{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,11]],"date-time":"2024-08-11T05:12:53Z","timestamp":1723353173459},"reference-count":32,"publisher":"Springer Science and Business Media LLC","issue":"21","license":[{"start":{"date-parts":[[2024,1,2]],"date-time":"2024-01-02T00:00:00Z","timestamp":1704153600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,2]],"date-time":"2024-01-02T00:00:00Z","timestamp":1704153600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimed Tools Appl"],"DOI":"10.1007\/s11042-023-17908-z","type":"journal-article","created":{"date-parts":[[2024,1,2]],"date-time":"2024-01-02T08:02:46Z","timestamp":1704182566000},"page":"60603-60626","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Relative likelihood based aggregated dual deep neural network for skin lesion recognition in dermoscopy images"],"prefix":"10.1007","volume":"83","author":[{"given":"S.","family":"Anand","sequence":"first","affiliation":[]},{"given":"A.","family":"Sheeba","sequence":"additional","affiliation":[]},{"given":"M. K.","family":"Maha Tharshini","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,1,2]]},"reference":[{"issue":"4","key":"17908_CR1","doi-asserted-by":"publisher","first-page":"183","DOI":"10.1016\/j.jksuci.2023.03.011","volume":"35","author":"X Liu","year":"2023","unstructured":"Liu X, Hou S, Liu S, Ding W, Zhang Y (2023) Attention-based multimodal glioma segmentation with multi-attention layers for small-intensity dissimilarity. J King Saud Univ - Comput Inf Sci 35(4):183\u2013195. https:\/\/doi.org\/10.1016\/j.jksuci.2023.03.011","journal-title":"J King Saud Univ - Comput Inf Sci"},{"key":"17908_CR2","doi-asserted-by":"publisher","first-page":"281","DOI":"10.1016\/j.inffus.2023.02.005","volume":"96","author":"S Liu","year":"2023","unstructured":"Liu S, Huang S, Wang S, Muhammad K, Bellavista P, Del Ser J (2023) August). Visual tracking in complex scenes: A location fusion mechanism based on the combination of multiple visual cognition flows. Inf Fusion 96:281\u2013296. https:\/\/doi.org\/10.1016\/j.inffus.2023.02.005","journal-title":"Inf Fusion"},{"key":"17908_CR3","doi-asserted-by":"publisher","first-page":"110570","DOI":"10.1016\/j.asoc.2023.110570","volume":"145","author":"S Wang","year":"2023","unstructured":"Wang S, Huang S, Liu S, Bi Y (2023) Not just select samples, but exploration: Genetic programming aided remote sensing target detection under deep learning. Appl Soft Comput 145:110570. https:\/\/doi.org\/10.1016\/j.asoc.2023.110570","journal-title":"Appl Soft Comput"},{"issue":"5\u20136","key":"17908_CR4","doi-asserted-by":"publisher","first-page":"3713","DOI":"10.1007\/s11042-018-6927-z","volume":"79","author":"JB Janney","year":"2018","unstructured":"Janney JB, Roslin S (2018) Classification of melanoma from Dermoscopic data using machine learning techniques. Multimed Tools Appl 79(5\u20136):3713\u20133728. https:\/\/doi.org\/10.1007\/s11042-018-6927-z","journal-title":"Multimed Tools Appl"},{"key":"17908_CR5","doi-asserted-by":"publisher","first-page":"95716","DOI":"10.1109\/access.2022.3199613","volume":"10","author":"Y Nie","year":"2022","unstructured":"Nie Y, Sommella P, Carratu M, Ferro M, O\u2019Nils M, Lundgren J (2022) Recent advances in diagnosis of skin lesions using dermoscopic images based on deep learning. IEEE Access 