{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T19:07:00Z","timestamp":1732043220612},"reference-count":63,"publisher":"Springer Science and Business Media LLC","issue":"24","license":[{"start":{"date-parts":[[2024,1,15]],"date-time":"2024-01-15T00:00:00Z","timestamp":1705276800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,15]],"date-time":"2024-01-15T00:00:00Z","timestamp":1705276800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimed Tools Appl"],"DOI":"10.1007\/s11042-023-17953-8","type":"journal-article","created":{"date-parts":[[2024,1,15]],"date-time":"2024-01-15T05:02:01Z","timestamp":1705294921000},"page":"64393-64416","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":10,"title":["Neighbour adjusted dispersive flies optimization based deep hybrid sentiment analysis framework"],"prefix":"10.1007","volume":"83","author":[{"given":"Ranit Kumar","family":"Dey","sequence":"first","affiliation":[]},{"given":"Asit Kumar","family":"Das","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,1,15]]},"reference":[{"issue":"7","key":"17953_CR1","doi-asserted-by":"publisher","first-page":"3506","DOI":"10.1016\/j.eswa.2013.10.056","volume":"41","author":"ZH Deng","year":"2014","unstructured":"Deng ZH, Luo KH, Yu HL (2014) A study of supervised term weighting scheme for sentiment analysis. Expert Syst Appl 41(7):3506\u20133513","journal-title":"Expert Syst Appl"},{"key":"17953_CR2","unstructured":"Collomb A, Costea C, Joyeux D, Hasan O, Brunie L (2014) A study and comparison of sentiment analysis methods for reputation evaluation. Rapport De recherche RR-LIRIS-2014-002"},{"issue":"5","key":"17953_CR3","doi-asserted-by":"publisher","first-page":"526","DOI":"10.1007\/s10791-008-9070-z","volume":"12","author":"E Boiy","year":"2009","unstructured":"Boiy E, Moens MF (2009) A machine learning approach to sentiment analysis in multilingual web texts. Inf Retr 12(5):526\u2013558","journal-title":"Inf Retr"},{"key":"17953_CR4","unstructured":"Yang CS, Shih HP (2012) A rule-based approach for effective sentiment analysis. In: PACIS, p 181"},{"key":"17953_CR5","doi-asserted-by":"crossref","unstructured":"Ding X, Liu B, Yu PS (2008) A holistic lexicon-based approach to opinion mining. In: Proceedings of the 2008 international conference on web search and data mining, pp 231\u2013240","DOI":"10.1145\/1341531.1341561"},{"issue":"2","key":"17953_CR6","doi-asserted-by":"publisher","first-page":"267","DOI":"10.1162\/COLI_a_00049","volume":"37","author":"M Taboada","year":"2011","unstructured":"Taboada M, Brooke J, Tofiloski M, Voll K, Stede M (2011) Lexicon-based methods for sentiment analysis. Comput Linguist 37(2):267\u2013307","journal-title":"Comput Linguist"},{"key":"17953_CR7","doi-asserted-by":"crossref","unstructured":"Dey RK, Das AK (2023) Modified term frequency-inverse document frequency based deep hybrid framework for sentiment analysis. Multimed Tools Appl:1\u201324","DOI":"10.1007\/s11042-023-14653-1"},{"key":"17953_CR8","doi-asserted-by":"crossref","unstructured":"Solanki A, Bamrara R, Kumar K, Singh N (2020) VEDL: a novel video event searching technique using deep learning. In: Soft computing: theories and applications. Springer, pp 905\u2013914","DOI":"10.1007\/978-981-15-0751-9_83"},{"key":"17953_CR9","doi-asserted-by":"crossref","unstructured":"Yasmin G, Das AK, Nayak J, Vimal S, Dutta S (2022) A rough set theory and deep learning-based predictive system for gender recognition using audio speech. Soft Comput:1\u201324","DOI":"10.1007\/s00500-022-07074-z"},{"issue":"1","key":"17953_CR10","doi-asserted-by":"publisher","first-page":"457","DOI":"10.1007\/s11831-022-09805-9","volume":"30","author":"V Sakshi Kukreja","year":"2023","unstructured":"Sakshi Kukreja V (2023) Image segmentation techniques: statistical, comprehensive, semi-automated analysis and an application perspective analysis of mathematical expressions. Arch Comput Methods Eng 30(1):457\u2013495","journal-title":"Arch Comput Methods Eng"},{"key":"17953_CR11","doi-asserted-by":"publisher","DOI":"10.1016\/j.engappai.2021.104292","volume":"103","author":"V Kukreja","year":"2021","unstructured":"Kukreja V et