{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,17]],"date-time":"2024-11-17T05:18:38Z","timestamp":1731820718060,"version":"3.28.0"},"reference-count":44,"publisher":"Springer Science and Business Media LLC","issue":"38","license":[{"start":{"date-parts":[[2024,8,20]],"date-time":"2024-08-20T00:00:00Z","timestamp":1724112000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2024,8,20]],"date-time":"2024-08-20T00:00:00Z","timestamp":1724112000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100001635","name":"University of Limerick","doi-asserted-by":"crossref","id":[{"id":"10.13039\/501100001635","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimed Tools Appl"],"abstract":"Abstract<\/jats:title>Deepfakes represent a class of synthetic media crafted with the aid of advanced deep learning techniques that exhibit an unparalleled degree of authenticity. The rapid advancement in Artificial Intelligence (AI) has contributed to an increase in the prevalence of deepfakes on the internet, consequently amplifying the spread of misinformation among the public. Consequently, the detection of deepfakes has become a pressing concern. In this context, we put forth a comprehensive framework for deepfake video detection, which is built upon three distinct layers. The first layer, termed as the RGB features extraction layer, is designed to identify potential signs of forgery within the spatial domain of analogous video frames. The second layer, known as the GAN features extraction layer, focuses on the extraction of forgery fingerprints in the high-frequency region. This layer is specifically engineered to detect the fingerprints left by the Generative Adversarial Network (GAN) process in fake videos and the traces of the imaging process in genuine videos. The third and final layer, referred to as the facial region intra-frame inconsistency feature extraction layer, is dedicated to uncovering the anomalies associated with the manipulation process. This is achieved by extracting features from both the inner and outer regions of the manipulated portion of a frame. The extensive experimental evaluations have underscored the superior performance of proposed approach in comparison to existing state-of-the-art methods.<\/jats:p>","DOI":"10.1007\/s11042-024-20012-5","type":"journal-article","created":{"date-parts":[[2024,8,20]],"date-time":"2024-08-20T07:03:37Z","timestamp":1724137417000},"page":"85619-85636","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Combating deepfakes: a comprehensive multilayer deepfake video detection framework"],"prefix":"10.1007","volume":"83","author":[{"given":"Nikhil","family":"Rathoure","sequence":"first","affiliation":[]},{"given":"R. K.","family":"Pateriya","sequence":"additional","affiliation":[]},{"given":"Nitesh","family":"Bharot","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2153-893X","authenticated-orcid":false,"given":"Priyanka","family":"Verma","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,8,20]]},"reference":[{"key":"20012_CR1","doi-asserted-by":"crossref","unstructured":"Heidari A, Jafari Navimipour N, Dag H, Unal M (2024) Deepfake detection using deep learning methods: A systematic and comprehensive review. Wiley Interdisciplinary Reviews: Data Min Knowl Disc 14(2):e1520","DOI":"10.1002\/widm.1520"},{"key":"20012_CR2","doi-asserted-by":"crossref","unstructured":"Khoo B, Phan RCW, Lim CH (2022) Deepfake attribution: On the source identification of artificially generated images. Wiley Interdisciplinary Reviews: Data Min Knowl Disc 12(3):e1438","DOI":"10.1002\/widm.1438"},{"issue":"6","key":"20012_CR3","doi-asserted-by":"publisher","first-page":"607","DOI":"10.1049\/bme2.12031","volume":"10","author":"P Yu","year":"2021","unstructured":"Yu P, Xia Z, Fei J, Lu Y (2021) A survey on deepfake video detection. Iet Biometrics. 