10:95716\u201395747. https:\/\/doi.org\/10.1109\/access.2022.3199613","journal-title":"IEEE Access"},{"key":"17908_CR6","doi-asserted-by":"publisher","first-page":"105450","DOI":"10.1016\/j.compbiomed.2022.105450","volume":"145","author":"L Talavera-Mart\u00ednez","year":"2022","unstructured":"Talavera-Mart\u00ednez L, Bibiloni P, Giacaman A, Taberner R, Hernando LJDP, Gonz\u00e1lez-Hidalgo M (2022) A novel approach for skin lesion symmetry classification with a deep learning model. Comput Biol Med 145:105450. https:\/\/doi.org\/10.1016\/j.compbiomed.2022.105450","journal-title":"Comput Biol Med"},{"key":"17908_CR7","doi-asserted-by":"publisher","first-page":"58","DOI":"10.1016\/j.patrec.2020.12.015","volume":"143","author":"MA Khan","year":"2021","unstructured":"Khan MA, Akram T, Zhang YD, Sharif M (2021) Attributes based skin lesion detection and recognition: a mask RCNN and transfer learning-based deep learning framework. Pattern Recogn Lett 143:58\u201366. https:\/\/doi.org\/10.1016\/j.patrec.2020.12.015","journal-title":"Pattern Recogn Lett"},{"key":"17908_CR8","doi-asserted-by":"publisher","first-page":"101843","DOI":"10.1016\/j.compmedimag.2020.101843","volume":"88","author":"I Iqbal","year":"2021","unstructured":"Iqbal I, Younus M, Walayat K, Kakar MU, Ma J (2021) Automated multi-class classification of skin lesions through deep convolutional neural network with dermoscopic images. Comput Med Imaging Graph 88:101843. https:\/\/doi.org\/10.1016\/j.compmedimag.2020.101843","journal-title":"Comput Med Imaging Graph"},{"key":"17908_CR9","doi-asserted-by":"publisher","first-page":"101309","DOI":"10.1109\/access.2020.2998098","volume":"8","author":"Q Zhou","year":"2020","unstructured":"Zhou Q, Shi Y, Xu Z, Qu R, Xu G (2020) Classifying melanoma skin lesions using convolutional spiking neural networks with unsupervised STDP learning rule. IEEE Access 8:101309\u2013101319. https:\/\/doi.org\/10.1109\/access.2020.2998098","journal-title":"IEEE Access"},{"key":"17908_CR10","doi-asserted-by":"publisher","first-page":"83398","DOI":"10.1109\/access.2022.3196911","volume":"10","author":"MA Rasel","year":"2022","unstructured":"Rasel MA, Obaidellah UH, Kareem SA (2022) Convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10:83398\u201383414. https:\/\/doi.org\/10.1109\/access.2022.3196911","journal-title":"IEEE Access"},{"key":"17908_CR11","doi-asserted-by":"publisher","first-page":"99633","DOI":"10.1109\/access.2020.2997710","volume":"8","author":"L Wei","year":"2020","unstructured":"Wei L, Ding K, Hu H (2020) Automatic skin cancer detection in dermoscopy images based on ensemble lightweight deep learning network. IEEE Access 8:99633\u201399647. https:\/\/doi.org\/10.1109\/access.2020.2997710","journal-title":"IEEE Access"},{"key":"17908_CR12","doi-asserted-by":"publisher","first-page":"17920","DOI":"10.1109\/access.2022.3149824","volume":"10","author":"AK Sharma","year":"2022","unstructured":"Sharma AK, Tiwari S, Aggarwal G, Goenka N, Kumar A, Chakrabarti P, Chakrabarti T, Gono R, Leonowicz Z, Jasinski M (2022) Dermatologist-Level classification of skin cancer using cascaded ensembling of convolutional neural network and handcrafted features based deep neural network. IEEE Access 10:17920\u201317932. https:\/\/doi.org\/10.1109\/access.2022.3149824","journal-title":"IEEE