{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,14]],"date-time":"2024-09-14T23:31:59Z","timestamp":1726356719943},"reference-count":54,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2020,5,21]],"date-time":"2020-05-21T00:00:00Z","timestamp":1590019200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,5,21]],"date-time":"2020-05-21T00:00:00Z","timestamp":1590019200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61673402"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Neural Process Lett"],"published-print":{"date-parts":[[2020,8]]},"DOI":"10.1007\/s11063-020-10266-z","type":"journal-article","created":{"date-parts":[[2020,5,21]],"date-time":"2020-05-21T00:02:28Z","timestamp":1590019348000},"page":"467-483","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":10,"title":["Unsupervised Domain Adaptation via Discriminative Classes-Center Feature Learning in Adversarial Network"],"prefix":"10.1007","volume":"52","author":[{"given":"Wendong","family":"Chen","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4884-323X","authenticated-orcid":false,"given":"Haifeng","family":"Hu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,5,21]]},"reference":[{"key":"10266_CR1","unstructured":"Ba JL, Kiros JR, Hinton GE (2016) Layer normalization. CoRR. arXiv:1607.06450"},{"issue":"1","key":"10266_CR2","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1007\/s10994-009-5152-4","volume":"79","author":"S Ben-David","year":"2010","unstructured":"Ben-David S, Blitzer J, Crammer K, Kulesza A, Pereira F, Vaughan JW (2010) A theory of learning from different domains. Mach Learn 79(1):151\u2013175","journal-title":"Mach Learn"},{"issue":"14","key":"10266_CR3","doi-asserted-by":"crossref","first-page":"e49","DOI":"10.1093\/bioinformatics\/btl242","volume":"22","author":"KM Borgwardt","year":"2006","unstructured":"Borgwardt KM, Gretton A, Rasch MJ, Kriegel H-P, Sch\u00f6lkopf B, Smola AJ (2006) Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22(14):e49\u2013e57","journal-title":"Bioinformatics"},{"key":"10266_CR4","unstructured":"Bousmalis K, Trigeorgis G, Silberman N, Krishnan D, Erhan D (2016) Domain separation networks. In: Proceedings of the 30th international conference on neural information processing systems, NIPS\u201916, USA. Curran Associates Inc., pp 343\u2013351"},{"key":"10266_CR5","doi-asserted-by":"crossref","unstructured":"Carlucci FM, Porzi L, Caputo B, Ricci E, Bul\u00f2 SR (2017) Autodial: automatic domain alignment layers. In: 2017 IEEE international conference on computer vision (ICCV), pp 5077\u20135085","DOI":"10.1109\/ICCV.2017.542"},{"key":"10266_CR6","doi-asserted-by":"crossref","unstructured":"Chang W-G, You T, Seo S, Kwak S, Han B (2019) Domain-specific batch normalization for unsupervised domain adaptation. CoRR arXiv:1906.03950","DOI":"10.1109\/CVPR.2019.00753"},{"key":"10266_CR7","unstructured":"Chapelle O, Zien A (2005) Semi-supervised classification by low density separation. In: AISTATS 2005. Max-Planck-Gesellschaft, pp 57\u201364"},{"key":"10266_CR8","doi-asserted-by":"crossref","unstructured":"Dai W, Yang Q, Xue G-R, Yu Y (2007) Boosting for transfer learning. In: Proceedings of the 24th international conference on machine learning, ICML \u201907, New York, NY, USA. ACM, pp 193\u2013200","DOI":"10.1145\/1273496.1273521"},{"key":"10266_CR9","unstructured":"Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) Decaf: a deep convolutional activation feature for generic visual recognition. In: Xing EP, Jebara T (eds) Proceedings of the 31st international conference on machine learning, volume\u00a032 of proceedings of machine learning research, Bejing, China, 22\u201324. PMLR, pp 647\u2013655"},{"key":"10266_CR10","unstructured":"Ganin Y, Lempitsky V (2015) Unsupervised domain adaptation by backpropagation. In: Proceedings of the 32Nd international conference on international conference on machine learning\u2014volume 37, ICML\u201915. JMLR.org, pp 1180\u20131189"},{"issue":"1","key":"10266_CR11","first-page":"2096","volume":"17","author":"Y Ganin","year":"2016","unstructured":"Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F, Marchand M, Lempitsky V (2016) Domain-adversarial training of neural networks. J Mach Learn Res 17(1):2096\u20132130","journal-title":"J Mach Learn Res"},{"key":"10266_CR12","unstructured":"Gong