{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T17:40:19Z","timestamp":1726249219303},"reference-count":47,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2019,3,4]],"date-time":"2019-03-04T00:00:00Z","timestamp":1551657600000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"name":"National Key R&D Program of China","award":["2018YFC0830605","2018YFC0831404"]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"crossref","award":["2018ZD06"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Neural Process Lett"],"published-print":{"date-parts":[[2019,12]]},"DOI":"10.1007\/s11063-019-10009-9","type":"journal-article","created":{"date-parts":[[2019,3,4]],"date-time":"2019-03-04T08:33:27Z","timestamp":1551688407000},"page":"2323-2344","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":14,"title":["Alignment Based Feature Selection for Multi-label Learning"],"prefix":"10.1007","volume":"50","author":[{"given":"Linlin","family":"Chen","sequence":"first","affiliation":[]},{"given":"Degang","family":"Chen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,3,4]]},"reference":[{"key":"10009_CR1","doi-asserted-by":"publisher","first-page":"408","DOI":"10.1109\/TPAMI.2018.2794976","volume":"41","author":"W Liu","year":"2018","unstructured":"Liu W, Xu D, Tsang I, Zhang W (2018) Metric learning for multi-output tasks. IEEE Trans Pattern Anal Mach Intell 41:408\u2013422","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"10009_CR2","doi-asserted-by":"crossref","unstructured":"Sanden C, Zhang JZ (2011) Enhancing multi-label music genre classification through ensemble techniques. In: Proceedings of the 34th annual international ACM SIGIR conference on research and development in information retrieval. pp 705\u2013714","DOI":"10.1145\/2009916.2010011"},{"issue":"7","key":"10009_CR3","doi-asserted-by":"publisher","first-page":"830","DOI":"10.1093\/bioinformatics\/btk048","volume":"22","author":"Z Barutcuoglu","year":"2006","unstructured":"Barutcuoglu Z, Schapire RE, Troyanskaya OG (2006) Hierarchical multi-label prediction of gene function. Bioinformatics 22(7):830\u2013836","journal-title":"Bioinformatics"},{"key":"10009_CR4","unstructured":"Qi G-J, Hua X-S, Rui Y, Tang J, Mei T, Zhang H-J (2007) Correlative multi-label video annotation. In: Proceedings of the 15th ACM international conference on multimedia. pp 17\u201326"},{"key":"10009_CR5","doi-asserted-by":"crossref","unstructured":"Tang LL, Rajan S, Narayanan VK (2009) Large scale multi-label classification via metalabeler. In Proceedings of the 19th international conference on World Wide Web. pp 211\u2013220","DOI":"10.1145\/1526709.1526738"},{"key":"10009_CR6","first-page":"1","volume":"18","author":"W Liu","year":"2017","unstructured":"Liu W, Tsang I (2017) Making decision trees feasible in ultrahigh feature and label dimensions. J Mach Learn Res 18:1\u201336","journal-title":"J Mach Learn Res"},{"key":"10009_CR7","first-page":"1","volume":"18","author":"W Liu","year":"2017","unstructured":"Liu W, Tsang I, Muller K (2017) An Easy-to-hard learning paradigm for multiple classes and multiple labels. J Mach Learn Res 18:1\u201338","journal-title":"J Mach Learn Res"},{"key":"10009_CR8","doi-asserted-by":"crossref","unstructured":"Chen W, Yan J, Zhang B, Chen Z, Yang Q (2007) Document transformation for multi-label feature selection in text categorization. In: Proceedings of seventh IEEE international conference on data mining (ICDM\u201907), vol 80, No 1\u20133. pp 451\u2013456","DOI":"10.1109\/ICDM.2007.18"},{"key":"10009_CR9","unstructured":"Trohidis K, Tsoumakas G, Kalliris G, Vlahavas IP (2008) Multilabel classification of music into emotions. In: Proceedings of ninth international conference music information retrieval (ISMIR\u201908). Philadelphia. pp 325\u2013330"},{"key":"10009_CR10","doi-asserted-by":"publisher","first-page":"9","DOI":"10.1007\/978-3-642-21501-8_2","volume-title":"Advances in Computational Intelligence","author":"Gauthier Doquire","year":"2011","unstructured":"Doquire G, Verleysen M (2011) Feature selection for multi-label classification problems. In: International work-conference on artificial neural networks, vol 