{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,29]],"date-time":"2024-05-29T17:14:58Z","timestamp":1717002898538},"reference-count":57,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2017,12,19]],"date-time":"2017-12-19T00:00:00Z","timestamp":1513641600000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Neural Process Lett"],"published-print":{"date-parts":[[2018,10]]},"DOI":"10.1007\/s11063-017-9775-3","type":"journal-article","created":{"date-parts":[[2017,12,19]],"date-time":"2017-12-19T16:18:11Z","timestamp":1513700291000},"page":"1213-1226","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":15,"title":["Domain Adaptation with Twin Support Vector Machines"],"prefix":"10.1007","volume":"48","author":[{"given":"Xijiong","family":"Xie","sequence":"first","affiliation":[]},{"given":"Shiliang","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Huahui","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Jiangbo","family":"Qian","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,12,19]]},"reference":[{"key":"9775_CR1","doi-asserted-by":"crossref","first-page":"1345","DOI":"10.1109\/TKDE.2009.191","volume":"22","author":"S Pan","year":"2010","unstructured":"Pan S, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22:1345\u20131359","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"9775_CR2","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1016\/j.inffus.2014.12.003","volume":"24","author":"S Sun","year":"2015","unstructured":"Sun S, Shi H, Wu Y (2015) A survey of multi-source domain adaptation. Inf Fusion 24:84\u201392","journal-title":"Inf Fusion"},{"key":"9775_CR3","unstructured":"Klinkenberg R, Joachims T (2000) Detecting concept drift with support vector machines. In: Proceedings of the international conference on machine learning, pp 487\u2013494"},{"key":"9775_CR4","doi-asserted-by":"crossref","unstructured":"Wu P, Dietterich T (2004) Improving SVM accuracy by training on auxiliary data sources. In: Proceedings of the international conference on machine learning, pp 871\u2013878","DOI":"10.1145\/1015330.1015436"},{"key":"9775_CR5","doi-asserted-by":"crossref","unstructured":"Liao X, Xue Y, Carin L (2005) Logistic regression with an auxiliary data source. In: Proceedings of the 21st international conference on machine learning, pp 505\u2013512","DOI":"10.1145\/1102351.1102415"},{"key":"9775_CR6","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1613\/jair.1872","volume":"26","author":"H Daum\u00e9 III","year":"2006","unstructured":"Daum\u00e9 III H, Marcu D (2006) Domain adaptation for statistical classifiers. J Artif Intell Res 26:101\u2013126","journal-title":"J Artif Intell Res"},{"key":"9775_CR7","unstructured":"Blitzer J, Dredze M, Pereira F (2007) Boom-boxes and blenders: domain adaptation for sentiment classification. In: Proceedings of the 45th annual meeting of the assocation for computational linguistics, pp 440\u2013447"},{"key":"9775_CR8","doi-asserted-by":"crossref","unstructured":"Ling X, Dai W, Xue G, Yang Q, Yu Y (2008) Spectral domain transfer learning. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, pp 488\u2013496","DOI":"10.1145\/1401890.1401951"},{"key":"9775_CR9","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1109\/TNN.2010.2091281","volume":"22","author":"S Pan","year":"2011","unstructured":"Pan S, Tsang I, Kwok J, Yang Q (2011) Domain adaptation via transfer component analysis. IEEE Trans Neural Netw 22:199\u2013210","journal-title":"IEEE Trans Neural Netw"},{"key":"9775_CR10","doi-asserted-by":"crossref","unstructured":"Satpal S, Sarawagi S (2007) Domain adaptation of conditional probability models via feature subsetting. In: Proceedings of the 11th European conference on principles and practice of knowledge discovery in databases, pp 