B, Shi Y, Sha F, Grauman K (June 2012) Geodesic flow kernel for unsupervised domain adaptation. In: 2012 IEEE conference on computer vision and pattern recognition, pp 2066\u20132073"},{"key":"10266_CR13","unstructured":"Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Proceedings of the 27th international conference on neural information processing systems\u2014volume 2, NIPS\u201914, Cambridge, MA, USA. MIT Press, pp 2672\u20132680"},{"key":"10266_CR14","doi-asserted-by":"crossref","unstructured":"Gopalan R, Li R, Chellappa R (2011) Domain adaptation for object recognition: an unsupervised approach. In: Proceedings of the 2011 international conference on computer vision, ICCV \u201911, Washington, DC, USA. IEEE Computer Society, pp 999\u20131006","DOI":"10.1109\/ICCV.2011.6126344"},{"key":"10266_CR15","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 770\u2013778","DOI":"10.1109\/CVPR.2016.90"},{"key":"10266_CR16","unstructured":"Hoffman J, Guadarrama S, Tzeng E, Hu R, Donahue J, Girshick R, Darrell T, Saenko K (2014) Lsda: large scale detection through adaptation. In: Proceedings of the 27th international conference on neural information processing systems\u2014volume 2, NIPS\u201914, Cambridge, MA, USA. MIT Press, pp 3536\u20133544"},{"key":"10266_CR17","unstructured":"Hoffman J, Tzeng E, Park T, Zhu J-Y, Isola P, Saenko K, Efros A, Darrell T (2018) CyCADA: cycle-consistent adversarial domain adaptation. In: Dy J, Krause A (eds) Proceedings of the 35th international conference on machine learning, volume\u00a080 of proceedings of machine learning research, Stockholmsm?ssan, Stockholm Sweden, 10\u201315. PMLR, pp 1989\u20131998"},{"key":"10266_CR18","unstructured":"Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. CoRR arXiv:1502.03167"},{"key":"10266_CR19","unstructured":"Kar P, Karnick H (2012) Random feature maps for dot product kernels. In: Lawrence ND, Girolami M (eds) Proceedings of the fifteenth international conference on artificial intelligence and statistics, volume\u00a022 of proceedings of machine learning research, La Palma, Canary Islands, 21\u201323. PMLR, pp 583\u2013591"},{"key":"10266_CR20","doi-asserted-by":"crossref","unstructured":"Khan MNA, Heisterkamp DR (2016) Adapting instance weights for unsupervised domain adaptation using quadratic mutual information and subspace learning. In: 2016 23rd international conference on pattern recognition (ICPR), pp 1560\u20131565","DOI":"10.1109\/ICPR.2016.7899859"},{"key":"10266_CR21","first-page":"01","volume":"25","author":"A Krizhevsky","year":"2012","unstructured":"Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks. Neural Inf Process Syst 25:01","journal-title":"Neural Inf Process Syst"},{"key":"10266_CR22","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/j.patcog.2018.03.005","volume":"80","author":"Y Li","year":"2018","unstructured":"Li Y, Wang N, Shi J, Hou X, Liu J (2018) Adaptive batch normalization for practical domain adaptation. Pattern Recognit 80:109\u2013117","journal-title":"Pattern Recognit"},{"key":"10266_CR23","unstructured":"Liu M-Y, Tuzel O (2016) Coupled generative adversarial networks. In: Proceedings of the 30th international conference on neural information processing systems, NIPS\u201916, USA. Curran Associates Inc., pp 469\u2013477"},{"key":"10266_CR24","doi-asserted-by":"crossref","first-page":"3071","DOI":"10.1109\/TPAMI.2018.2868685","volume":"41","author":"M Long","year":"2018","unstructured":"Long M, Cao Y, Cao Z, Wang J, Jordan MI (2018) Transferable representation learning with deep adaptation networks. IEEE Trans Pattern Anal Mach Intell 41:3071\u20133085","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"10266_CR25","doi-asserted-by":"crossref","unstructured":"Long M, Wang J, Ding G, Sun J, Yu PS (2013) Transfer feature learning with joint distribution adaptation. In: 2013 IEEE international conference on computer vision, pp 2200\u20132207","DOI":"10.1109\/ICCV.2013.274"},{"key":"10266_CR26","unstructured":"Long M, Cao Z, Wang J, Jordan MI (2018) Conditional adversarial domain adaptation. In: Proceedings of the 32nd international conference on neural information processing systems, NIPS\u201918, USA. Curran Associates Inc., pp 1647\u20131657"},{"key":"10266_CR27","unstructured":"Long M, Zhu H, Wang J, Jordan MI (2016) Unsupervised