{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,8,16]],"date-time":"2023-08-16T03:10:23Z","timestamp":1692155423622},"reference-count":51,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2015,12,7]],"date-time":"2015-12-07T00:00:00Z","timestamp":1449446400000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"name":"Natural Science Foundation of the Jiangsu Higher Education Institutions of China","award":["14KJB520006"]},{"name":"Liu Da Talent Peak Project of Jiangsu","award":["2013DZXX023"]},{"name":"Jiangsu 333 Project","award":["BRA2013208"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Neural Process Lett"],"published-print":{"date-parts":[[2016,12]]},"DOI":"10.1007\/s11063-015-9488-4","type":"journal-article","created":{"date-parts":[[2015,12,8]],"date-time":"2015-12-08T18:09:15Z","timestamp":1449598155000},"page":"681-699","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["A Multiple Graph Label Propagation Integration Framework for Salient Object Detection"],"prefix":"10.1007","volume":"44","author":[{"given":"Jingbo","family":"Zhou","sequence":"first","affiliation":[]},{"given":"Yongfeng","family":"Ren","sequence":"additional","affiliation":[]},{"given":"Yunyang","family":"Yan","sequence":"additional","affiliation":[]},{"given":"Li","family":"Pan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2015,12,7]]},"reference":[{"key":"9488_CR1","doi-asserted-by":"crossref","unstructured":"Santella A, Agrawala M, DeCarlo D, Salesin D, Cohen M (2006) Gaze-based interaction for semi-automatic photo cropping. In: Proceedings of the SIGCHI conference human factors in computing systems, pp. 771\u2013780","DOI":"10.1145\/1124772.1124886"},{"issue":"4","key":"9488_CR2","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1007\/s00530-003-0105-4","volume":"9","author":"L Chen","year":"2003","unstructured":"Chen L, Xie X, Fan X et al (2003) A visual attention model for adapting images on small displays. Multimed Syst 9(4):353\u2013364","journal-title":"Multimed Syst"},{"issue":"1","key":"9488_CR3","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1109\/TIP.2009.2030969","volume":"19","author":"C Guo","year":"2010","unstructured":"Guo C, Zhang L (2010) A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Trans Image Process 19(1):185\u2013198","journal-title":"IEEE Trans Image Process"},{"key":"9488_CR4","doi-asserted-by":"crossref","unstructured":"Navalpakkam V, Itti L (2006) An integrated model of top-down and bottom-up attention for optimizing detection speed. In: Proceedings of the international conference on computer vision and pattern recognition, vol. 2, pp. 2049\u20132056","DOI":"10.1109\/CVPR.2006.54"},{"key":"9488_CR5","doi-asserted-by":"crossref","unstructured":"Rutishauser U, Walther D, Koch C, Perona P (2004) Is bottom-up attention useful for object recognition? In: Proceedings of the international conference on computer vision and pattern recognition, vol. 2, pp. 37\u201344","DOI":"10.1109\/CVPR.2004.1315142"},{"key":"9488_CR6","unstructured":"Itti L (2000) Models of bottom-up and top-down visual attention. PhD thesis, California Institute of Technology Pasadena"},{"issue":"6","key":"9488_CR7","doi-asserted-by":"crossref","first-page":"979","DOI":"10.1080\/13506280902771138","volume":"17","author":"C Kanan","year":"2009","unstructured":"Kanan C, Tong MH, Zhang L, Cottrell GW (2009) SUN: top-down saliency using natural statistics. Vis Cognit 17(6):979\u20131003","journal-title":"Vis Cognit"},{"issue":"11","key":"9488_CR8","doi-asserted-by":"crossref","first-page":"1928","DOI":"10.1109\/TIP.2005.854478","volume":"14","author":"Z Lu","year":"2005","unstructured":"Lu Z, Lin W, Yang X, Ong E, Yao S (2005) Modeling visual attention\u2019s modulatory aftereffects on visual sensitivity and quality evaluation. IEEE Trans Image Process 14(11):1928\u20131942","journal-title":"IEEE Trans Image Process"},{"key":"9488_CR9","doi-asserted-by":"crossref","unstructured":"Yan Q, Xu L, Shi J, Jia J (2013) Hierarchical saliency detection. In: Proceedings of the international conference on computer vision and pattern recognition, pp. 1155\u20131162","DOI":"10.1109\/CVPR.2013.153"},{"issue":"3","key":"9488_CR10","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1007\/s11063-012-9276-3","volume":"38","author":"J