224\u2013235","DOI":"10.1007\/978-3-540-74976-9_23"},{"key":"9775_CR11","doi-asserted-by":"crossref","unstructured":"Seah C, Tsang I, Ong Y, Lee K (2010) Predictive distribution matching SVM for multi-domain learning. In: Proceedings of the European conference on machine learning and principles and practice of knowledge discovery in databases, pp 231\u2013247","DOI":"10.1007\/978-3-642-15880-3_21"},{"key":"9775_CR12","unstructured":"Pan S, Kwok J, Yang Q (2008) Transfer learning via dimensionality reduction. In: Proceedings of the association for the advancement of artificial intelligence, pp 677\u2013682"},{"key":"9775_CR13","doi-asserted-by":"crossref","unstructured":"Zhong E, Fan W, Peng J, Zhang K, Ren J, Turaga D, Verscheure O (2009) Cross domain distribution adaptation via kernel mapping. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, pp 1027\u20131036","DOI":"10.1145\/1557019.1557130"},{"key":"9775_CR14","doi-asserted-by":"crossref","first-page":"3609","DOI":"10.1016\/j.neucom.2011.06.026","volume":"74","author":"J Shawe-Taylor","year":"2011","unstructured":"Shawe-Taylor J, Sun S (2011) A review of optimization methodologies in support vector machines. Neurocomputing 74:3609\u20133618","journal-title":"Neurocomputing"},{"key":"9775_CR15","doi-asserted-by":"crossref","first-page":"3113","DOI":"10.1109\/TIP.2017.2651379","volume":"26","author":"J Li","year":"2015","unstructured":"Li J, Xu C, Yang W, Sun C, Tao D (2015) Discriminative multi-view interactive image re-ranking. IEEE Trans Image Process 26:3113\u20133127","journal-title":"IEEE Trans Image Process"},{"key":"9775_CR16","doi-asserted-by":"crossref","unstructured":"Xu C, Tao D, Xu C (2015) Large-margin multi-label causal feature learning. In: Proceedings of the AAAI conference on artificial intelligence, pp 1924\u20131930","DOI":"10.1609\/aaai.v29i1.9450"},{"key":"9775_CR17","doi-asserted-by":"crossref","unstructured":"Xu C, Tao D, Li Y, Xu C (2013) Large-margin multi-view Gaussian process for image classification. In: Proceedings of the international conference on internet multimedia computing and service, pp 7\u201312","DOI":"10.1145\/2499788.2499816"},{"key":"9775_CR18","doi-asserted-by":"crossref","unstructured":"Blitzer J, McDonald R, Pereira F (2006) Domain adaptation with structural correspondence learning. In: Proceedings of the conference on empiriacal methods in natural language processing, pp 120\u2013128","DOI":"10.3115\/1610075.1610094"},{"key":"9775_CR19","unstructured":"Daum $$\\acute{e}$$ e \u00b4 III H (2007) Frustratingly easy domain adaptation. In: Proceedings of the 45th annual meeting of the assocation for computational linguistics, pp 256\u2013263"},{"key":"9775_CR20","doi-asserted-by":"crossref","unstructured":"Yang J, Yan R, Hauptmann A (2007) Cross-domain video concept detection using adaptive svms. In: Proceedings of the international conference on multimedia, pp 188\u2013197","DOI":"10.1145\/1291233.1291276"},{"key":"9775_CR21","doi-asserted-by":"crossref","unstructured":"Jiang W, Zavesky E, Chang S, Loui A (2008) Cross-domain learning methods for high-level visual concept classification. In: Proceedings of the international conference on image processing, pp 161\u2013164","DOI":"10.1109\/ICIP.2008.4711716"},{"key":"9775_CR22","unstructured":"Storkey A, Sugiyama M (2006) Mixture regression for covariate shift. In: Proceedings of the conference on advances in neural information processing systems, pp 1337\u20131344"},{"key":"9775_CR23","first-page":"601","volume":"19","author":"J Huang","year":"2006","unstructured":"Huang J, Sola A, Gretton A, Borgwardt K, Sch\u00f6lkopf B (2006) Correcting sample selection bias by unlabeled data. Adv Neural Inf Proces Syst 19:601\u2013608","journal-title":"Adv Neural Inf Proces Syst"},{"key":"9775_CR24","first-page":"1757","volume":"9","author":"K