Access"},{"issue":"3","key":"17908_CR13","doi-asserted-by":"publisher","first-page":"849","DOI":"10.1109\/tmi.2016.2633551","volume":"36","author":"F Xie","year":"2017","unstructured":"Xie F, Fan H, Li Y, Jiang Z, Meng R, Bovik A (2017) Melanoma classification on dermoscopy images using a neural network ensemble model. IEEE Trans Med Imaging 36(3):849\u2013858. https:\/\/doi.org\/10.1109\/tmi.2016.2633551","journal-title":"IEEE Trans Med Imaging"},{"key":"17908_CR14","doi-asserted-by":"publisher","first-page":"206","DOI":"10.1016\/j.neucom.2022.03.042","volume":"491","author":"D Zhuang","year":"2022","unstructured":"Zhuang D, Chen K, Chang JM (2022) June). CS-AF: A cost-sensitive multi-classifier active fusion framework for skin lesion classification. Neurocomputing 491:206\u2013216. https:\/\/doi.org\/10.1016\/j.neucom.2022.03.042","journal-title":"Neurocomputing"},{"key":"17908_CR15","doi-asserted-by":"publisher","DOI":"10.1007\/s11042-021-10920-1","author":"J Liu","year":"2021","unstructured":"Liu J, Chen A, Zhou G, Chen W, Peng N, Yan N (2021) Dermatoscopic image melanoma recognition based on CFLDnet fusion network. Multimed Tools Appl. https:\/\/doi.org\/10.1007\/s11042-021-10920-1","journal-title":"Multimed Tools Appl"},{"issue":"29\u201330","key":"17908_CR16","doi-asserted-by":"publisher","first-page":"20483","DOI":"10.1007\/s11042-019-07988-1","volume":"79","author":"I Bakkouri","year":"2019","unstructured":"Bakkouri I, Afdel K (2019) Computer-aided diagnosis (CAD) system based on multi-layer feature fusion network for skin lesion recognition in dermoscopy images. Multimed Tools Appl 79(29\u201330):20483\u201320518. https:\/\/doi.org\/10.1007\/s11042-019-07988-1","journal-title":"Multimed Tools Appl"},{"key":"17908_CR17","doi-asserted-by":"publisher","first-page":"106447","DOI":"10.1016\/j.cmpb.2021.106447","volume":"212","author":"S Ding","year":"2021","unstructured":"Ding S, Wu Z, Zheng Y, Liu Z, Yang X, Yang X, Yuan G, Xie J (2021) Deep attention branch networks for skin lesion classification. Comput Methods Programs Biomed 212:106447. https:\/\/doi.org\/10.1016\/j.cmpb.2021.106447","journal-title":"Comput Methods Programs Biomed"},{"key":"17908_CR18","doi-asserted-by":"publisher","first-page":"103549","DOI":"10.1016\/j.bspc.2022.103549","volume":"74","author":"Z Wei","year":"2022","unstructured":"Wei Z, Li Q, Song H (2022) Dual attention based network for skin lesion classification with auxiliary learning. Biomed Signal Process Control 74:103549. https:\/\/doi.org\/10.1016\/j.bspc.2022.103549","journal-title":"Biomed Signal Process Control"},{"key":"17908_CR19","doi-asserted-by":"publisher","first-page":"102357","DOI":"10.1016\/j.media.2022.102357","volume":"77","author":"X He","year":"2022","unstructured":"He X, Tan EL, Bi H, Zhang X, Zhao S, Lei B (2022) Fully transformer network for skin lesion analysis. Medical Image Anal 77:102357. https:\/\/doi.org\/10.1016\/j.media.2022.102357","journal-title":"Medical Image Anal"},{"issue":"3","key":"17908_CR20","doi-asserted-by":"publisher","first-page":"633","DOI":"10.1109\/tmi.2021.3120091","volume":"41","author":"Z Yu","year":"2022","unstructured":"Yu Z, Nguyen J, Nguyen TD, Kelly J, Mclean C, Bonnington P, Zhang L, Mar V, Ge Z (2022) Early melanoma diagnosis with sequential dermoscopic images. IEEE Trans Med Imaging 41(3):633\u2013646. https:\/\/doi.org\/10.1109\/tmi.2021.3120091","journal-title":"IEEE