6691. pp 9\u201316"},{"key":"10009_CR11","doi-asserted-by":"publisher","first-page":"3218","DOI":"10.1016\/j.ins.2009.06.010","volume":"179","author":"M Zhang","year":"2009","unstructured":"Zhang M, Peria J, Robles V (2009) Feature selection for multi-label naive Bayes classification. Inf Sci 179:3218\u20133229","journal-title":"Inf Sci"},{"key":"10009_CR12","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/1839490.1839495","volume":"4","author":"Y Zhang","year":"2010","unstructured":"Zhang Y, Zhou Z (2010) Multi-label dimensionality reduction via dependence maximization. ACM Trans Knowl Discov Data 4:1\u201321","journal-title":"ACM Trans Knowl Discov Data"},{"key":"10009_CR13","doi-asserted-by":"crossref","unstructured":"Gretton A, Bousquet O, Smola AJ, Sch\u00c4olkopf B (2005) Measuring statistical dependence with Hilbert\u2013Schmidt norms. In: Proceedings of the 16th international conference on algorithmic learning theory. Singapore, pp 63\u201377","DOI":"10.1007\/11564089_7"},{"key":"10009_CR14","unstructured":"Spolaor N, Cherman E, Monard M (2011) Using ReliefF for multi-label feature selection. In: Conferencia Latinoamericana de Informatica. pp 960\u2013975"},{"issue":"1\u20132","key":"10009_CR15","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1023\/A:1025667309714","volume":"53","author":"M Robnik-Sikonja","year":"2003","unstructured":"Robnik-Sikonja M, Kononenko I (2003) Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn 53(1\u20132):23\u201369","journal-title":"Mach Learn"},{"key":"10009_CR16","doi-asserted-by":"publisher","first-page":"349","DOI":"10.1016\/j.patrec.2012.10.005","volume":"34","author":"J Lee","year":"2013","unstructured":"Lee J, Kim D (2013) Feature selection for multi-label classification using multivariate mutual information. Pattern Recognit Lett 34:349\u2013357","journal-title":"Pattern Recognit Lett"},{"issue":"6","key":"10009_CR17","doi-asserted-by":"publisher","first-page":"1491","DOI":"10.1109\/TFUZZ.2017.2735947","volume":"25","author":"Y-J Lin","year":"2017","unstructured":"Lin Y-J, Hu Q-H, Liu J-H, Li J-J, Wu X-D (2017) Streaming feature selection for multi-label learning based on fuzzy mutual information. IEEE Trans Fuzzy Syst 25(6):1491\u20131507","journal-title":"IEEE Trans Fuzzy Syst"},{"key":"10009_CR18","doi-asserted-by":"publisher","first-page":"14","DOI":"10.1016\/j.eswa.2017.11.018","volume":"95","author":"J-H Xu","year":"2018","unstructured":"Xu J-H, Ma Q (2018) Multi-label regularized quadratic programming feature selection algorithm with Frank-Wolfe method. Expert Syst Appl 95:14\u201331","journal-title":"Expert Syst Appl"},{"key":"10009_CR19","doi-asserted-by":"publisher","first-page":"42","DOI":"10.1016\/j.knosys.2017.12.008","volume":"143","author":"J Liu","year":"2018","unstructured":"Liu J, Lin Y, Wu S, Wang C (2018) Online Multi-label Group Feature Selection. Knowl-Based Syst 143:42\u201357","journal-title":"Knowl-Based Syst"},{"key":"10009_CR20","doi-asserted-by":"publisher","first-page":"488","DOI":"10.1016\/j.patcog.2017.09.036","volume":"74","author":"P-F Zhu","year":"2018","unstructured":"Zhu P-F, Xu Q, Hu Q-H, Zhang C-Q, Zhao H (2018) Multi-label feature selection with missing labels. Pattern Recognit 74:488\u2013502","journal-title":"Pattern Recognit"},{"key":"10009_CR21","doi-asserted-by":"publisher","first-page":"410","DOI":"10.1016\/j.patcog.2017.02.025","volume":"67","author":"F Li","year":"2017","unstructured":"Li F, Miao D, Pedrycz W (2017) Granular multi-label feature selection based on mutual information. Pattern Recognit 67:410\u2013423","journal-title":"Pattern Recognit"},{"key":"10009_CR22","doi-asserted-by":"publisher","first-page":"342","DOI":"10.1016\/j.patcog.2017.01.014","volume":"66","author":"J Lee","year":"2017","unstructured":"Lee J, Kim DW (2017) SCLS: multi-label feature selection based on scalable criterion for large label set. Pattern Recognit 66:342\u2013352","journal-title":"Pattern Recognit"},{"key":"10009_CR23","doi-asserted-by":"publisher","first-page":"98","DOI":"10.1016\/j.neucom.2017.01.004","volume":"235","author":"P Teisseyre","year":"2017","unstructured":"Teisseyre P (2017) CCnet: joint