Crammer","year":"2008","unstructured":"Crammer K, Kearns M, Wortman J (2008) Learning from multiple sources. J Mach Learn Res 9:1757\u20131774","journal-title":"J Mach Learn Res"},{"key":"9775_CR25","doi-asserted-by":"crossref","unstructured":"Luo P, Zhuang F, Xiong H, Xiong Y, He Q (2008) Transfer learning from multiple source domains via consensus regularization. In: Proceedings of the ACM conference on information and knowledge management, pp 103\u2013112","DOI":"10.1145\/1458082.1458099"},{"key":"9775_CR26","unstructured":"Mansour Y, Mohri M, Rostamizadeh A (2009) Domain adaptation: learning bounds and algorithms. In: Proceedings of the 22nd annual conference on learning theory, pp 34\u201347"},{"key":"9775_CR27","first-page":"1433","volume":"21","author":"G Schweikert","year":"2008","unstructured":"Schweikert G, Widmer C, Sch\u00f6lkopf B, R\u00e4tsch G (2008) An empirical analysis of domain adaptation algorithm for genomic sequence analysis. Adv Neural Inf Process Syst 21:1433\u20131440","journal-title":"Adv Neural Inf Process Syst"},{"key":"9775_CR28","unstructured":"Blitzer J, Crammer K, Kulesza A, Pereira F, Wortman J (2007) Learning bounds for domain adaptation. In: Proceedings of conference on advances in neural information processing systems, pp 129\u2013136"},{"key":"9775_CR29","unstructured":"Duan L, Tsang I, Xu D, Maybank S (2009) Domain transfer SVM for video concept detection. In: Proceedings of the international conference computer vision and pattern recognition, pp 1375\u20131381"},{"key":"9775_CR30","doi-asserted-by":"crossref","first-page":"465","DOI":"10.1109\/TPAMI.2011.114","volume":"34","author":"L Duan","year":"2012","unstructured":"Duan L, Tsang I, Xu D (2012) Domain transfer multiple kernel learning. IEEE Trans Pattern Anal Mach Intell 34:465\u2013479","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"9775_CR31","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1109\/TNNLS.2011.2178556","volume":"23","author":"L Duan","year":"2012","unstructured":"Duan L, Xu D, Tsang I (2012) Domain adaptation from multiple sources: a domain-dependent regularization approach. IEEE Trans Neural Netw Learn Syst 23:504\u2013518","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"9775_CR32","doi-asserted-by":"crossref","first-page":"770","DOI":"10.1109\/TPAMI.2009.57","volume":"32","author":"L Bruzzone","year":"2010","unstructured":"Bruzzone L, Marconcini M (2010) Domain adaptation problems: a DASVM classification techique and a circular validation strategy. IEEE Trans Pattern Anal Mach Intell 32:770\u2013787","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"9775_CR33","doi-asserted-by":"crossref","first-page":"3962","DOI":"10.1016\/j.patcog.2012.04.014","volume":"45","author":"J Tao","year":"2012","unstructured":"Tao J, Chung F, Wang S (2012) On minimum distribution discrepancy support vector machine for domain adaptation. Pattern Recognit 45:3962\u20133984","journal-title":"Pattern Recognit"},{"key":"9775_CR34","doi-asserted-by":"crossref","unstructured":"Venkateswara H, Lade P, Ye J, Panchanathan S (2015) Coupled support vector machines for supervised domain adaptation. In: Proceedings of the ACM international conference on multimedia, pp 1295\u20131298","DOI":"10.1145\/2733373.2806334"},{"key":"9775_CR35","unstructured":"Gong M, Zhang K, Liu T, Tao D, Glymour C, Schlkopf B (2016) Domain adaptation with conditional transferable components. In: Proceedings of the 33rd international conference on machine learning, pp 2839\u20132848"},{"key":"9775_CR36","unstructured":"Yaroslav G, Lempitsky V (2014) Unsupervised domain adaptation by backpropagation, arXiv preprint arXiv:1409.7495"},{"key":"9775_CR37","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1109\/TPAMI.2006.17","volume":"28","author":"O