al (2021) A retrospective study on handwritten mathematical symbols and expressions: classification and recognition. Eng Appl Artif Intell 103:104292","journal-title":"Eng Appl Artif Intell"},{"key":"17953_CR12","unstructured":"Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25"},{"key":"17953_CR13","doi-asserted-by":"crossref","unstructured":"Kalchbrenner N, Grefenstette E, Blunsom P (2014) A convolutional neural network for modelling sentences. arXiv:1404.2188","DOI":"10.3115\/v1\/P14-1062"},{"key":"17953_CR14","doi-asserted-by":"publisher","first-page":"23253","DOI":"10.1109\/ACCESS.2017.2776930","volume":"6","author":"Z Jianqiang","year":"2018","unstructured":"Jianqiang Z, Xiaolin G, Xuejun Z (2018) Deep convolution neural networks for twitter sentiment analysis. IEEE Access 6:23253\u201323260","journal-title":"IEEE Access"},{"key":"17953_CR15","unstructured":"Chen, G (2016) A gentle tutorial of recurrent neural network with error backpropagation. arXiv:1610.02583"},{"issue":"3","key":"17953_CR16","doi-asserted-by":"publisher","first-page":"517","DOI":"10.1109\/TASLP.2015.2400218","volume":"23","author":"M Sundermeyer","year":"2015","unstructured":"Sundermeyer M, Ney H, Schl\u00fcter R (2015) From feedforward to recurrent LSTM neural networks for language modeling. IEEE\/ACM Trans Audio, Speech, Lang Process 23(3):517\u2013529","journal-title":"IEEE\/ACM Trans Audio, Speech, Lang Process"},{"issue":"8","key":"17953_CR17","doi-asserted-by":"publisher","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","volume":"9","author":"S Hochreiter","year":"1997","unstructured":"Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735\u20131780","journal-title":"Neural Comput"},{"key":"17953_CR18","doi-asserted-by":"crossref","unstructured":"Bodapati JD, Veeranjaneyulu N, Shareef SN (2019) Sentiment analysis from movie reviews using LSTMS. Ingenierie des Systemes d\u2019Information 24(1)","DOI":"10.18280\/isi.240119"},{"key":"17953_CR19","doi-asserted-by":"publisher","first-page":"26944","DOI":"10.1109\/ACCESS.2017.2773825","volume":"5","author":"A Ghosh","year":"2017","unstructured":"Ghosh A, Das S, Mallipeddi R, Das AK, Dash SS (2017) A modified differential evolution with distance-based selection for continuous optimization in presence of noise. IEEE Access 5:26944\u201326964","journal-title":"IEEE Access"},{"key":"17953_CR20","doi-asserted-by":"crossref","unstructured":"Al-Rifaie MM (2014) Dispersive flies optimisation. In: 2014 Federated conference on computer science and information systems. IEEE, pp 529\u2013538","DOI":"10.15439\/2014F142"},{"issue":"4","key":"17953_CR21","doi-asserted-by":"publisher","first-page":"1093","DOI":"10.1016\/j.asej.2014.04.011","volume":"5","author":"W Medhat","year":"2014","unstructured":"Medhat W, Hassan A, Korashy H (2014) Sentiment analysis algorithms and applications: a survey. Ain Shams Eng J 5(4):1093\u20131113","journal-title":"Ain Shams Eng J"},{"key":"17953_CR22","first-page":"417","volume":"6","author":"F Sebastiani","year":"2006","unstructured":"Sebastiani F, Esuli A (2006) SentiwordNet: a publicly available lexical resource for opinion mining. LREC 6:417\u2013422","journal-title":"LREC"},{"key":"17953_CR23","unstructured":"Wordnet|a lexical database for english. https:\/\/wordnet.princeton.edu\/. Accessed 15 Sep 2023"},{"issue":"4","key":"17953_CR24","doi-asserted-by":"publisher","first-page":"46","DOI":"10.1109\/MIS.2009.105","volume":"25","author":"Y Dang","year":"2009","unstructured":"Dang Y, Zhang Y, Chen H (2009) A lexicon-enhanced method for sentiment classification: an experiment on online product reviews. IEEE Intell Syst 25(4):46\u201353","journal-title":"IEEE Intell Syst"},{"issue":"4","key":"17953_CR25","first-page":"317","volume":"23","author":"IS Kang","year":"2013","unstructured":"Kang IS (2013) A comparative study on using sentiwordnet for english twitter sentiment analysis. J Korean Inst Intell Syst 23(4):317\u2013324","journal-title":"J Korean Inst Intell Syst"},{"key":"17953_CR26","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2022.119028","volume":"213","author":"V Kukreja","year":"2023","unstructured":"Kukreja