Trans Med Imaging"},{"key":"17908_CR21","doi-asserted-by":"publisher","first-page":"102307","DOI":"10.1016\/j.media.2021.102307","volume":"76","author":"P Tang","year":"2022","unstructured":"Tang P, Yan X, Nan Y, Xiang S, Krammer S, Lasser T (2022) FusionM4Net: A multi-stage multi-modal learning algorithm for multi-label skin lesion classification. Med Image Anal 76:102307. https:\/\/doi.org\/10.1016\/j.media.2021.102307","journal-title":"Med Image Anal"},{"key":"17908_CR22","doi-asserted-by":"publisher","first-page":"106666","DOI":"10.1016\/j.cmpb.2022.106666","volume":"216","author":"BWY Hsu","year":"2022","unstructured":"Hsu BWY, Tseng VS (2022) Hierarchy-aware contrastive learning with late fusion for skin lesion classification. Comput Methods Programs Biomed 216:106666. https:\/\/doi.org\/10.1016\/j.cmpb.2022.106666","journal-title":"Comput Methods Programs Biomed"},{"key":"17908_CR23","doi-asserted-by":"publisher","first-page":"108075","DOI":"10.1016\/j.patcog.2021.108075","volume":"120","author":"X Wang","year":"2021","unstructured":"Wang X, Jiang X, Ding H, Zhao Y, Liu J (2021) Knowledge-aware deep framework for collaborative skin lesion segmentation and melanoma recognition. Pattern Recogn 120:108075. https:\/\/doi.org\/10.1016\/j.patcog.2021.108075","journal-title":"Pattern Recogn"},{"key":"17908_CR24","doi-asserted-by":"publisher","first-page":"106148","DOI":"10.1016\/j.compbiomed.2022.106148","volume":"150","author":"MJ Alam","year":"2022","unstructured":"Alam MJ, Mohammad MS, Hossain MAF, Showmik IA, Raihan MS, Ahmed S, Mahmud TI (2022) S2C-DeLeNet: A parameter transfer based segmentation-classification integration for detecting skin cancer lesions from dermoscopic images. Comput Biol Med 150:106148. https:\/\/doi.org\/10.1016\/j.compbiomed.2022.106148","journal-title":"Comput Biol Med"},{"issue":"20","key":"17908_CR25","doi-asserted-by":"publisher","first-page":"3275","DOI":"10.3390\/electronics11203275","volume":"11","author":"AC FoahomGouabou","year":"2022","unstructured":"FoahomGouabou AC, Iguernaissi R, Damoiseaux JL, Moudafi A, Merad D (2022) End-to-end decoupled training: a robust deep learning method for long-tailed classification of dermoscopic images for skin lesion classification. Electronics 11(20):3275. https:\/\/doi.org\/10.3390\/electronics11203275","journal-title":"Electronics"},{"key":"17908_CR26","doi-asserted-by":"publisher","first-page":"102661","DOI":"10.1016\/j.bspc.2021.102661","volume":"68","author":"MK Hasan","year":"2021","unstructured":"Hasan MK, Roy S, Mondal C, Alam MA, Elahi MTE, Dutta A, Uddinraju ST, Jawad MT, Ahmad M (2021) Dermo-DOCTOR: A framework for concurrent skin lesion detection and recognition using a deep convolutional neural network with end-to-end dual encoders. Biomed Signal Process Control 68:102661. https:\/\/doi.org\/10.1016\/j.bspc.2021.102661","journal-title":"Biomed Signal Process Control"},{"issue":"6","key":"17908_CR27","doi-asserted-by":"publisher","first-page":"1601","DOI":"10.3390\/s20061601","volume":"20","author":"K Zafar","year":"2020","unstructured":"Zafar K, Gilani SO, Waris A, Ahmed A, Jamil M, Khan MN, SohailKashif A (2020) Skin lesion segmentation from dermoscopic images using convolutional neural network. Sensors 