{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,4,7]],"date-time":"2024-04-07T02:50:24Z","timestamp":1712458224930},"reference-count":19,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2004,11,1]],"date-time":"2004-11-01T00:00:00Z","timestamp":1099267200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Neural Processing Letters"],"published-print":{"date-parts":[[2004,11]]},"DOI":"10.1007\/s11063-004-2024-6","type":"journal-article","created":{"date-parts":[[2004,11,27]],"date-time":"2004-11-27T04:32:49Z","timestamp":1101529969000},"page":"151-170","source":"Crossref","is-referenced-by-count":24,"title":["Lack of Consistency of Mean Field and Variational break Bayes Approximations for State Space Models"],"prefix":"10.1007","volume":"20","author":[{"given":"Bo","family":"Wang","sequence":"first","affiliation":[]},{"given":"D. M.","family":"Titterington","sequence":"additional","affiliation":[]}],"member":"297","reference":[{"key":"CR1","first-page":"21","volume-title":"Proc. 15th Conference on Uncertainty in Artificial Intelligence","author":"H. Attias","year":"1999","unstructured":"Attias, H.: Inferring parameters and structure of latent variable models by variational Bayes, in H. Prade and K. Laskey (eds.), Proc. 15th Conference on Uncertainty in Artificial Intelligence, pp. 21-30, Stockholm, Sweden, 1999."},{"key":"CR2","first-page":"209","volume-title":"Advances in Neural Information Processing Systems","author":"H. Attias","year":"2000","unstructured":"Attias, H.: A variational Bayesian framework for graphical models, in S. Solla, T. Leen, and K.-R. Muller (eds), Advances in Neural Information Processing Systems 12, pp. 209-215, MIT Press: Cambridge, MA, 2000."},{"key":"CR3","volume-title":"PhD thesis","author":"M. J. Beal","year":"2003","unstructured":"Beal, M. J.: Variational Algorithms for Approximate Bayesian Inference, PhD thesis, University College London, London, 2003."},{"key":"CR4","unstructured":"Corduneanu, A. and Bishop, C. M.: Variational Bayesian model selection for mixture distributions, in T. Richardson and T. Jaakkola (eds.), Proceedings Eighth International Conference on Artificial Intelligence and Statistics, pp. 27-34, 2001."},{"key":"CR5","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1016\/S0024-3795(00)00289-5","volume":"325","author":"C. M. da Fonseca","year":"2001","unstructured":"da Fonseca, C. M. and Petronilho, J.: Explicit inverses of some tridiagonal matrices, Linear Algebra Appl. 325 (2001), 7-21.","journal-title":"Linear Algebra Appl."},{"issue":"1","key":"CR6","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1162\/089976699300016872","volume":"11","author":"B. J. Frey","year":"1999","unstructured":"Frey, B. J. and Hinton, G. E.: Variational learning in nonlinear Gaussian belief networks, Neural Comput. 11(1) (1999), 193-213.","journal-title":"Neural Comput."},{"key":"CR7","first-page":"507","volume-title":"Advances in Neural Information Processing Systems","author":"Z. Ghahramani","year":"2001","unstructured":"Ghahramani, Z. and Beal, M. J.: Propagation algorithms for variational Bayesian learning, in T. Leen, T. Dietterich, and V. Tresp (eds.), Advances in Neural Information Processing Systems 13, pp. 507-513, MIT Press: Cambridge, MA, 2001."},{"key":"CR8","doi-asserted-by":"crossref","first-page":"549","DOI":"10.1111\/1467-9868.00350","volume":"64","author":"P. Hall","year":"2002","unstructured":"Hall, P., Humphreys, K. and Titterington, D. M.: On the adequacy of variational lower bound functions for likelihood-based inference in Markovian models with missing values, J. Roy. Statisti. Soc. Ser. B 64 (2002), 549-564.","journal-title":"J. Roy. Statisti. Soc. Ser. B"},{"key":"CR9","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1007\/978-3-642-57678-2_42","volume-title":"COMPSTAT","author":"K. Humphreys","year":"2000","unstructured":"Humphreys, K. and Titterington, D. M.: Approximate Bayesian inference for simple mixtures, in J. G. Bethlehem and P. G. M. van der Heijden (eds.), COMPSTAT 2000, pp. 331-336, Physica-Verlag: Heidelberg 2000."