Mangasarian","year":"2006","unstructured":"Mangasarian O, Wild E (2006) MultisurFace proximal support vector machine classification via generalized eigenvalues. IEEE Trans Pattern Anal Mach Intell 28:69\u201374","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"9775_CR38","doi-asserted-by":"crossref","first-page":"905","DOI":"10.1109\/TPAMI.2007.1068","volume":"74","author":"R Jayadeva","year":"2007","unstructured":"Jayadeva R, Khemchandani S, Chandra (2007) Twin support vector machines for pattern classification. IEEE Trans on Pattern Anal Mach Intell 74:905\u2013910","journal-title":"IEEE Trans on Pattern Anal Mach Intell"},{"key":"9775_CR39","doi-asserted-by":"crossref","first-page":"962","DOI":"10.1109\/TNN.2011.2130540","volume":"22","author":"Y Shao","year":"2011","unstructured":"Shao Y, Zhang C, Wang X, Deng N (2011) Improvements on twin support vector machines. IEEE Trans Neural Netw 22:962\u2013968","journal-title":"IEEE Trans Neural Netw"},{"key":"9775_CR40","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1007\/s10462-012-9336-0","volume":"42","author":"S Ding","year":"2014","unstructured":"Ding S, Zhao Y, Qi B, Huang H (2014) An overview on twin support vector machines. Artif Intell Rev 42:245\u2013252","journal-title":"Artif Intell Rev"},{"key":"9775_CR41","doi-asserted-by":"crossref","first-page":"7535","DOI":"10.1016\/j.eswa.2008.09.066","volume":"36","author":"M Kumar","year":"2009","unstructured":"Kumar M, Gopal M (2009) Least squares twin support vector machines for pattern classification. Expert Syst Appl 36:7535\u20137543","journal-title":"Expert Syst Appl"},{"key":"9775_CR42","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10489-014-0588-z","volume":"42","author":"Y Xu","year":"2015","unstructured":"Xu Y, Pan X, Zhou Z, Yang Z, Zhang Y (2015) Structural least square twin support vector machine for classification. Appl Intell 42:1\u201310","journal-title":"Appl Intell"},{"key":"9775_CR43","doi-asserted-by":"crossref","first-page":"1085","DOI":"10.1016\/j.neucom.2014.07.025","volume":"149","author":"X Xie","year":"2015","unstructured":"Xie X, Sun S (2015) Multitask centroid twin support vector machines. Neurocomputing 149:1085\u20131091","journal-title":"Neurocomputing"},{"key":"9775_CR44","doi-asserted-by":"crossref","first-page":"701","DOI":"10.3233\/IDA-150740","volume":"19","author":"X Xie","year":"2015","unstructured":"Xie X, Sun S (2015) Multi-view twin support vector machines. Intell Data Anal 19:701\u2013712","journal-title":"Intell Data Anal"},{"key":"9775_CR45","doi-asserted-by":"crossref","first-page":"1059","DOI":"10.1007\/s10489-014-0563-8","volume":"41","author":"X Xie","year":"2014","unstructured":"Xie X, Sun S (2014) Multi-view Laplacian twin support vector machines. Appl Intell 41:1059\u20131068","journal-title":"Appl Intell"},{"key":"9775_CR46","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.patcog.2015.10.008","volume":"52","author":"W Chen","year":"2016","unstructured":"Chen W, Shao Y, Li C, Deng N (2016) MLTSVM: a novel twin support vector machine to multi-label learning. Pattern Recognit 52:61\u201374","journal-title":"Pattern Recognit"},{"key":"9775_CR47","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.neunet.2012.07.011","volume":"35","author":"Z Qi","year":"2012","unstructured":"Qi Z, Tian Y, Shi Y (2012) Laplacian twin support vector machine for semi-supervised classification. Neural Netw 35:46\u201353","journal-title":"Neural Netw"},{"key":"9775_CR48","doi-asserted-by":"crossref","first-page":"365","DOI":"10.1016\/j.neunet.2009.07.002","volume":"23","author":"X Peng","year":"2010","unstructured":"Peng X (2010) An efficient twin support vector machine for regression. Neural Netw 23:365\u2013372","journal-title":"Neural