10(6):607\u2013624","journal-title":"Iet Biometrics."},{"key":"20012_CR4","unstructured":"Kumar S, Shah N (2018) False information on web and social media: A survey. arXiv preprint arXiv:1804.08559"},{"issue":"4","key":"20012_CR5","doi-asserted-by":"publisher","first-page":"3974","DOI":"10.1007\/s10489-022-03766-z","volume":"53","author":"M Masood","year":"2023","unstructured":"Masood M, Nawaz M, Malik KM, Javed A, Irtaza A, Malik H (2023) Deepfakes generation and detection: State-of-the-art, open challenges, countermeasures, and way forward. Appl Intell 53(4):3974\u20134026","journal-title":"Appl Intell"},{"issue":"3","key":"20012_CR6","doi-asserted-by":"publisher","first-page":"585","DOI":"10.3390\/electronics13030585","volume":"13","author":"LY Gong","year":"2024","unstructured":"Gong LY, Li XJ (2024) A Contemporary Survey on Deepfake Detection: Datasets, Algorithms, and Challenges. Electronics 13(3):585","journal-title":"Electronics"},{"key":"20012_CR7","unstructured":"Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al (2014) Generative Adversarial Nets. In: Ghahramani Z, Welling M, Cortes C, Lawrence N, Weinberger KQ, editors. Advances in Neural Information Processing Systems. vol 27. Curran Associates, Inc.; Available from: https:\/\/proceedings.neurips.cc\/paper_files\/paper\/2014\/file\/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf"},{"key":"20012_CR8","unstructured":"Ho J, Jain A, Abbeel P (2020) Denoising Diffusion Probabilistic Models. In: Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin H, editors. Advances in Neural Information Processing Systems. vol 33. Curran Associates, Inc.; p 6840\u20136851. Available from: https:\/\/proceedings.neurips.cc\/paper_files\/paper\/2020\/file\/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf"},{"key":"20012_CR9","doi-asserted-by":"crossref","unstructured":"Saharia C, Chan W, Chang H, Lee C, Ho J, Salimans T, et al (2022) Palette: Image-to-Image Diffusion Models. In: ACM SIGGRAPH 2022 Conference Proceedings. SIGGRAPH \u201922. New York, NY, USA: Association for Computing Machinery;. Available from: https:\/\/doi.org\/10.1145\/3528233.3530757","DOI":"10.1145\/3528233.3530757"},{"key":"20012_CR10","unstructured":"Han C, Liang JC, Wang Q, Rabbani M, Dianat S, Rao R, et\u00a0al (2024) Image Translation as Diffusion Visual Programmers. Available from: https:\/\/arxiv.org\/abs\/2401.09742"},{"key":"20012_CR11","doi-asserted-by":"crossref","unstructured":"Yang X, Li Y, Lyu S (2019) Exposing Deep Fakes Using Inconsistent Head Poses. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) p 8261\u20138265","DOI":"10.1109\/ICASSP.2019.8683164"},{"key":"20012_CR12","unstructured":"Li Y, Lyu S (2018) Exposing DeepFake Videos By Detecting Face Warping Artifacts"},{"key":"20012_CR13","doi-asserted-by":"publisher","unstructured":"Han B, Han X, Zhang H, Li J, Cao X (2021) Fighting Fake News: Two Stream Network for Deepfake Detection via Learnable SRM. IEEE Transactions on Biometrics, Behavior, and Identity Science. 