Zhou","year":"2013","unstructured":"Zhou J, Jin Z (2013) A new framework for multiscale saliency detection based on image patches. Neural Process Lett 38(3):361\u2013374","journal-title":"Neural Process Lett"},{"key":"9488_CR11","doi-asserted-by":"crossref","unstructured":"Yang C, Zhang L, Lu H, Ruan X, Yang MH (2013) Saliency detection via graph-based manifold ranking. In: Proceedings of the international conference on computer vision and pattern recognition","DOI":"10.1109\/CVPR.2013.407"},{"key":"9488_CR12","unstructured":"Zhou J, Jin Z, Yang J (2012) Multiscale saliency detection using principle component analysis. In: Proceedings of the joint international conference on neural networks (IJCNN), pp. 1\u20136"},{"issue":"12","key":"9488_CR13","doi-asserted-by":"crossref","first-page":"3232","DOI":"10.1109\/TIP.2010.2053940","volume":"19","author":"V Gopalakrishnan","year":"2010","unstructured":"Gopalakrishnan V, Hu Y, Rajan D (2010) Random walks on graphs for salient object detection in images. IEEE Trans Image Process 19(12):3232\u20133242","journal-title":"IEEE Trans Image Process"},{"key":"9488_CR14","unstructured":"Chang KY, Liu TL, Chen HT, Lai, SH (2011) Fusing generic objectness and visual saliency for salient object detection. In; 13th IEEE international conference on computer vision (ICCV), pp. 914\u2013921"},{"issue":"2","key":"9488_CR15","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1109\/TPAMI.2010.70","volume":"33","author":"T Liu","year":"2011","unstructured":"Liu T, Yuan Z, Sun J et al (2011) Learning to detect a salient object. IEEE Trans Pattern Anal Mach Intell 33(2):353\u2013367","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"9488_CR16","doi-asserted-by":"crossref","unstructured":"Lu S, Mahadevan V, Vasconcelos N (2014) Learning optimal features for salient object detection. In: Proceedings of the international conference on computer vision and pattern recognition","DOI":"10.1109\/CVPR.2014.357"},{"key":"9488_CR17","doi-asserted-by":"crossref","unstructured":"Achanta R, Estrada F, Wils P, S\u00fcsstrunk S (2008) Salient region detection and segmentation. In: Proceedings of the 6th international conference on computer vision systems, pp. 66\u201375","DOI":"10.1007\/978-3-540-79547-6_7"},{"issue":"5","key":"9488_CR18","doi-asserted-by":"crossref","first-page":"1689","DOI":"10.1109\/TIP.2012.2216276","volume":"22","author":"Y Xie","year":"2013","unstructured":"Xie Y, Lu H, Yang M (2013) Bayesian saliency via low and mid-level cues. IEEE Trans Image Process 22(5):1689\u20131698","journal-title":"IEEE Trans Image Process"},{"key":"9488_CR19","doi-asserted-by":"crossref","unstructured":"Margolin R, Tal A, Zelnik-Manor L (2013) What makes a patch distinct? In: Proceedings of the international conference on computer vision and pattern recognition, pp. 1139\u20131146","DOI":"10.1109\/CVPR.2013.151"},{"issue":"1","key":"9488_CR20","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1109\/TPAMI.2012.89","volume":"35","author":"A Borji","year":"2013","unstructured":"Borji A, Itti L (2013) State-of-the-art in visual attention modeling. IEEE Trans Pattern Anal Mach Intell 35(1):185\u2013207","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"11","key":"9488_CR21","doi-asserted-by":"crossref","first-page":"1254","DOI":"10.1109\/34.730558","volume":"20","author":"L Itti","year":"1998","unstructured":"Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254\u20131259","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"9488_CR22","unstructured":"Bruce N, Tsotsos J (2006) Saliency based on information maximization. In: Advances in neural information processing systems, pp. 155\u2013162"},{"key":"9488_CR23","doi-asserted-by":"crossref","unstructured":"Oliva A, Torralba A, Castelhano M, Henderso J (2003) Top-down control of visual attention in object detection. In: Proceedings of international conference on image processing, pp. 253\u2013256","DOI":"10.1109\/ICIP.2003.1246946"},{"issue":"7","key":"9488_CR24","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1167\/8.7.32","volume":"8","author":"L Zhang","year":"2008","unstructured":"Zhang L, Tong M, Marks T, Shan H, Cottrell G (2008) SUN: A Bayesian framework for saliency using natural statistics. J Vis 8(7):1\u201320","journal-title":"J