multi-label classification and feature selection using classifier chains and elastic net regularization. Neurocomputing 235:98\u2013111","journal-title":"Neurocomputing"},{"key":"10009_CR24","unstructured":"Cheng W, Dembczy\u00b4nski K, H\u00fcllermeier E (2010) Graded multilabel classification: the ordinal case. In Proceedings of the 27th international conference on machine learning. Haifa, pp 223\u2013230"},{"key":"10009_CR25","doi-asserted-by":"crossref","unstructured":"Xu M, Li Y-F, Zhou Z-H (2013) Multi-label learning with PRO loss. In: Proceedings of the 27th AAAI conference on artificial intelligence. Bellevue, pp 998\u20131004","DOI":"10.1609\/aaai.v27i1.8689"},{"issue":"10","key":"10009_CR26","doi-asserted-by":"publisher","first-page":"2401","DOI":"10.1109\/TPAMI.2013.51","volume":"35","author":"X Geng","year":"2013","unstructured":"Geng X, Yin C, Zhou Z-H (2013) Facial age estimation by learning from label distributions. IEEE Trans Pattern Anal Mach Intell 35(10):2401\u20132412","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"7","key":"10009_CR27","doi-asserted-by":"publisher","first-page":"1734","DOI":"10.1109\/TKDE.2016.2545658","volume":"28","author":"X Geng","year":"2016","unstructured":"Geng X (2016) Label distribution learning. IEEE T Knowl Data Eng 28(7):1734\u20131748","journal-title":"IEEE T Knowl Data Eng"},{"issue":"5","key":"10009_CR28","doi-asserted-by":"publisher","first-page":"845","DOI":"10.1007\/s11704-016-5421-x","volume":"10","author":"N Gao","year":"2016","unstructured":"Gao N, Huang S-J, Chen S (2016) Multi-label active learning by model guided distribution matching. Front Comput Sci-chi 10(5):845\u2013855","journal-title":"Front Comput Sci-chi"},{"key":"10009_CR29","unstructured":"Li Y-K, Zhang M-L, Geng X (2015) Leveraging implicit relative labeling-importance information for effective multi-label learning. In: Proceedings of the 15th IEEE international conference on data mining. Atlantic City, pp 251\u2013260"},{"key":"10009_CR30","doi-asserted-by":"crossref","unstructured":"Cristianini N, Elisseeff A, Shawe-Taylor J, Kandola J (2001) On kernel-target alignment. In: Neural information processing systems 14 (NIPS 14)","DOI":"10.7551\/mitpress\/1120.003.0052"},{"key":"10009_CR31","doi-asserted-by":"crossref","unstructured":"Cristianini N, Kandola J, Elisseeff A, Shawe-Taylor J (2006) On kernel target alignment. In Innovations machine learning. pp 205\u2013256","DOI":"10.1007\/3-540-33486-6_8"},{"key":"10009_CR32","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1007\/s10462-012-9369-4","volume":"43","author":"T Wang","year":"2015","unstructured":"Wang T, Zhao D, Tian S (2015) An overview of kernel alignment and its applications. Artif Intell Rev 43:179\u2013192","journal-title":"Artif Intell Rev"},{"key":"10009_CR33","first-page":"795","volume":"13","author":"C Cortes","year":"2012","unstructured":"Cortes C, Mohri M, Rostamizadeh A (2012) Algorithms for learning kernels based on centered alignment. J Mach Learn Res 13:795\u2013828","journal-title":"J Mach Learn Res"},{"key":"10009_CR34","unstructured":"Kandola J, Shawe-Taylor J, Cristianini N (2002a) On the extensions of kernel alignment. Technical report 120, Department of Computer Science, University of London"},{"key":"10009_CR35","unstructured":"Kandola J, Shawe-Taylor J, Cristianini N (2002b) Optimizing kernel alignment over combinations of kernels. Technical report 121, Department of Computer Science, University of London"},{"issue":"2","key":"10009_CR36","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TCBB.2007.070208","volume":"4","author":"C Igel","year":"2007","unstructured":"Igel C, Glasmachers T, Mersch B, Pfeifer N, Meinicke P (2007) Gradient-based optimization of kernel-target alignment for sequence kernels applied to bacterial gene start detection. IEEE\/ACM Trans Comput Biol Bioinform 4(2):1\u201311","journal-title":"IEEE\/ACM Trans Comput Biol Bioinform"},{"issue":"5","key":"10009_CR37","doi-asserted-by":"publisher","first-page":"1373","DOI":"10.1109\/TCBB.2011.31","volume":"8","author":"WW Wong","year":"2011","unstructured":"Wong WW, Burkowski FJ (2011) Using kernel alignment to select