V et al (2023) Recent trends in mathematical expressions recognition: an lda-based analysis. Expert Syst Appl 213:119028","journal-title":"Expert Syst Appl"},{"key":"17953_CR27","doi-asserted-by":"publisher","first-page":"397","DOI":"10.1016\/j.patrec.2020.07.035","volume":"138","author":"J Zhao","year":"2020","unstructured":"Zhao J, Zeng D, Xiao Y, Che L, Wang M (2020) User personality prediction based on topic preference and sentiment analysis using LSTM model. Pattern Recognit Lett 138:397\u2013402","journal-title":"Pattern Recognit Lett"},{"issue":"03","key":"17953_CR28","first-page":"151","volume":"3","author":"M Tripathi","year":"2021","unstructured":"Tripathi M (2021) Sentiment analysis of nepali Covid19 tweets using NB SVM and LSTM. J Artif Intell 3(03):151\u2013168","journal-title":"J Artif Intell"},{"issue":"2","key":"17953_CR29","first-page":"37","volume":"9","author":"A Allahverdipour","year":"2018","unstructured":"Allahverdipour A, Soleimanian Gharehchopogh F (2018) An improved k-nearest neighbor with crow search algorithm for feature selection in text documents classification. J Adv Comput Res 9(2):37\u201348","journal-title":"J Adv Comput Res"},{"key":"17953_CR30","doi-asserted-by":"crossref","unstructured":"AL-Deen MS, Yu L, Aldhubri A, Qaid GR (2022) Study on sentiment classification strategies based on the fuzzy logic with crow search algorithm. Soft Comput 26(22):12611\u201312622","DOI":"10.1007\/s00500-022-07243-0"},{"key":"17953_CR31","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.eswa.2016.06.005","volume":"62","author":"A Onan","year":"2016","unstructured":"Onan A, Korukoglu S, Bulut H (2016) A multiobjective weighted voting ensemble classifier based on differential evolution algorithm for text sentiment classification. Expert Syst Appl 62:1\u201316","journal-title":"Expert Syst Appl"},{"issue":"2","key":"17953_CR32","doi-asserted-by":"publisher","first-page":"223","DOI":"10.1108\/IJICC-01-2020-0004","volume":"13","author":"A Dixit","year":"2020","unstructured":"Dixit A, Mani A, Bansal R (2020) DEPSOSVM: variant of differential evolution based on pso for image and text data classification. Int J Intell Comput Cybern 13(2):223\u2013238","journal-title":"Int J Intell Comput Cybern"},{"key":"17953_CR33","doi-asserted-by":"crossref","unstructured":"Al-Rifaie MM, Aber A (2016) Dispersive flies optimisation and medical imaging. In: Recent advances in computational optimization: results of the workshop on computational optimization WCO 2014. Springer, pp 183\u2013203","DOI":"10.1007\/978-3-319-21133-6_11"},{"issue":"19","key":"17953_CR34","doi-asserted-by":"publisher","first-page":"3532","DOI":"10.3390\/math10193532","volume":"10","author":"M Behera","year":"2022","unstructured":"Behera M, Sarangi A, Mishra D, Mallick PK, Shafi J, Srinivasu PN, Ijaz MF (2022) Automatic data clustering by hybrid enhanced firefly and particle swarm optimization algorithms. Mathematics 10(19):3532","journal-title":"Mathematics"},{"key":"17953_CR35","doi-asserted-by":"crossref","unstructured":"Kumar A, Khorwal R (2017) Firefly algorithm for feature selection in sentiment analysis. In: Computational intelligence in data mining: proceedings of the international conference on CIDM. Springer, pp 693\u2013703","DOI":"10.1007\/978-981-10-3874-7_66"},{"issue":"2","key":"17953_CR36","doi-asserted-by":"publisher","first-page":"2382","DOI":"10.3934\/mbe.2023112","volume":"20","author":"H Swapnarekha","year":"2023","unstructured":"Swapnarekha H, Dash PB, Pelusi D (2023) An optimistic firefly algorithm-based deep learning approach for sentiment analysis of COVID-19 tweets. Math Biosci Eng 20(2):2382\u20132407","journal-title":"Math Biosci Eng"},{"key":"17953_CR37","doi-asserted-by":"publisher","first-page":"14637","DOI":"10.1109\/ACCESS.2019.2892852","volume":"7","author":"F Iqbal","year":"2019","unstructured":"Iqbal F, Hashmi JM, Fung BC, Batool R, Khattak AM, Aleem S, Hung PC (2019) A hybrid framework for sentiment analysis using genetic algorithm based feature reduction. IEEE Access 7:14637\u201314652","journal-title":"IEEE Access"},{"issue":"4","key":"17953_CR38","first-page":"139","volume":"3","author":"M