Netw"},{"key":"9775_CR49","doi-asserted-by":"crossref","first-page":"649","DOI":"10.3233\/IDA-130598","volume":"17","author":"J Xie","year":"2013","unstructured":"Xie J, Hone K, Xie W, Gao X, Shi Y, Liu X (2013) Extending twin support vector machine classifier for multi-category classification problems. Intell Data Anal 17:649\u2013664","journal-title":"Intell Data Anal"},{"key":"9775_CR50","first-page":"185","volume":"173","author":"K Zhang","year":"2013","unstructured":"Zhang K, Schlkopf B, Muandet K, Wang Z (2013) Domain adaptation under target and conditional shift. J Volcanol Geotherm Res 173:185\u2013195","journal-title":"J Volcanol Geotherm Res"},{"key":"9775_CR51","doi-asserted-by":"crossref","unstructured":"Liu T, Yang Q, Tao D (2017) Understanding how feature structure transfers in transfer learning. In: Proceedings of the twenty-sixth international joint conference on artificial intelligence, pp 2365\u20132371","DOI":"10.24963\/ijcai.2017\/329"},{"key":"9775_CR52","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1109\/TIP.2015.2487860","volume":"24","author":"C Hong","year":"2015","unstructured":"Hong C, Yu J, Wan J, Tao D, Wang M (2015) Multimodal deep autoencoder for human pose recovery. IEEE Trans Image Process 24:56\u201359","journal-title":"IEEE Trans Image Process"},{"key":"9775_CR53","doi-asserted-by":"crossref","first-page":"1005","DOI":"10.1109\/TIFS.2016.2636090","volume":"12","author":"J Yu","year":"2017","unstructured":"Yu J, Zhang B, Kuang Z, Lin D, Fan J (2017) Image privacy protection by identifying sensitive objects via deep multi-task learning. IEEE Trans Inf Forensics Secur 12:1005\u20131016","journal-title":"IEEE Trans Inf Forensics Secur"},{"key":"9775_CR54","first-page":"1","volume":"12","author":"J Yu","year":"2016","unstructured":"Yu J, Yang X, Gao F, Tao D (2016) Deep multimodal distance metric learning using click constraints for image ranking. IEEE Trans Cybern 12:1\u201311","journal-title":"IEEE Trans Cybern"},{"key":"9775_CR55","doi-asserted-by":"crossref","first-page":"2019","DOI":"10.1109\/TIP.2014.2311377","volume":"23","author":"J Yu","year":"2014","unstructured":"Yu J, Rui Y, Tao D (2014) Click prediction for web image reranking using multimodal sparse coding. IEEE Trans Image Process 23:2019\u20132032","journal-title":"IEEE Trans Image Process"},{"key":"9775_CR56","doi-asserted-by":"crossref","unstructured":"Sun S, Zhou J (2014) A review of adaptive feature extraction and classification methods for EEG-based brain-computer interfaces. In: Proceedings of the international joint conference on neural networks, pp 1746\u20131753","DOI":"10.1109\/IJCNN.2014.6889525"},{"key":"9775_CR57","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1016\/j.inffus.2016.10.004","volume":"36","author":"S Sun","year":"2016","unstructured":"Sun S, Luo C, Chen J (2016) A review of natural language processing techniques for opinion mining systems. Inf Fusion 36:10\u201325","journal-title":"Inf Fusion"}],"container-title":["Neural Processing Letters"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s11063-017-9775-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11063-017-9775-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11063-017-9775-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,8,10]],"date-time":"2022-08-10T21:32:36Z","timestamp":1660167156000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s11063-017-9775-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,12,19]]},"references-count":57,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2018,10]]}},"alternative-id":["9775"],"URL":"https:\/\/doi.org\/10.1007\/s11063-017-9775-3","relation":{},"ISSN":["1370-4621","1573-773X"],"issn-type":[{"value":"1370-4621","type":"print"},{"value":"1573-773X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2017,12,19]]}}}