features of molecular descriptors in a QSAR study. IEEE\/ACM Trans Comput Biol Bioinform 8(5):1373\u20131384","journal-title":"IEEE\/ACM Trans Comput Biol Bioinform"},{"issue":"3","key":"10009_CR38","doi-asserted-by":"publisher","first-page":"1","DOI":"10.4018\/jdwm.2007070101","volume":"3","author":"G Tsoumakas","year":"2007","unstructured":"Tsoumakas G, Katakis I (2007) Multi-label classification: an overview. Int J Data Wareh 3(3):1\u201313","journal-title":"Int J Data Wareh"},{"issue":"9","key":"10009_CR39","doi-asserted-by":"publisher","first-page":"1757","DOI":"10.1016\/j.patcog.2004.03.009","volume":"37","author":"M Boutell","year":"2004","unstructured":"Boutell M, Luo J, Shen X, Brown C (2004) Learning multi-label scene classification. Pattern Recognit 37(9):1757\u20131771","journal-title":"Pattern Recognit"},{"issue":"3","key":"10009_CR40","doi-asserted-by":"publisher","first-page":"333","DOI":"10.1007\/s10994-011-5256-5","volume":"85","author":"J Read","year":"2011","unstructured":"Read J, Pfahringer B, Holmes G, Frank E (2011) Classifier chains for multi-label classification. Mach Learn 85(3):333\u2013359","journal-title":"Mach Learn"},{"key":"10009_CR41","doi-asserted-by":"crossref","unstructured":"Read J, Pfahringer B, Holmes G (2008) Multi-label classification using ensembles of pruned sets. In: Proceedings of the 8th IEEE international conference on data mining. Pisa, pp 995\u20131000","DOI":"10.1109\/ICDM.2008.74"},{"key":"10009_CR42","unstructured":"Tsoumakas G, Vlahavas I (2007) Random k-label sets: an ensemble method for multi-label classification. In: Proceedings of the 18th European Conference on Machine Learning. Springer, Warsaw, pp 406\u2013417"},{"issue":"7","key":"10009_CR43","doi-asserted-by":"publisher","first-page":"2038","DOI":"10.1016\/j.patcog.2006.12.019","volume":"40","author":"M-L Zhang","year":"2007","unstructured":"Zhang M-L, Zhou Z-H (2007) ML-KNN: a lazy learning approach to multi-label learning. Pattern Recognit 40(7):2038\u20132048","journal-title":"Pattern Recognit"},{"issue":"10","key":"10009_CR44","doi-asserted-by":"publisher","first-page":"1338","DOI":"10.1109\/TKDE.2006.162","volume":"18","author":"M-L Zhang","year":"2006","unstructured":"Zhang M-L, Zhou Z-H (2006) Multi-label neural networks with applications to functional genomics and text categorization. IEEE Trans Knowl Data Eng 18(10):1338\u20131351","journal-title":"IEEE Trans Knowl Data Eng"},{"issue":"16","key":"10009_CR45","doi-asserted-by":"publisher","first-page":"3951","DOI":"10.1016\/j.neucom.2009.07.008","volume":"72","author":"M-L Zhang","year":"2009","unstructured":"Zhang M-L, Wang Z-J (2009) MIMLRBF: RBF neural networks for multi-instance multi-label learning. Neurocomputing 72(16):3951\u20133956","journal-title":"Neurocomputing"},{"issue":"2\/3","key":"10009_CR46","doi-asserted-by":"publisher","first-page":"135","DOI":"10.1023\/A:1007649029923","volume":"39","author":"RE Schapire","year":"2000","unstructured":"Schapire RE, Singer Y (2000) Boostexter: a boosting-based system for text categorization. Mach Learn 39(2\/3):135\u2013168","journal-title":"Mach Learn"},{"key":"10009_CR47","unstructured":"http:\/\/mulan.sourceforge.net\/datasets.html . Accessed 15 June 2017"}],"container-title":["Neural Processing Letters"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11063-019-10009-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s11063-019-10009-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11063-019-10009-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,15]],"date-time":"2024-07-15T09:57:24Z","timestamp":1721037444000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s11063-019-10009-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,3,4]]},"references-count":47,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2019,12]]}},"alternative-id":["10009"],"URL":"https:\/\/doi.org\/10.1007\/s11063-019-10009-9","relation":{},"ISSN":["1370-4621","1573-773X"],"issn-type":[{"value":"1370-4621","type":"print"},{"value":"1573-773X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,3,4]]},"assertion":[{"value":"4 March 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}