Govindarajan","year":"2013","unstructured":"Govindarajan M (2013) Sentiment analysis of movie reviews using hybrid method of naive bayes and genetic algorithm. Int J Adv Comput Res 3(4):139","journal-title":"Int J Adv Comput Res"},{"key":"17953_CR39","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2020.106189","volume":"90","author":"MA Mosa","year":"2020","unstructured":"Mosa MA (2020) A novel hybrid particle swarm optimization and gravitational search algorithm for multi-objective optimization of text mining. Appl Soft Comput 90:106189","journal-title":"Appl Soft Comput"},{"issue":"1","key":"17953_CR40","doi-asserted-by":"publisher","first-page":"76","DOI":"10.4018\/IJAEC.2018010105","volume":"9","author":"L Goel","year":"2018","unstructured":"Goel L, Garg A (2018) Sentiment analysis of social networking websites using gravitational search optimization algorithm. Int J Appl Evol Comput (IJAEC) 9(1):76\u201385","journal-title":"Int J Appl Evol Comput (IJAEC)"},{"key":"17953_CR41","doi-asserted-by":"publisher","first-page":"818","DOI":"10.1016\/j.procs.2023.01.062","volume":"218","author":"MP Behera","year":"2023","unstructured":"Behera MP, Sarangi A, Mishra D, Sarangi SK (2023) A hybrid machine learning algorithm for heart and liver disease prediction using modified particle swarm optimization with support vector machine. Procedia Comput Sci 218:818\u2013827","journal-title":"Procedia Comput Sci"},{"key":"17953_CR42","doi-asserted-by":"crossref","unstructured":"Behera MP, Sarangi A, Mishra D (2021) Analysis of Gaussian and Cauchy mutations in k-means particle swarm optimization algorithm for data clustering. Tech Adv Mach Learn Healthc:103\u2013117","DOI":"10.1007\/978-981-33-4698-7_6"},{"key":"17953_CR43","doi-asserted-by":"crossref","unstructured":"Kumar Gupta D, Srikanth Reddy K, Shweta, Ekbal A (2015) PSO-asent: feature selection using particle swarm optimization for aspect based sentiment analysis. In: International conference on applications of natural language to information systems. Springer, pp 220\u2013233","DOI":"10.1007\/978-3-319-19581-0_20"},{"key":"17953_CR44","first-page":"8887","volume":"975","author":"EM Badr","year":"2019","unstructured":"Badr EM, Salam MA, Ali M, Ahmed H (2019) Social media sentiment analysis using machine learning and optimization techniques. Int J Comput Appl 975:8887","journal-title":"Int J Comput Appl"},{"issue":"6","key":"17953_CR45","doi-asserted-by":"publisher","first-page":"3307","DOI":"10.1007\/s00500-021-05839-6","volume":"27","author":"C Wu","year":"2023","unstructured":"Wu C, Khishe M, Mohammadi M, Taher Karim SH, Rashid TA (2023) Evolving deep convolutional neutral network by hybrid sine-cosine and extreme learning machine for real-time covid19 diagnosis from x-ray images. Soft Comput 27(6):3307\u20133326","journal-title":"Soft Comput"},{"key":"17953_CR46","doi-asserted-by":"publisher","first-page":"193","DOI":"10.1007\/s40096-020-00327-8","volume":"14","author":"R Talaei Pashiri","year":"2020","unstructured":"Talaei Pashiri R, Rostami Y, Mahrami M (2020) Spam detection through feature selection using artificial neural network and sine-cosine algorithm. Math Sci 14:193\u2013199","journal-title":"Math Sci"},{"key":"17953_CR47","unstructured":"Internet slang dictionary & text slang translator. https:\/\/www.noslang.com\/. Accessed 15 Sep 2023"},{"key":"17953_CR48","unstructured":"Complete list of text abbreviations & acronyms | webopedia. https:\/\/www.webopedia.com\/reference\/text-message-abbreviations\/. Accessed 15 Sep 2023"},{"key":"17953_CR49","doi-asserted-by":"crossref","unstructured":"Dey RK, Das AK (2022) A simple strategy for handling \u2018NOT\u2019 can improve the performance of sentiment analysis. In: Computational intelligence in pattern recognition: proceedings of CIPR 2022. Springer, pp 255\u2013267","DOI":"10.1007\/978-981-19-3089-8_25"},{"key":"17953_CR50","unstructured":"nLP-replace apostrophe\/short words in python-stack overflow. https:\/\/stackoverflow.com\/questions\/43018030\/replace-apostrophe-short-words-in-python. Accessed 15 Sep 