Vis"},{"issue":"7","key":"9488_CR25","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1167\/8.7.1","volume":"8","author":"D Gao","year":"2008","unstructured":"Gao D, Mahadevan V, Vasconcelos N (2008) On the plausibility of the discriminant center-surround hypothesis for visual saliency. J Vis 8(7):1\u201318 13","journal-title":"J Vis"},{"key":"9488_CR26","unstructured":"Guo C, Ma Q, Zhang L (2008) Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. In: Proceedings of the international conference on computer vision and pattern recognition, pp. 1\u20138"},{"issue":"1","key":"9488_CR27","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1109\/TPAMI.2011.146","volume":"34","author":"X Hou","year":"2012","unstructured":"Hou X, Harel J, Koch C (2012) Image signature: highlighting sparse salient regions. IEEE Trans Pattern Anal Mach Intell 34(1):194\u2013201","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"9488_CR28","doi-asserted-by":"crossref","unstructured":"Achanta R, Hemami S, Estrada F, Susstrunk S (2009) Frequency-tuned salient region detection. In: Proceedings of the international conference on computer vision and pattern recognition, pp. 1597\u20131604","DOI":"10.1109\/CVPR.2009.5206596"},{"key":"9488_CR29","doi-asserted-by":"crossref","unstructured":"Cheng M et al. (2011) Global contrast based salient region detection. In: Proceedings of the international conference on computer vision and pattern recognition, pp. 409\u2013416","DOI":"10.1109\/CVPR.2011.5995344"},{"issue":"10","key":"9488_CR30","doi-asserted-by":"crossref","first-page":"1915","DOI":"10.1109\/TPAMI.2011.272","volume":"34","author":"S Goferman","year":"2012","unstructured":"Goferman S, Zelnik-Manor L, Tal A (2012) Context-aware saliency detection. IEEE Trans Pattern Anal Mach Intell 34(10):1915\u20131926","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"6","key":"9488_CR31","doi-asserted-by":"crossref","first-page":"989","DOI":"10.1109\/TPAMI.2009.27","volume":"31","author":"D Gao","year":"2009","unstructured":"Gao D, Han S, Vasconcelos N (2009) Discriminant saliency, the detection of suspicious coincidences, and applications to visual recognition. IEEE Trans Pattern Anal Mach Intell 31(6):989\u20131005","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"9488_CR32","doi-asserted-by":"crossref","unstructured":"Judd T, Ehinger K, Durand F, Torralba A (2009) Learning to predict where humans look. In: 12th IEEE international conference on computer vision (ICCV), pp. 2106\u20132113","DOI":"10.1109\/ICCV.2009.5459462"},{"key":"9488_CR33","doi-asserted-by":"crossref","unstructured":"Jiang H, Wang J, Yuan Z, Wu Y, Zheng N, Li S (2013) Salient object detection: a discriminative regional feature integration approach. In: Proceedings of the international conference on computer vision and pattern recognition, pp. 2083\u20132090","DOI":"10.1109\/CVPR.2013.271"},{"key":"9488_CR34","unstructured":"Christian S, Alexander W, Khalil F, David C, John Z (2013) Statistical textural distinctiveness for salient region detection in natural images. In: Proceedings of the international conference on computer vision and pattern recognition"},{"key":"9488_CR35","unstructured":"Shen X, Wu Y (2012) A unified approach to salient object detection via low rank matrix recovery. In: Proceedings of the international conference on computer vision and pattern recognition, pp. 853\u2013860"},{"key":"9488_CR36","doi-asserted-by":"crossref","unstructured":"Mai L, Niu Y, Liu F (2013) Saliency aggregation: a data-driven approach. In: Proceedings of the international conference on computer vision and pattern recognition, pp. 1131\u20131138","DOI":"10.1109\/CVPR.2013.150"},{"key":"9488_CR37","doi-asserted-by":"crossref","unstructured":"Jiang Z, Davis L (2013) Submodular salient region detection. In: Proceedings of the international conference on computer vision and pattern recognition, pp. 2043\u20132050","DOI":"10.1109\/CVPR.2013.266"},{"key":"9488_CR38","unstructured":"Zhou D, Bousquet O, Lal TN, Weston J, Sch\u00f6lkopf B (2004) Learning with local and global consistency. In: Advances in neural information processing systems, vol 16"},{"key":"9488_CR39","doi-asserted-by":"crossref","unstructured":"Bengio Y, Delalleau O, Le Roux N (2006) Label propagation