3(3):320\u2013331. https:\/\/doi.org\/10.1109\/TBIOM.2021.3065735","DOI":"10.1109\/TBIOM.2021.3065735"},{"key":"20012_CR14","doi-asserted-by":"publisher","unstructured":"Yu Y, Ni R, Li W, Zhao Y (2022) Detection of AI-Manipulated Fake Faces via Mining Generalized Features. ACM Trans Multimedia Comput Commun Appl mar;18(4). https:\/\/doi.org\/10.1145\/3499026","DOI":"10.1145\/3499026"},{"key":"20012_CR15","doi-asserted-by":"publisher","first-page":"34","DOI":"10.1016\/j.neunet.2022.11.031","volume":"159","author":"B Liang","year":"2023","unstructured":"Liang B, Wang Z, Huang B, Zou Q, Wang Q, Liang J (2023) Depth map guided triplet network for deepfake face detection. Neural Netw 159:34\u201342. https:\/\/doi.org\/10.1016\/j.neunet.2022.11.031","journal-title":"Neural Netw"},{"key":"20012_CR16","doi-asserted-by":"publisher","unstructured":"Nirkin Y, Wolf L, Keller Y, Hassner T (2022) DeepFake Detection Based on Discrepancies Between Faces and Their Context. IEEE Trans Pattern Anal Mach Intell 44(10):6111\u20136121. https:\/\/doi.org\/10.1109\/TPAMI.2021.3093446","DOI":"10.1109\/TPAMI.2021.3093446"},{"key":"20012_CR17","doi-asserted-by":"publisher","unstructured":"Yang Z, Liang J, Xu Y, Zhang XY, He R (2023) Masked Relation Learning for DeepFake Detection. IEEE Transactions on Information Forensics and Security. 18:1696\u20131708. https:\/\/doi.org\/10.1109\/TIFS.2023.3249566","DOI":"10.1109\/TIFS.2023.3249566"},{"key":"20012_CR18","doi-asserted-by":"publisher","unstructured":"Chen H, Lin Y, Li B, Tan S (2023) Learning Features of Intra-Consistency and Inter-Diversity: Keys Toward Generalizable Deepfake Detection. IEEE Trans Circuits Syst Video Technol 33(3):1468\u20131480. https:\/\/doi.org\/10.1109\/TCSVT.2022.3209336","DOI":"10.1109\/TCSVT.2022.3209336"},{"key":"20012_CR19","doi-asserted-by":"crossref","unstructured":"Liu D, Cui Y, Tan W, Chen Y (2021) SG-Net: Spatial Granularity Network for One-Stage Video Instance Segmentation. In: 2021 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA, USA: IEEE Comput Soc. p 9811\u20139820. Available from: https:\/\/doi.ieeecomputersociety.org\/10.1109\/CVPR46437.2021.00969","DOI":"10.1109\/CVPR46437.2021.00969"},{"key":"20012_CR20","unstructured":"Cao Z, Chu Z, Liu D, Chen Y (201) A Vector-Based Representation to Enhance Head Pose Estimation. In: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision (WACV). p 1188\u20131197"},{"key":"20012_CR21","unstructured":"Wang W, Han C, Zhou T, Liu D (2022) Visual Recognition with Deep Nearest Centroids. Available from: https:\/\/arxiv.org\/abs\/2209.07383"},{"key":"20012_CR22","doi-asserted-by":"crossref","unstructured":"Yan L, Cui Y, Chen Y, Liu D (2021) Hierarchical Attention Fusion for Geo-Localization. In: ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). p 2220\u20132224","DOI":"10.1109\/ICASSP39728.2021.9414517"},{"key":"20012_CR23","doi-asserted-by":"crossref","unstructured":"Chollet F (2017) Xception: Deep Learning with Depthwise Separable Convolutions","DOI":"10.1109\/CVPR.2017.195"},{"key":"20012_CR24","doi-asserted-by":"publisher","unstructured":"Gunturk BK, Altunbasak Y, Mersereau RM (2002) Color plane interpolation using alternating projections. IEEE Trans Image Process 11(9):997\u20131013. https:\/\/doi.org\/10.1109\/TIP.2002.801121","DOI":"10.1109\/TIP.2002.801121"},{"key":"20012_CR25","doi-asserted-by":"publisher","DOI":"10.1016\/j.csi.2023.103825","volume":"89","author":"C Liu","year":"2024","unstructured":"Liu C, Zhu T, Zhao Y, Zhang J, Zhou W (2024) Disentangling different levels of GAN fingerprints for task-specific forensics. Computer Standards & Interfaces. 89:103825","journal-title":"Computer Standards & Interfaces."