},{"key":"CR10","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1023\/A:1008932416310","volume":"10","author":"T. S. Jaakkola","year":"2000","unstructured":"Jaakkola, T. S. and Jordan, M. I.: Bayesian logistic regression: a variational approach, Stat. Comput. 10 (2000), 25-37.","journal-title":"Stat. Comput."},{"key":"CR11","first-page":"105","volume-title":"Learning in Graphical Models","author":"M. I. Jordan","year":"1999","unstructured":"Jordan, M. I., Ghahramani, Z., Jaakkola, T. S. and Saul, L. K.: An introduction to variational methods for graphical models, in M. I. Jordan (ed.), Learning in Graphical Models, pp. 105-162, MIT Press: Cambridge 1999."},{"key":"CR12","doi-asserted-by":"crossref","first-page":"1137","DOI":"10.1162\/089976698300017386","volume":"10","author":"H. J. Kappen","year":"1998","unstructured":"Kappen, H. J. and Rodr\u00edguez F. B.: Efficient learning in Boltzmann machines using linear response theory, Neural Comput. 10 (1998), 1137-1156.","journal-title":"Neural Comput."},{"key":"CR13","volume-title":"Technical Report","author":"D. J. C. MacKay","year":"1997","unstructured":"MacKay, D. J. C.: Ensemble learning for hidden Markov models, Technical Report, Cavendish Laboratory, University of Cambridge, 1997."},{"key":"CR14","doi-asserted-by":"crossref","first-page":"7","DOI":"10.7551\/mitpress\/1100.001.0001","volume-title":"Advanced Mean Field Methods","author":"M. Opper","year":"2001","unstructured":"Opper, M. and Winther, O.: From naive mean field theory to the TAP equations, in M. Opper and D. Saad (eds.), Advanced Mean Field Methods, pp. 7-20, The MIT Press: Cambridge, MA, 2001."},{"key":"CR15","unstructured":"Penny, W. D. and Roberts, S. J.: Variational Bayes for 1-dimensional mixture models, Technical Report PARG-2000-01, Oxford University, 2000."},{"issue":"5","key":"CR16","first-page":"995","volume":"1","author":"C. Peterson","year":"1987","unstructured":"Peterson, C. and Anderson, J. R.: A mean field learning algorithm for neural networks, Complex Systems, 1(5) (1987), 995-1019.","journal-title":"Complex Systems"},{"key":"CR17","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1613\/jair.251","volume":"4","author":"L. K. Saul","year":"1996","unstructured":"Saul, L. K., Jaakkola, T. and Jordan, M. I.: Mean field theory of sigmoid belief networks, J. Artif. Intelli. Res., 4 (1996), 61-76.","journal-title":"J. Artif. Intelli. Res."},{"key":"CR18","unstructured":"Wang, B. and Titterington, D. M.: Local convergence of variational Bayes estimators for mixing coefficients, Technical Report 03-4, University of Glasgow. http:\/\/www.stats.gla.ac.uk\/Research\/TechRep2003\/03-4.pdf, 2003."},{"key":"CR19","volume-title":"Graphical Models in Applied Multivariate Statistics","author":"J. Whittaker","year":"1990","unstructured":"Whittaker, J.: Graphical Models in Applied Multivariate Statistics, John Wiley: Chichester 1990."}],"container-title":["Neural Processing Letters"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11063-004-2024-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s11063-004-2024-6\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11063-004-2024-6","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,6,1]],"date-time":"2019-06-01T04:22:54Z","timestamp":1559362974000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s11063-004-2024-6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2004,11]]},"references-count":19,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2004,11]]}},"alternative-id":["DO00002024"],"URL":"https:\/\/doi.org\/10.1007\/s11063-004-2024-6","relation":{},"ISSN":["1370-4621","1573-773X"],"issn-type":[{"value":"1370-4621","type":"print"},{"value":"1573-773X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2004,11]]}}}