and quadratic criterion. In: semi-supervised learning, pp. 193\u2013216","DOI":"10.7551\/mitpress\/6173.003.0016"},{"key":"9488_CR40","unstructured":"Achanta R, Shaji A, Smith K et al (2010) SLIC superpixels. Technical report, EPFL. Tech. Rep. 149300"},{"issue":"11","key":"9488_CR41","doi-asserted-by":"crossref","first-page":"2131","DOI":"10.1109\/TPAMI.2011.53","volume":"33","author":"A Toet","year":"2011","unstructured":"Toet A (2011) Computational versus psychophysical bottom-up image saliency: a comparative evaluation study. IEEE Trans Pattern Anal Mach Intell 33(11):2131\u20132146","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"9488_CR42","unstructured":"Song L, Mahadevan V, Vasconcelos N (2014) Learning optimal seeds for diffusion-based salient object detection. In: Proceedings of the international conference on computer vision and pattern recognition, pp. 2790\u20132797"},{"key":"9488_CR43","unstructured":"Harel J, Koch C, Perona P (2006) Graph-based visual saliency. In: Advances in neural information processing systems, pp. 545\u2013552"},{"issue":"1","key":"9488_CR44","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1109\/TPAMI.2006.3","volume":"28","author":"JVD Weijer","year":"2006","unstructured":"Weijer JVD, Gevers T, Bagdanov AD (2006) Boosting color saliency in image feature detection. IEEE Trans Pattern Anal Mach Intell 28(1):150\u2013156","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"5","key":"9488_CR45","doi-asserted-by":"crossref","first-page":"733","DOI":"10.1109\/TCSVT.2009.2017400","volume":"19","author":"M Wang","year":"2009","unstructured":"Wang M, Hua X, Hong R et al (2009) Unified video annotation via multigraph learning. IEEE Trans Circuits Syst Video Technol 19(5):733\u2013746","journal-title":"IEEE Trans Circuits Syst Video Technol"},{"issue":"1","key":"9488_CR46","first-page":"27","volume":"5","author":"GRG Lanckriet","year":"2002","unstructured":"Lanckriet GRG, Cristianini N, Bartlett P, Ghaoui LE, Jordan MI (2002) Learning the kernel matrix with semidefinite programming. J Mach Learn Res 5(1):27\u201372","journal-title":"J Mach Learn Res"},{"key":"9488_CR47","doi-asserted-by":"crossref","DOI":"10.1017\/CBO9780511804441","volume-title":"Convex optimization","author":"S Boyd","year":"2004","unstructured":"Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge"},{"key":"9488_CR48","doi-asserted-by":"crossref","unstructured":"Alexe B, Deselaers T, Ferrari V (2010) What is an object? In: Proceedings of the international conference on computer vision and pattern recognition, pp. 73\u201380","DOI":"10.1109\/CVPR.2010.5540226"},{"key":"9488_CR49","doi-asserted-by":"crossref","unstructured":"Alpert S, Galun M, Basri R, Brandt A (2007) Image segmentation by probabilistic bottom-up aggregation and cue integration. In: Proceedings of the international conference on computer vision and pattern recognition, pp. 1\u20138","DOI":"10.1109\/CVPR.2007.383017"},{"key":"9488_CR50","unstructured":"Lu Y, Zhang W, Lu H, Xue X (2011) Salient object detection using concavity context. In: 13th IEEE international conference on computer vision (ICCV), Barcelona, Spain"},{"key":"9488_CR51","unstructured":"Lu Y, Zhang W, Jin C, Xue X (2012) Learning attention map from images. In: Proceedings of the international conference computer vision and pattern recognition, Providence, USA"}],"container-title":["Neural Processing Letters"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11063-015-9488-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s11063-015-9488-4\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11063-015-9488-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11063-015-9488-4","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,16]],"date-time":"2023-08-16T02:34:19Z","timestamp":1692153259000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s11063-015-9488-4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,12,7]]},"references-count":51,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2016,12]]}},"alternative-id":["9488"],"URL":"https:\/\/doi.org\/10.1007\/s11063-015-9488-4","relation":{},"ISSN":["1370-4621","1573-773X"],"issn-type":[{"value":"1370-4621","type":"print"},{"value":"1573-773X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2015,12,7]]}}}