},{"key":"20012_CR26","unstructured":"Frank J, Eisenhofer T, Sch\u00f6nherr L, Fischer A, Kolossa D, Holz T (2020) Leveraging Frequency Analysis for Deep Fake Image Recognition. In: III HD, Singh A, editors. Proceedings of the 37th International Conference on Machine Learning. vol 119 of Proceedings of Machine Learning Research. PMLR. p 3247\u20133258. Available from:https:\/\/proceedings.mlr.press\/v119\/frank20a.html"},{"key":"20012_CR27","doi-asserted-by":"crossref","unstructured":"R\u00f6ssler A, Cozzolino D, Verdoliva L, Riess C, Thies J, Nie\u00dfner M (2019) FaceForensics++: Learning to Detect Manipulated Facial Images","DOI":"10.1109\/ICCV.2019.00009"},{"key":"20012_CR28","unstructured":"Dufour N, Gully A, Karlsson P, Vorbyov AV, Leung T, Childs J, et al (2019) Deepfakes detection dataset by google & jigsaw. https:\/\/research.google\/blog\/contributing-data-to-deepfake-detection-research\/"},{"key":"20012_CR29","doi-asserted-by":"crossref","unstructured":"Li Y, Yang X, Sun P, Qi H, Lyu S (2020) Celeb-DF: A Large-Scale Challenging Dataset for DeepFake Forensics. In: 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR). p 3204\u20133213","DOI":"10.1109\/CVPR42600.2020.00327"},{"key":"20012_CR30","doi-asserted-by":"crossref","unstructured":"Hempel T, Abdelrahman AA, Al-Hamadi A (2022) 6d Rotation Representation For Unconstrained Head Pose Estimation. In: 2022 IEEE International Conference on Image Processing (ICIP). p 2496\u20132500","DOI":"10.1109\/ICIP46576.2022.9897219"},{"issue":"4","key":"20012_CR31","doi-asserted-by":"publisher","first-page":"2399","DOI":"10.1007\/s00530-023-01118-6","volume":"29","author":"G Yang","year":"2023","unstructured":"Yang G, Wei A, Fang X, Zhang J (2023Aug) FDS_2D: rethinking magnitude-phase features for DeepFake detection. Multimedia Syst 29(4):2399\u20132413. https:\/\/doi.org\/10.1007\/s00530-023-01118-6","journal-title":"Multimedia Syst"},{"issue":"5","key":"20012_CR32","doi-asserted-by":"publisher","first-page":"1371","DOI":"10.1007\/s10207-023-00695-x","volume":"22","author":"S Asha","year":"2023","unstructured":"Asha S, Vinod P, Menon VG (2023Oct) A defensive framework for deepfake detection under adversarial settings using temporal and spatial features. Int J Inf Secur 22(5):1371\u20131382. https:\/\/doi.org\/10.1007\/s10207-023-00695-x","journal-title":"Int J Inf Secur"},{"key":"20012_CR33","doi-asserted-by":"publisher","unstructured":"Wang T, Cheng H, Chow KP, Nie L (2023) Deep Convolutional Pooling Transformer for Deepfake Detection. ACM Trans Multimedia Comput Commun Appl. may;19(6)https:\/\/doi.org\/10.1145\/3588574","DOI":"10.1145\/3588574"},{"issue":"11","key":"20012_CR34","doi-asserted-by":"publisher","first-page":"5589","DOI":"10.1007\/s00371-022-02683-z","volume":"39","author":"G Yang","year":"2023","unstructured":"Yang G, Xu K, Fang X, Zhang J (2023Nov) Video face forgery detection via facial motion-assisted capturing dense optical flow truncation. Vis Comput 39(11):5589\u20135608. https:\/\/doi.org\/10.1007\/s00371-022-02683-z","journal-title":"Vis Comput"},{"key":"20012_CR35","doi-asserted-by":"publisher","unstructured":"Hu Z, Xie H, Yu L, Gao X, Shang Z, Zhang Y (2022) Dynamic-Aware Federated Learning for Face Forgery Video Detection. ACM Trans Intell Syst Technol. jun;13(4)https:\/\/doi.org\/10.1145\/3501814","DOI":"10.1145\/3501814"},{"key":"20012_CR36","doi-asserted-by":"publisher","unstructured":"Miao C, Tan Z, Chu Q, Yu N, Guo G (2022) Hierarchical Frequency-Assisted Interactive Networks for Face Manipulation Detection. IEEE Transactions on Information Forensics and Security. 17:3008\u20133021. https:\/\/doi.org\/10.1109\/TIFS.2022.3198275","DOI":"10.1109\/TIFS.2022.3198275"},{"key":"20012_CR37","doi-asserted-by":"publisher","unstructured":"Huang Y, Juefei-Xu F, Guo Q, Liu Y, Pu G (2022) FakeLocator: Robust Localization of GAN-Based Face Manipulations. IEEE Transactions on Information Forensics and Security. 