domain adaptation with residual transfer networks. In: Proceedings of the 30th international conference on neural information processing systems, NIPS\u201916, USA. Curran Associates Inc., pp 136\u2013144"},{"key":"10266_CR28","unstructured":"Long M, Zhu H, Wang J, Jordan MI (2017) Deep transfer learning with joint adaptation networks. In: Proceedings of the 34th international conference on machine learning\u2014volume 70, ICML\u201917. JMLR.org, pp 2208\u20132217"},{"key":"10266_CR29","doi-asserted-by":"crossref","first-page":"320","DOI":"10.1016\/j.patcog.2017.06.010","volume":"71","author":"H Lu","year":"2017","unstructured":"Lu H, Cao Z, Xiao Y, Zhu Y (2017) Two-dimensional subspace alignment for convolutional activations adaptation. Pattern Recognit 71:320\u2013336","journal-title":"Pattern Recognit"},{"key":"10266_CR30","unstructured":"Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv:1411.1784"},{"issue":"2","key":"10266_CR31","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1109\/TNN.2010.2091281","volume":"22","author":"SJ Pan","year":"2011","unstructured":"Pan SJ, Tsang IW, Kwok JT, Yang Q (2011) Domain adaptation via transfer component analysis. IEEE Trans Neural Netw 22(2):199\u2013210","journal-title":"IEEE Trans Neural Netw"},{"issue":"10","key":"10266_CR32","doi-asserted-by":"crossref","first-page":"1345","DOI":"10.1109\/TKDE.2009.191","volume":"22","author":"SJ Pan","year":"2010","unstructured":"Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345\u20131359","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"10266_CR33","doi-asserted-by":"crossref","unstructured":"Roy S, Siarohin A, Sangineto E, Bul\u00f2 SR, Sebe N, Ricci E (2019) Unsupervised domain adaptation using feature-whitening and consensus loss. CoRR arXiv:1903.03215","DOI":"10.1109\/CVPR.2019.00970"},{"key":"10266_CR34","doi-asserted-by":"crossref","unstructured":"Ruder S, Plank B (2018) Strong baselines for neural semi-supervised learning under domain shift. In: Proceedings of the 56th annual meeting of the association for computational linguistics (volume 1: long papers). Association for Computational Linguistics, pp 1044\u20131054","DOI":"10.18653\/v1\/P18-1096"},{"key":"10266_CR35","doi-asserted-by":"crossref","unstructured":"Saenko K, Kulis B, Fritz M, Darrell T (2010) Adapting visual category models to new domains. In: Proceedings of the 11th European conference on computer vision: part IV, ECCV\u201910, Berlin, Heidelberg. Springer, pp 213\u2013226","DOI":"10.1007\/978-3-642-15561-1_16"},{"key":"10266_CR36","unstructured":"Saito K, Ushiku Y, Harada T, Saenko K (2018) Adversarial dropout regularization. In: International conference on learning representations"},{"key":"10266_CR37","doi-asserted-by":"crossref","unstructured":"Saito K, Watanabe K, Ushiku Y, Harada T (2018) Maximum classifier discrepancy for unsupervised domain adaptation. pp 3723\u20133732, 06","DOI":"10.1109\/CVPR.2018.00392"},{"key":"10266_CR38","doi-asserted-by":"crossref","unstructured":"Sankaranarayanan S, Balaji Y, Castillo CD, Chellappa R (2018) Generate to adapt: aligning domains using generative adversarial networks. In: 2018 IEEE\/CVF conference on computer vision and pattern recognition, pp 8503\u20138512","DOI":"10.1109\/CVPR.2018.00887"},{"key":"10266_CR39","unstructured":"Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: International conference on learning representations"},{"key":"10266_CR40","doi-asserted-by":"crossref","unstructured":"Sun B, Feng J, Saenko K (2016) Return of frustratingly easy domain adaptation. In: Proceedings of the thirtieth AAAI conference on artificial intelligence, AAAI\u201916. AAAI Press, pp 2058\u20132065","DOI":"10.1609\/aaai.v30i1.10306"},{"key":"10266_CR41","doi-asserted-by":"crossref","unstructured":"Sun B, Saenko K (2016) Deep coral: correlation alignment for deep domain adaptation. In: ECCV workshops","DOI":"10.1007\/978-3-319-49409-8_35"},{"key":"10266_CR42","unstructured":"Szegedy C, Toshev A, Erhan D (2013) Deep neural networks for object detection. In: Proceedings of the 26th international conference on neural information processing systems\u2014volume 2, NIPS\u201913, USA. Curran Associates Inc., pp 2553\u20132561"},{"key":"10266_CR43","doi-asserted-by":"crossref","unstructured":"Tzeng E, Hoffman J, Saenko K, Darrell T (2017) Adversarial discriminative domain adaptation. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), pp 2962\u20132971","DOI":"10.1109\/CVPR.2017.316"},{"key":"10266_CR44","unstructured":"Tzeng E, Hoffman J, Zhang N, Saenko K, Darrell T (2014) Deep domain confusion: maximizing for domain invariance. arXiv:1412.3474"},{"key":"10266_CR45","doi-asserted-by":"crossref","unstructured":"Venkateswara H, Eusebio J, Chakraborty S, Panchanathan S (2017) Deep hashing network for unsupervised domain adaptation. 2017 IEEE conference on computer vision and pattern recognition (CVPR), pp 5385\u20135394","DOI":"10.1109\/CVPR.2017.572"},{"key":"10266_CR46","doi-asserted-by":"crossref","first-page":"437","DOI":"10.1016\/j.patcog.2016.09.046","volume":"64","author":"Y Wang","year":"2017","unstructured":"Wang Y, Liu J, Li Y, Jun F, Min X, Hanqing L (2017) Hierarchically supervised deconvolutional network for semantic video segmentation. Pattern Recognit 64:437\u2013445","journal-title":"Pattern Recognit"},{"key":"10266_CR47","doi-asserted-by":"crossref","unstructured":"Wen Y, Zhang K, Li Z, Qiao Y (2016) A discriminative feature learning approach for deep face recognition. In: Leibe B, Matas J, Sebe N, Welling M (eds) Computer vision\u2014ECCV 2016. Cham. Springer, pp 499\u2013515","DOI":"10.1007\/978-3-319-46478-7_31"},{"key":"10266_CR48","doi-asserted-by":"crossref","first-page":"615","DOI":"10.1016\/j.patcog.2018.04.027","volume":"81","author":"B Yang","year":"2018","unstructured":"Yang B, Ma AJ, Yuen PC (2018) Learning domain-shared group-sparse representation for unsupervised domain adaptation. Pattern Recognit 81:615\u2013632","journal-title":"Pattern Recognit"},{"issue":"3","key":"10266_CR49","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1109\/MCI.2018.2840738","volume":"13","author":"T Young","year":"2018","unstructured":"Young T, Hazarika D, Poria S, Cambria E (2018) Recent trends in deep learning based natural language processing [review article]. IEEE Comput Intell Mag 13(3):55\u201375","journal-title":"IEEE Comput Intell Mag"},{"key":"10266_CR50","unstructured":"Zellinger W, Grubinger T, Lughofer E, Natschl\u00e4ger T, Saminger-Platz S (2017) Central moment discrepancy (cmd) for domain-invariant representation learning. arXiv:1702.08811"},{"key":"10266_CR51","doi-asserted-by":"crossref","unstructured":"Zhang J, Li W, Ogunbona P (2017) Joint geometrical and statistical alignment for visual domain adaptation. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), pp 5150\u20135158","DOI":"10.1109\/CVPR.2017.547"},{"key":"10266_CR52","doi-asserted-by":"crossref","first-page":"521","DOI":"10.1016\/j.patcog.2019.05.012","volume":"93","author":"P Zhang","year":"2019","unstructured":"Zhang P, Liu W, Lei Y, Huchuan L (2019) Hyperfusion-net: hyper-densely reflective feature fusion for salient object detection. Pattern Recognit 93:521\u2013533","journal-title":"Pattern Recognit"},{"key":"10266_CR53","unstructured":"Zhang Y, Yeung D-Y (2010) A convex formulation for learning task relationships in multi-task learning. In: Proceedings of the twenty-sixth conference on uncertainty in artificial intelligence, UAI\u201910, Arlington, Virginia, United States. AUAI Press, pp 733\u2013742"},{"key":"10266_CR54","doi-asserted-by":"crossref","unstructured":"Zhu J-Y, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision, pp 2223\u20132232","DOI":"10.1109\/ICCV.2017.244"}],"container-title":["Neural Processing Letters"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11063-020-10266-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11063-020-10266-z\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11063-020-10266-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,24]],"date-time":"2022-10-24T11:54:31Z","timestamp":1666612471000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11063-020-10266-z"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,5,21]]},"references-count":54,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2020,8]]}},"alternative-id":["10266"],"URL":"https:\/\/doi.org\/10.1007\/s11063-020-10266-z","relation":{},"ISSN":["1370-4621","1573-773X"],"issn-type":[{"value":"1370-4621","type":"print"},{"value":"1573-773X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,5,21]]},"assertion":[{"value":"21 May 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}