2023"},{"issue":"1\u20134","key":"17953_CR51","doi-asserted-by":"publisher","first-page":"43","DOI":"10.1007\/s13042-010-0001-0","volume":"1","author":"Y Zhang","year":"2010","unstructured":"Zhang Y, Jin R, Zhou ZH (2010) Understanding bag-of-words model: a statistical framework. Int J Mach Learn Cybern 1(1\u20134):43\u201352","journal-title":"Int J Mach Learn Cybern"},{"key":"17953_CR52","unstructured":"Introduction to word embedding and word2vec|by dhruvil karani|towards data science. https:\/\/towardsdatascience.com\/introduction-to-word-embedding-and-word2vec-652d0c2060fa. Accessed 15 Sep 2023"},{"key":"17953_CR53","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.eswa.2016.09.005","volume":"66","author":"F Enr\u00edquez","year":"2016","unstructured":"Enr\u00edquez F, Troyano JA, L\u00f3pez-Solaz T (2016) An approach to the use of word embeddings in an opinion classification task. Expert Syst Appl 66:1\u20136","journal-title":"Expert Syst Appl"},{"key":"17953_CR54","unstructured":"Github-mmihaltz\/word2vec-googlenews-vectors: word2vec google news model. https:\/\/github.com\/mmihaltz\/word2vec-GoogleNews-vectors. Accessed 15 Sep 2023"},{"key":"17953_CR55","unstructured":"Abdulelah. Etsy reviews|kaggle. https:\/\/www.kaggle.com\/csabdulelah\/etsy-seller-reviews. Accessed 15 Sep 2023"},{"key":"17953_CR56","unstructured":"Siddhartha M. Amazon alexa reviews | kaggle. https:\/\/www.kaggle.com\/sid321axn\/amazon-alexa-reviews. Accessed 15 Sep 2023"},{"key":"17953_CR57","unstructured":"Wolber L. Facebook_reviews_trustpilot | kaggle. https:\/\/www.kaggle.com\/leonwolber\/facebook-reviews-trustpilot. Accessed 15 Sep 2023"},{"key":"17953_CR58","unstructured":"Varshney A. \"Big basket\" google play app reviews for basic nlp | kaggle. https:\/\/www.kaggle.com\/apurvavarshney\/big-basket-google-play-app-reviews-for-basic-nlp. Accessed 15 Sep 2023"},{"key":"17953_CR59","unstructured":"Agrawal D. Tweetsentimentanalysis\/twitter.csv at master $$\\cdot $$ dakshitagrawal\/tweetsentimentanalysis $$\\cdot $$ github. https:\/\/github.com\/dakshitagrawal\/TweetSentimentAnalysis\/blob\/master\/Twitter.csv. Accessed 15 Sep 2023"},{"key":"17953_CR60","unstructured":"Sinha A. Sentiment analysis for financial news | kaggle. https:\/\/www.kaggle.com\/ankurzing\/sentiment-analysis-for-financial-news. Accessed 15 Sep 2023"},{"key":"17953_CR61","unstructured":"Rai R. Wine reviews | kaggle. https:\/\/www.kaggle.com\/krrai77\/wine-reviews. Accessed 15 Sep 2023"},{"issue":"1","key":"17953_CR62","first-page":"1929","volume":"15","author":"N Srivastava","year":"2014","unstructured":"Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929\u20131958","journal-title":"J Mach Learn Res"},{"key":"17953_CR63","unstructured":"Cohen\u2019s kappa - wikipedia. https:\/\/en.wikipedia.org\/wiki\/Cohen_kappa. Accessed 15 Sep 2023"}],"container-title":["Multimedia Tools and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-17953-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11042-023-17953-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-17953-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,8]],"date-time":"2024-07-08T17:41:59Z","timestamp":1720460519000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11042-023-17953-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1,15]]},"references-count":63,"journal-issue":{"issue":"24","published-online":{"date-parts":[[2024,7]]}},"alternative-id":["17953"],"URL":"https:\/\/doi.org\/10.1007\/s11042-023-17953-8","relation":{},"ISSN":["1573-7721"],"issn-type":[{"value":"1573-7721","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,1,15]]},"assertion":[{"value":"19 September 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"14 December 2023","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"18 December 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"15 January 2024","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that this manuscript has no conflict of interest with any other published source and has not been published previously (partly or in full). No data have been fabricated or manipulated to support our conclusions.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflicts of interest"}}]}}