{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:52:54Z","timestamp":1722473574215},"reference-count":48,"publisher":"Springer Science and Business Media LLC","issue":"8","license":[{"start":{"date-parts":[[2023,7,4]],"date-time":"2023-07-04T00:00:00Z","timestamp":1688428800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,7,4]],"date-time":"2023-07-04T00:00:00Z","timestamp":1688428800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Neural Process Lett"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1007\/s11063-023-11337-7","type":"journal-article","created":{"date-parts":[[2023,7,4]],"date-time":"2023-07-04T03:24:47Z","timestamp":1688441087000},"page":"10535-10553","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Utilizing the Neural Renderer for Accurate 3D Face Reconstruction from a Single Image"],"prefix":"10.1007","volume":"55","author":[{"given":"Wei","family":"Wei","sequence":"first","affiliation":[]},{"given":"Danni","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Huichen","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Xiaodong","family":"Duan","sequence":"additional","affiliation":[]},{"given":"Chen","family":"Guo","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,7,4]]},"reference":[{"key":"11337_CR1","doi-asserted-by":"crossref","unstructured":"Feng Y, Wu F, Shao X, Wang Y, Zhou X (2018) Joint 3d face reconstruction and dense alignment with position map regression network. In: Proceedings of the European Conference on Computer Vision (ECCV), pp 534\u2013551","DOI":"10.1007\/978-3-030-01264-9_33"},{"issue":"6","key":"11337_CR2","doi-asserted-by":"publisher","first-page":"1294","DOI":"10.1109\/TPAMI.2018.2837742","volume":"41","author":"Y Guo","year":"2018","unstructured":"Guo Y, Cai J, Jiang B, Zheng J et al (2018) Cnn-based real-time dense face reconstruction with inverse-rendered photo-realistic face images. IEEE Trans Pattern Anal Mach Intell 41(6):1294\u20131307","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"11337_CR3","doi-asserted-by":"crossref","unstructured":"Sanyal S, Bolkart T, Feng H, Black MJ (2019) Learning to regress 3d face shape and expression from an image without 3d supervision. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 7763\u20137772","DOI":"10.1109\/CVPR.2019.00795"},{"key":"11337_CR4","doi-asserted-by":"crossref","unstructured":"Yang H, Zhu H, Wang Y, Huang M, Shen Q, Yang R, Cao X (2020) Facescape: a large-scale high quality 3d face dataset and detailed riggable 3d face prediction. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 601\u2013610","DOI":"10.1109\/CVPR42600.2020.00068"},{"key":"11337_CR5","doi-asserted-by":"crossref","unstructured":"Zhu X, Lei Z, Liu X, Shi H, Li SZ (2016) Face alignment across large poses: a 3d solution. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 146\u2013155","DOI":"10.1109\/CVPR.2016.23"},{"key":"11337_CR6","doi-asserted-by":"crossref","unstructured":"Tuan\u00a0Tran A, Hassner T, Masi I, Medioni G (2017) Regressing robust and discriminative 3d morphable models with a very deep neural network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5163\u20135172","DOI":"10.1109\/CVPR.2017.163"},{"key":"11337_CR7","doi-asserted-by":"crossref","unstructured":"Deng Y, Yang J, Xu S, Chen D, Jia Y, Tong X (2019) Accurate 3d face reconstruction with weakly-supervised learning: from single image to image set. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition workshops","DOI":"10.1109\/CVPRW.2019.00038"},{"key":"11337_CR8","doi-asserted-by":"crossref","unstructured":"Lin J, Yuan Y, Shao T, Zhou K (2020) Towards high-fidelity 3d face reconstruction from in-the-wild images using graph convolutional networks. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 5891\u20135900","DOI":"10.1109\/CVPR42600.2020.00593"},{"key":"11337_CR9","doi-asserted-by":"crossref","unstructured":"Deng Y, Yang J, Chen D, Wen F, Tong X (2020) Disentangled and controllable face image generation via 3d imitative-contrastive learning. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 5154\u20135163","DOI":"10.1109\/CVPR42600.2020.00520"},{"key":"11337_CR10","doi-asserted-by":"crossref","unstructured":"Piao J, Sun K, Wang Q, Lin K-Y, Li H (2021) Inverting generative adversarial renderer for face reconstruction. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 15619\u201315628","DOI":"10.1109\/CVPR46437.2021.01536"},{"key":"11337_CR11","doi-asserted-by":"crossref","unstructured":"Blanz V, Vetter T (1999) A morphable model for the synthesis of 3d faces. In: Proceedings of the 26th annual conference on computer graphics and interactive techniques, pp 187\u2013194","DOI":"10.1145\/311535.311556"},{"key":"11337_CR12","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.cviu.2014.05.005","volume":"128","author":"A Brunton","year":"2014","unstructured":"Brunton A, Salazar A, Bolkart T, Wuhrer S (2014) Review of statistical shape spaces for 3d data with comparative analysis for human faces. Comput Vis Image Underst 128:1\u201317","journal-title":"Comput Vis Image Underst"},{"key":"11337_CR13","doi-asserted-by":"crossref","unstructured":"Patel A, Smith WA (2009) 3d morphable face models revisited. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp 1327\u20131334","DOI":"10.1109\/CVPR.2009.5206522"},{"key":"11337_CR14","doi-asserted-by":"crossref","unstructured":"Paysan P, Knothe R, Amberg B, Romdhani S, Vetter T (2009) A 3d face model for pose and illumination invariant face recognition. In: 2009 Sixth IEEE international conference on advanced video and signal based surveillance. IEEE, , pp 296\u2013301","DOI":"10.1109\/AVSS.2009.58"},{"issue":"3","key":"11337_CR15","first-page":"413","volume":"20","author":"C Cao","year":"2013","unstructured":"Cao C, Weng Y, Zhou S, Tong Y, Zhou K (2013) Facewarehouse: a 3d facial expression database for visual computing. IEEE Trans Visual Comput Graph 20(3):413\u2013425","journal-title":"IEEE Trans Visual Comput Graph"},{"issue":"9","key":"11337_CR16","doi-asserted-by":"publisher","first-page":"1063","DOI":"10.1109\/TPAMI.2003.1227983","volume":"25","author":"V Blanz","year":"2003","unstructured":"Blanz V, Vetter T (2003) Face recognition based on fitting a 3d morphable model. IEEE Trans Pattern Anal Mach Intell 25(9):1063\u20131074","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"11337_CR17","doi-asserted-by":"crossref","unstructured":"Romdhani S, Vetter T (2005) Estimating 3d shape and texture using pixel intensity, edges, specular highlights, texture constraints and a prior. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR\u201905), vol 2. IEEE, pp 986\u2013993","DOI":"10.1109\/CVPR.2005.145"},{"issue":"6","key":"11337_CR18","doi-asserted-by":"publisher","first-page":"158-1","DOI":"10.1145\/2508363.2508380","volume":"32","author":"P Garrido","year":"2013","unstructured":"Garrido P, Valgaerts L, Wu C, Theobalt C (2013) Reconstructing detailed dynamic face geometry from monocular video. ACM Trans Graph 32(6):158\u20131","journal-title":"ACM Trans Graph"},{"issue":"6","key":"11337_CR19","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3550454.3555501","volume":"41","author":"X Gao","year":"2022","unstructured":"Gao X, Zhong C, Xiang J, Hong Y, Guo Y, Zhang J (2022) Reconstructing personalized semantic facial nerf models from monocular video. ACM Trans Graph (TOG) 41(6):1\u201312","journal-title":"ACM Trans Graph (TOG)"},{"key":"11337_CR20","doi-asserted-by":"crossref","unstructured":"Galanakis S, Gecer B, Lattas A, Zafeiriou S (2023) 3dmm-rf: Convolutional radiance fields for 3d face modeling. In: Proceedings of the IEEE\/CVF Winter conference on applications of computer vision, pp 3536\u20133547","DOI":"10.1109\/WACV56688.2023.00353"},{"key":"11337_CR21","unstructured":"Zaj\u0105c W, Tabor J, Zi\u0119ba M, Spurek P (2023) Nerflame: Flame-based conditioning of nerf for 3d face rendering. arXiv:2303.06226"},{"key":"11337_CR22","doi-asserted-by":"crossref","unstructured":"Dou P, Shah SK, Kakadiaris IA (2017) End-to-end 3d face reconstruction with deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5908\u20135917","DOI":"10.1109\/CVPR.2017.164"},{"key":"11337_CR23","doi-asserted-by":"crossref","unstructured":"Richardson E, Sela M, Kimmel R (2016) 3d face reconstruction by learning from synthetic data. In: 2016 Fourth international conference on 3D vision (3DV). IEEE, pp 460\u2013469","DOI":"10.1109\/3DV.2016.56"},{"key":"11337_CR24","doi-asserted-by":"crossref","unstructured":"Kim H, Zollh\u00f6fer M, Tewari A, Thies J, Richardt C, Theobalt C (2018) Inversefacenet: deep monocular inverse face rendering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4625\u20134634","DOI":"10.1109\/CVPR.2018.00486"},{"key":"11337_CR25","doi-asserted-by":"crossref","unstructured":"Tewari A, Zollhofer M, Kim H, Garrido P, Bernard F, Perez P, Theobalt C (2017) Mofa: model-based deep convolutional face autoencoder for unsupervised monocular reconstruction. In: Proceedings of the IEEE international conference on computer vision workshops, pp 1274\u20131283","DOI":"10.1109\/ICCVW.2017.153"},{"key":"11337_CR26","doi-asserted-by":"crossref","unstructured":"Genova K, Cole F, Maschinot A, Sarna A, Vlasic D, Freeman WT (2018) Unsupervised training for 3d morphable model regression. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 8377\u20138386","DOI":"10.1109\/CVPR.2018.00874"},{"key":"11337_CR27","doi-asserted-by":"crossref","unstructured":"Gecer B, Ploumpis S, Kotsia I, Zafeiriou S (2019) Ganfit: Generative adversarial network fitting for high fidelity 3d face reconstruction. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 1155\u20131164","DOI":"10.1109\/CVPR.2019.00125"},{"issue":"4","key":"11337_CR28","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3197517.3201283","volume":"37","author":"H Kim","year":"2018","unstructured":"Kim H, Garrido P, Tewari A, Xu W, Thies J, Niessner M, P\u00e9rez P, Richardt C, Zollh\u00f6fer M, Theobalt C (2018) Deep video portraits. ACM Trans Graph (TOG) 37(4):1\u201314","journal-title":"ACM Trans Graph (TOG)"},{"key":"11337_CR29","doi-asserted-by":"crossref","unstructured":"Yin X, Yu X, Sohn K, Liu X, Chandraker M (2017) Towards large-pose face frontalization in the wild. In: Proceedings of the IEEE international conference on computer vision, pp 3990\u20133999","DOI":"10.1109\/ICCV.2017.430"},{"key":"11337_CR30","unstructured":"Shen Y, Zhou B, Luo P, Tang X (2018) Facefeat-gan: a two-stage approach for identity-preserving face synthesis. arXiv:1812.01288"},{"key":"11337_CR31","doi-asserted-by":"crossref","unstructured":"Gecer B, Lattas A, Ploumpis S, Deng J, Papaioannou A, Moschoglou S, Zafeiriou S (2020) Synthesizing coupled 3d face modalities by trunk-branch generative adversarial networks. In: Computer vision\u2013ECCV 2020: 16th European conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part XXIX 16. Springer, pp 415\u2013433","DOI":"10.1007\/978-3-030-58526-6_25"},{"key":"11337_CR32","doi-asserted-by":"crossref","unstructured":"Deng J, Cheng S, Xue N, Zhou Y, Zafeiriou S (2018) Uv-gan: adversarial facial uv map completion for pose-invariant face recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7093\u20137102","DOI":"10.1109\/CVPR.2018.00741"},{"key":"11337_CR33","doi-asserted-by":"crossref","unstructured":"Nguyen-Phuoc T, Li C, Theis L, Richardt C, Yang Y-L (2019) Hologan: Unsupervised learning of 3d representations from natural images. In: Proceedings of the IEEE\/CVF international conference on computer vision, pp 7588\u20137597","DOI":"10.1109\/ICCV.2019.00768"},{"key":"11337_CR34","doi-asserted-by":"crossref","unstructured":"Karras T, Laine S, Aila T (2019) A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 4401\u20134410","DOI":"10.1109\/CVPR.2019.00453"},{"key":"11337_CR35","doi-asserted-by":"crossref","unstructured":"Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, Aila T (2020) Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 8110\u20138119","DOI":"10.1109\/CVPR42600.2020.00813"},{"key":"11337_CR36","doi-asserted-by":"crossref","unstructured":"Lee C-H, Liu Z, Wu L, Luo P (2020) Maskgan: Towards diverse and interactive facial image manipulation. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 5549\u20135558","DOI":"10.1109\/CVPR42600.2020.00559"},{"key":"11337_CR37","doi-asserted-by":"crossref","unstructured":"Schroff F, Kalenichenko D, Philbin J (2015) Facenet: A unified embedding for face recognition and clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 815\u2013823","DOI":"10.1109\/CVPR.2015.7298682"},{"key":"11337_CR38","unstructured":"Guo X, Li S, Yu J, Zhang J, Ma J, Ma L, Liu W, Ling H (2019) Pfld: A practical facial landmark detector. arXiv:1902.10859"},{"key":"11337_CR39","unstructured":"Liu Z, Luo P, Wang X, Tang X (2018) Large-scale celebfaces attributes (celeba) dataset. Retrieved August 15 (2018), 11"},{"key":"11337_CR40","doi-asserted-by":"crossref","unstructured":"Koestinger M, Wohlhart P, Roth PM, Bischof H (2011) Annotated facial landmarks in the wild: A large-scale, real-world database for facial landmark localization. In: 2011 IEEE international conference on computer vision workshops (ICCV workshops). IEEE, pp 2144\u20132151","DOI":"10.1109\/ICCVW.2011.6130513"},{"key":"11337_CR41","doi-asserted-by":"crossref","unstructured":"Tewari A, Zollh\u00f6fer M, Garrido P, Bernard F, Kim H, P\u00e9rez P, Theobalt C (2018) Self-supervised multi-level face model learning for monocular reconstruction at over 250 hz. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2549\u20132559","DOI":"10.1109\/CVPR.2018.00270"},{"key":"11337_CR42","doi-asserted-by":"crossref","unstructured":"Tran L, Liu X (2018) Nonlinear 3d face morphable model. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7346\u20137355","DOI":"10.1109\/CVPR.2018.00767"},{"key":"11337_CR43","doi-asserted-by":"crossref","unstructured":"Guo J, Zhu X, Yang Y, Yang F, Lei Z, Li SZ (2020) Towards fast, accurate and stable 3d dense face alignment. In: Computer Vision\u2013ECCV 2020: 16th European conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part XIX. Springer, pp 152\u2013168","DOI":"10.1007\/978-3-030-58529-7_10"},{"key":"11337_CR44","doi-asserted-by":"crossref","unstructured":"Wang X, Bo L, Fuxin L (2019) Adaptive wing loss for robust face alignment via heatmap regression. In: Proceedings of the IEEE\/CVF international conference on computer vision, pp 6971\u20136981","DOI":"10.1109\/ICCV.2019.00707"},{"issue":"1","key":"11337_CR45","doi-asserted-by":"publisher","first-page":"78","DOI":"10.1109\/TPAMI.2017.2778152","volume":"41","author":"X Zhu","year":"2017","unstructured":"Zhu X, Liu X, Lei Z, Li SZ (2017) Face alignment in full pose range: a 3d total solution. IEEE Trans Pattern Anal Mach Intell 41(1):78\u201392","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"11337_CR46","doi-asserted-by":"publisher","first-page":"1160","DOI":"10.1109\/TMM.2020.2993962","volume":"23","author":"X Tu","year":"2020","unstructured":"Tu X, Zhao J, Xie M, Jiang Z, Balamurugan A, Luo Y, Zhao Y, He L, Ma Z, Feng J (2020) 3d face reconstruction from a single image assisted by 2d face images in the wild. IEEE Trans Multim 23:1160\u20131172","journal-title":"IEEE Trans Multim"},{"key":"11337_CR47","doi-asserted-by":"crossref","unstructured":"Wu C-Y, Xu Q, Neumann U (2021) Synergy between 3dmm and 3d landmarks for accurate 3d facial geometry. In: 2021 International conference on 3D vision (3DV). IEEE, pp 453\u2013463","DOI":"10.1109\/3DV53792.2021.00055"},{"key":"11337_CR48","doi-asserted-by":"publisher","first-page":"5793","DOI":"10.1109\/TIP.2021.3087397","volume":"30","author":"Z Ruan","year":"2021","unstructured":"Ruan Z, Zou C, Wu L, Wu G, Wang L (2021) Sadrnet: self-aligned dual face regression networks for robust 3d dense face alignment and reconstruction. IEEE Trans Image Process 30:5793-5806","journal-title":"IEEE Trans Image Process"}],"container-title":["Neural Processing Letters"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11063-023-11337-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11063-023-11337-7\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11063-023-11337-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,22]],"date-time":"2023-11-22T05:05:26Z","timestamp":1700629526000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11063-023-11337-7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,7,4]]},"references-count":48,"journal-issue":{"issue":"8","published-print":{"date-parts":[[2023,12]]}},"alternative-id":["11337"],"URL":"https:\/\/doi.org\/10.1007\/s11063-023-11337-7","relation":{},"ISSN":["1370-4621","1573-773X"],"issn-type":[{"value":"1370-4621","type":"print"},{"value":"1573-773X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,7,4]]},"assertion":[{"value":"19 June 2023","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"4 July 2023","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no known competing financial interests or personal relation ships that could have appeared to influence the work reported in this paper.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interest"}}]}}