17:2657\u20132672.https:\/\/doi.org\/10.1109\/TIFS.2022.3141262","DOI":"10.1109\/TIFS.2022.3141262"},{"issue":"2","key":"20012_CR38","doi-asserted-by":"publisher","first-page":"1081","DOI":"10.1609\/aaai.v35i2.16193","volume":"35","author":"S Chen","year":"2021","unstructured":"Chen S, Yao T, Chen Y, Ding S, Li J, Ji R (2021) Local Relation Learning for Face Forgery Detection. Proceedings of the AAAI Conference on Artificial Intelligence. 35(2):1081\u20131088. https:\/\/doi.org\/10.1609\/aaai.v35i2.16193","journal-title":"Proceedings of the AAAI Conference on Artificial Intelligence."},{"key":"20012_CR39","doi-asserted-by":"crossref","unstructured":"Luo Z, Kamata SI, Sun Z (2021) Transformer And Node-Compressed Dnn Based Dual-Path System For Manipulated Face Detection. In: 2021 IEEE International Conference on Image Processing (ICIP). p 3882\u20133886","DOI":"10.1109\/ICIP42928.2021.9506222"},{"key":"20012_CR40","doi-asserted-by":"crossref","unstructured":"Gu Z, Chen Y, Yao T, Ding S, Li J, Huang F, et al (2021) Spatiotemporal Inconsistency Learning for DeepFake Video Detection. CoRR. arXiv:2109.01860","DOI":"10.1145\/3474085.3475508"},{"key":"20012_CR41","doi-asserted-by":"crossref","unstructured":"Qian Y, Yin G, Sheng L, Chen Z, Shao J (2020) Thinking in Frequency: Face Forgery Detection by Mining Frequency-aware Clues","DOI":"10.1007\/978-3-030-58610-2_6"},{"key":"20012_CR42","doi-asserted-by":"publisher","first-page":"216","DOI":"10.1016\/j.neunet.2023.01.001","volume":"160","author":"J Ke","year":"2023","unstructured":"Ke J, Wang L (2023) DF-UDetector: An effective method towards robust deepfake detection via feature restoration. Neural Netw 160:216\u2013226. https:\/\/doi.org\/10.1016\/j.neunet.2023.01.001","journal-title":"Neural Netw"},{"key":"20012_CR43","doi-asserted-by":"publisher","unstructured":"Hu J, Liao X, Wang W, Qin Z (2022) Detecting Compressed Deepfake Videos in Social Networks Using Frame-Temporality Two-Stream Convolutional Network. IEEE Trans Circuits Syst Video Technol 32(3):1089\u20131102. https:\/\/doi.org\/10.1109\/TCSVT.2021.3074259","DOI":"10.1109\/TCSVT.2021.3074259"},{"key":"20012_CR44","doi-asserted-by":"crossref","unstructured":"Choi DH, Lee HJ, Lee S, Kim JU, Ro YM (2020) Fake Video Detection With Certainty-Based Attention Network. In: 2020 IEEE International Conference on Image Processing (ICIP). p 823\u2013827","DOI":"10.1109\/ICIP40778.2020.9190655"}],"container-title":["Multimedia Tools and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-024-20012-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11042-024-20012-5\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-024-20012-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,16]],"date-time":"2024-11-16T10:13:55Z","timestamp":1731752035000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11042-024-20012-5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,8,20]]},"references-count":44,"journal-issue":{"issue":"38","published-online":{"date-parts":[[2024,11]]}},"alternative-id":["20012"],"URL":"https:\/\/doi.org\/10.1007\/s11042-024-20012-5","relation":{},"ISSN":["1573-7721"],"issn-type":[{"type":"electronic","value":"1573-7721"}],"subject":[],"published":{"date-parts":[[2024,8,20]]},"assertion":[{"value":"10 June 2024","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"9 July 2024","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"1 August 2024","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"20 August 2024","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"There is no conflict of interest among the authors of the manuscript.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest\/Competing interests"}}]}}