"},{"key":"11435_CR22","doi-asserted-by":"crossref","unstructured":"Qin Z, Yu H, Wang C, Guo Y, Peng Y, Xu K (2022) Geometric transformer for fast and robust point cloud registration. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp. 11143\u2013 11152","DOI":"10.1109\/CVPR52688.2022.01086"},{"key":"11435_CR23","unstructured":"Zhou D, Kang B, Jin X, Yang L, Lian X, Jiang Z, Hou Q, Feng J (2021) Deepvit: towards deeper vision transformer. arXiv preprint arXiv:2103.11886"},{"key":"11435_CR24","doi-asserted-by":"crossref","unstructured":"Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132\u2013 7141","DOI":"10.1109\/CVPR.2018.00745"},{"key":"11435_CR25","doi-asserted-by":"crossref","unstructured":"Lin T-Y, Goyal P, Girshick R, He K, Doll\u00e1r P (2017) Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp. 2980\u2013 2988","DOI":"10.1109\/ICCV.2017.324"},{"key":"11435_CR26","unstructured":"Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J (2015) 3d shapenets: a deep representation for volumetric shapes. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1912\u2013 1920"},{"key":"11435_CR27","unstructured":"Besl PJ, McKay ND (1992) Method for registration of 3-d shapes. In: Sensor Fusion IV: control paradigms and data structures, vol. 1611, pp. 586\u2013 606. Spie"},{"key":"11435_CR28","doi-asserted-by":"crossref","unstructured":"Aiger D, Mitra NJ, Cohen-Or D (2008) 4-points congruent sets for robust pairwise surface registration. In: ACM SIGGRAPH 2008 papers, pp. 1\u2013 10","DOI":"10.1145\/1399504.1360684"},{"key":"11435_CR29","doi-asserted-by":"crossref","unstructured":"Rusu RB, Blodow N, Marton ZC, Beetz M (2008) Aligning point cloud views using persistent feature histograms. In: 2008 IEEE\/RSJ international conference on intelligent robots and systems, pp. 3384\u2013 3391 . IEEE","DOI":"10.1109\/IROS.2008.4650967"},{"key":"11435_CR30","doi-asserted-by":"crossref","unstructured":"Rusu RB, Blodow N, Beetz M (2009) Fast point feature histograms (FPFH) for 3d registration. In: 2009 IEEE international conference on robotics and automation, pp. 3212\u2013 3217. IEEE","DOI":"10.1109\/ROBOT.2009.5152473"},{"key":"11435_CR31","doi-asserted-by":"crossref","unstructured":"Tombari F, Salti S, Di\u00a0Stefano L (2010) Unique shape context for 3d data description. In: Proceedings of the ACM workshop on 3D object retrieval, pp. 57\u2013 62","DOI":"10.1145\/1877808.1877821"},{"issue":"10","key":"11435_CR32","doi-asserted-by":"publisher","first-page":"1252","DOI":"10.1016\/j.patrec.2007.02.009","volume":"28","author":"H Chen","year":"2007","unstructured":"Chen H, Bhanu B (2007) 3d free-form object recognition in range images using local surface patches. Pattern Recogn Lett 28(10):1252\u20131262","journal-title":"Pattern Recogn Lett"},{"key":"11435_CR33","doi-asserted-by":"publisher","first-page":"251","DOI":"10.1016\/j.cviu.2014.04.011","volume":"125","author":"S Salti","year":"2014","unstructured":"Salti S, Tombari F, Di Stefano L (2014) Shot: unique signatures of histograms for surface and texture description. Comput Vis Image Underst 125:251\u2013264","journal-title":"Comput Vis Image Underst"},{"key":"11435_CR34","doi-asserted-by":"crossref","unstructured":"Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431\u2013 3440","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"11435_CR35","first-page":"23872","volume":"34","author":"H Yu","year":"2021","unstructured":"Yu H, Li F, Saleh M, Busam B, Ilic S (2021) Cofinet: reliable coarse-to-fine correspondences for robust pointcloud registration. Adv Neural Inf Process Syst 34:23872\u201323884","journal-title":"Adv Neural Inf Process Syst"},{"key":"11435_CR36","doi-asserted-by":"crossref","unstructured":"Li Y, Harada T (2022) Lepard: learning partial point cloud matching in rigid and deformable scenes. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp. 5554\u2013 5564","DOI":"10.1109\/CVPR52688.2022.00547"},{"key":"11435_CR37","doi-asserted-by":"crossref","unstructured":"Wang Y, Solomon JM (2019) Deep closest point: learning representations for point cloud registration. In: Proceedings of the IEEE\/CVF international conference on computer vision, pp. 3523\u2013 3532","DOI":"10.1109\/ICCV.2019.00362"},{"key":"11435_CR38","doi-asserted-by":"crossref","unstructured":"Cao A-Q, Puy G, Boulch A, Marlet R (2021) Pcam: product of cross-attention matrices for rigid registration of point clouds. In: Proceedings of the IEEE\/CVF international conference on computer vision, pp. 13229\u2013 13238","DOI":"10.1109\/ICCV48922.2021.01298"},{"key":"11435_CR39","doi-asserted-by":"crossref","unstructured":"Yuan W, Eckart B, Kim K, Jampani V, Fox D, Kautz J (2020) Deepgmr: learning latent gaussian mixture models for registration. In: Computer vision\u2013ECCV 2020: 16th European conference, Glasgow, Proceedings, Part V 16, pp. 733\u2013 750. Springer","DOI":"10.1007\/978-3-030-58558-7_43"},{"key":"11435_CR40","doi-asserted-by":"crossref","unstructured":"Aoki Y, Goforth H, Srivatsan RA, Lucey S (2019) Pointnetlk: robust & efficient point cloud registration using pointnet. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp. 7163\u2013 7172","DOI":"10.1109\/CVPR.2019.00733"},{"key":"11435_CR41","doi-asserted-by":"publisher","first-page":"221","DOI":"10.1023\/B:VISI.0000011205.11775.fd","volume":"56","author":"S Baker","year":"2004","unstructured":"Baker S, Matthews I (2004) Lucas-kanade 20 years on: a unifying framework. Int J Comput Vis 56:221\u2013255","journal-title":"Int J Comput Vis"},{"key":"11435_CR42","doi-asserted-by":"crossref","unstructured":"Choy C, Dong W, Koltun V (2020) Deep global registration. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp. 2514\u20132523","DOI":"10.1109\/CVPR42600.2020.00259"},{"key":"11435_CR43","doi-asserted-by":"crossref","unstructured":"Graham B, Engelcke M, Van Der\u00a0Maaten L (2018) 3d semantic segmentation with submanifold sparse convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 9224\u2013 9232","DOI":"10.1109\/CVPR.2018.00961"},{"key":"11435_CR44","unstructured":"Qi CR, Su H, Mo K, Guibas LJ (2017) Pointnet: deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 652\u2013 660"},{"key":"11435_CR45","doi-asserted-by":"crossref","unstructured":"Pais GD, Ramalingam S, Govindu VM, Nascimento JC, Chellappa R, Miraldo P (2020) 3dregnet: a deep neural network for 3d point registration. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp. 7193\u2013 7203","DOI":"10.1109\/CVPR42600.2020.00722"},{"key":"11435_CR46","doi-asserted-by":"crossref","unstructured":"Lee J, Kim S, Cho M, Park J (2021) Deep hough voting for robust global registration. In: Proceedings of the IEEE\/CVF international conference on computer vision, pp. 15994\u2013 16003","DOI":"10.1109\/ICCV48922.2021.01569"},{"key":"11435_CR47","doi-asserted-by":"crossref","unstructured":"Gojcic Z, Zhou C, Wegner JD, Guibas LJ, Birdal T (2020) Learning multiview 3d point cloud registration. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp. 1759\u2013 1769","DOI":"10.1109\/CVPR42600.2020.00183"},{"key":"11435_CR48","doi-asserted-by":"crossref","unstructured":"Yi KM, Trulls E, Ono Y, Lepetit V, Salzmann M, Fua P (2018) Learning to find good correspondences. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2666\u20132674","DOI":"10.1109\/CVPR.2018.00282"},{"key":"11435_CR49","unstructured":"Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser \u0141, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems 30"},{"key":"11435_CR50","unstructured":"Qiu S, Anwar S, Barnes N (2022) Pu-transformer: point cloud upsampling transformer. In: Proceedings of the Asian conference on computer vision, pp. 2475\u2013 2493"},{"key":"11435_CR51","doi-asserted-by":"crossref","unstructured":"Yang J, Zhang Q, Ni B, Li L, Liu J, Zhou M, Tian Q (2019) Modeling point clouds with self-attention and gumbel subset sampling. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp. 3323\u2013 3332","DOI":"10.1109\/CVPR.2019.00344"},{"key":"11435_CR52","doi-asserted-by":"crossref","unstructured":"He C, Li R, Li S, Zhang L (2022) Voxel set transformer: a set-to-set approach to 3d object detection from point clouds. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp. 8417\u2013 8427","DOI":"10.1109\/CVPR52688.2022.00823"},{"key":"11435_CR53","doi-asserted-by":"crossref","unstructured":"Thomas H, Qi CR, Deschaud J-E, Marcotegui B, Goulette F, Guibas LJ (2019) Kpconv: flexible and deformable convolution for point clouds. In: Proceedings of the IEEE\/CVF international conference on computer vision, pp. 6411\u2013 6420","DOI":"10.1109\/ICCV.2019.00651"},{"key":"11435_CR54","unstructured":"Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, pp. 448\u2013 456. pmlr"},{"key":"11435_CR55","unstructured":"Xu B, Wang N, Chen T, Li M (2015) Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853"},{"key":"11435_CR56","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770\u2013 778","DOI":"10.1109\/CVPR.2016.90"},{"key":"11435_CR57","unstructured":"Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp. 315\u2013 323 . JMLR workshop and conference proceedings"},{"issue":"5","key":"11435_CR58","doi-asserted-by":"publisher","first-page":"922","DOI":"10.1107\/S0567739476001873","volume":"32","author":"W Kabsch","year":"1976","unstructured":"Kabsch W (1976) A solution for the best rotation to relate two sets of vectors. Acta Crystallogr Sect A Cryst Phys Diffr Theor Gen Crystallogr 32(5):922\u2013923","journal-title":"Acta Crystallogr Sect A Cryst Phys Diffr Theor Gen Crystallogr"},{"issue":"04","key":"11435_CR59","doi-asserted-by":"publisher","first-page":"376","DOI":"10.1109\/34.88573","volume":"13","author":"S Umeyama","year":"1991","unstructured":"Umeyama S (1991) Least-squares estimation of transformation parameters between two point patterns. IEEE Trans Pattern Anal Mach Intell 13(04):376\u2013380","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"11435_CR60","unstructured":"Oord A, Li Y, Vinyals O (2018) Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748"},{"key":"11435_CR61","unstructured":"Loshchilov I, Hutter F (2017) Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101"},{"key":"11435_CR62","doi-asserted-by":"crossref","unstructured":"Xu H, Liu S, Wang G, Liu G, Zeng B (2021) Omnet: learning overlapping mask for partial-to-partial point cloud registration. In: Proceedings of the IEEE\/CVF international conference on computer vision, pp. 3132\u2013 3141","DOI":"10.1109\/ICCV48922.2021.00312"},{"key":"11435_CR63","doi-asserted-by":"crossref","unstructured":"Yew ZJ, Lee GH (2020) Rpm-net: robust point matching using learned features. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp. 11824\u201311833","DOI":"10.1109\/CVPR42600.2020.01184"}],"container-title":["Neural Processing Letters"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11063-023-11435-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11063-023-11435-6\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11063-023-11435-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,27]],"date-time":"2023-12-27T09:26:42Z","timestamp":1703669202000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11063-023-11435-6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11,2]]},"references-count":63,"journal-issue":{"issue":"9","published-print":{"date-parts":[[2023,12]]}},"alternative-id":["11435"],"URL":"https:\/\/doi.org\/10.1007\/s11063-023-11435-6","relation":{},"ISSN":["1370-4621","1573-773X"],"issn-type":[{"value":"1370-4621","type":"print"},{"value":"1573-773X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,11,2]]},"assertion":[{"value":"2 October 2023","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"2 November 2023","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"All authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}