20(6):1601. https:\/\/doi.org\/10.3390\/s20061601","journal-title":"Sensors"},{"key":"17908_CR28","doi-asserted-by":"publisher","first-page":"106956","DOI":"10.1016\/j.compeleceng.2020.106956","volume":"90","author":"MA Khan","year":"2021","unstructured":"Khan MA, Zhang YD, Sharif M, Akram T (2021) Pixels to classes: intelligent learning framework for multiclass skin lesion localization and classification. Comput Electr Eng 90:106956. https:\/\/doi.org\/10.1016\/j.compeleceng.2020.106956","journal-title":"Comput Electr Eng"},{"key":"17908_CR29","doi-asserted-by":"publisher","first-page":"106281","DOI":"10.1016\/j.asoc.2020.106281","volume":"92","author":"Z Yu","year":"2020","unstructured":"Yu Z, Jiang F, Zhou F, He X, Ni D, Chen S, Wang T, Lei B (2020) Convolutional descriptors aggregation via cross-net for skin lesion recognition. Appl Soft Comput 92:106281. https:\/\/doi.org\/10.1016\/j.asoc.2020.106281","journal-title":"Appl Soft Comput"},{"issue":"4","key":"17908_CR30","doi-asserted-by":"publisher","first-page":"1006","DOI":"10.1109\/tbme.2018.2866166","volume":"66","author":"Z Yu","year":"2019","unstructured":"Yu Z, Jiang X, Zhou F, Qin J, Ni D, Chen S, Lei B, Wang T (2019) Melanoma recognition in dermoscopy images via aggregated deep convolutional features. IEEE Trans Biomed Eng 66(4):1006\u20131016. https:\/\/doi.org\/10.1109\/tbme.2018.2866166","journal-title":"IEEE Trans Biomed Eng"},{"key":"17908_CR31","doi-asserted-by":"publisher","first-page":"102428","DOI":"10.1016\/j.bspc.2021.102428","volume":"66","author":"D Wang","year":"2021","unstructured":"Wang D, Pang N, Wang Y, Zhao H (2021) Unlabeled skin lesion classification by self-supervised topology clustering network. Biomed Signal Process Control 66:102428. https:\/\/doi.org\/10.1016\/j.bspc.2021.102428","journal-title":"Biomed Signal Process Control"},{"key":"17908_CR32","doi-asserted-by":"publisher","first-page":"102305","DOI":"10.1016\/j.media.2021.102305","volume":"75","author":"B Cassidy","year":"2022","unstructured":"Cassidy B, Kendrick C, Brodzicki A, Jaworek-Korjakowska J, Yap MH (2022) Analysis of the ISIC image datasets: Usage, benchmarks and recommendations. Med Image Anal 75:102305. https:\/\/doi.org\/10.1016\/j.media.2021.102305","journal-title":"Med Image Anal"}],"container-title":["Multimedia Tools and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-17908-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11042-023-17908-z\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-17908-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,4]],"date-time":"2024-06-04T04:08:21Z","timestamp":1717474101000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11042-023-17908-z"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1,2]]},"references-count":32,"journal-issue":{"issue":"21","published-online":{"date-parts":[[2024,6]]}},"alternative-id":["17908"],"URL":"https:\/\/doi.org\/10.1007\/s11042-023-17908-z","relation":{},"ISSN":["1573-7721"],"issn-type":[{"value":"1573-7721","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,1,2]]},"assertion":[{"value":"5 September 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"8 November 2023","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"17 December 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"2 January 2024","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers\u2019 bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}