{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,5]],"date-time":"2024-06-05T00:28:05Z","timestamp":1717547285856},"reference-count":34,"publisher":"Springer Science and Business Media LLC","issue":"21","license":[{"start":{"date-parts":[[2024,1,4]],"date-time":"2024-01-04T00:00:00Z","timestamp":1704326400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,4]],"date-time":"2024-01-04T00:00:00Z","timestamp":1704326400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimed Tools Appl"],"DOI":"10.1007\/s11042-023-17816-2","type":"journal-article","created":{"date-parts":[[2024,1,4]],"date-time":"2024-01-04T08:02:31Z","timestamp":1704355351000},"page":"61047-61063","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["LVNet: A lightweight volumetric convolutional neural network for real-time and high-performance recognition of 3D objects"],"prefix":"10.1007","volume":"83","author":[{"given":"Lianwei","family":"Li","sequence":"first","affiliation":[]},{"given":"Shiyin","family":"Qin","sequence":"additional","affiliation":[]},{"given":"Ning","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Li","family":"Hong","sequence":"additional","affiliation":[]},{"given":"Yang","family":"Dai","sequence":"additional","affiliation":[]},{"given":"Zhiqiang","family":"Wang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,1,4]]},"reference":[{"issue":"12","key":"17816_CR1","doi-asserted-by":"publisher","first-page":"17303","DOI":"10.1007\/s11042-022-12412-2","volume":"81","author":"S Rani","year":"2022","unstructured":"Rani S, Lakhwani K, Kumar S (2022) Three dimensional objects recognition & pattern recognition technique; related challenges: A review. Multimed Tools Appl 81(12):17303\u201317346","journal-title":"Multimed Tools Appl"},{"key":"17816_CR2","doi-asserted-by":"publisher","first-page":"11933","DOI":"10.1007\/s11042-020-09609-8","volume":"81","author":"B Li","year":"2022","unstructured":"Li B, Zhang Y, Sun F (2022) Deep residual neural network based PointNet for 3D object part segmentation. Multimed Tools Appl 81:11933\u201311947","journal-title":"Multimed Tools Appl"},{"issue":"11","key":"17816_CR3","doi-asserted-by":"publisher","first-page":"15061","DOI":"10.1007\/s11042-022-12459-1","volume":"81","author":"Y Zhong","year":"2022","unstructured":"Zhong Y, Sun Z, Luo S, Sun Y, Wang Y (2022) Video supervised for 3D reconstruction from single image. Multimed Tools Appl 81(11):15061\u201315083","journal-title":"Multimed Tools Appl"},{"key":"17816_CR4","unstructured":"Liang J, Zhou T, Liu D, Wang W (2023) CLUSTSEG: Clustering for Universal Segmentation. arXiv:2305.02187"},{"key":"17816_CR5","first-page":"12826","volume":"35","author":"W Wang","year":"2022","unstructured":"Wang W, Liang J, Liu D (2022) Learning equivariant segmentation with instance-unique querying. Adv Neural Inf Process Syst 35:12826\u201312840","journal-title":"Adv Neural Inf Process Syst"},{"key":"17816_CR6","doi-asserted-by":"crossref","unstructured":"Su H, Maji S, Kalogerakis E, Learned-Miller E (2015) Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE international conference on computer vision, pp 945-953","DOI":"10.1109\/ICCV.2015.114"},{"key":"17816_CR7","doi-asserted-by":"publisher","first-page":"5299","DOI":"10.1109\/TIP.2021.3082310","volume":"30","author":"Y Xu","year":"2021","unstructured":"Xu Y, Zheng C, Xua R, Quan Y, Ling H (2021) Multi-View 3D Shape Recognition via Correspondence-Aware Deep Learning. IEEE Trans Image Process 30:5299\u20135312","journal-title":"IEEE Trans Image Process"},{"key":"17816_CR8","unstructured":"Qi CR, Su H, Mo K, Guibas LJ (2017) PointNet: Deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 652-660"},{"key":"17816_CR9","unstructured":"Qi CR, Yi L, Su H, Guibas LJ (2017) PointNet++: Deep hierarchical feature learning on point sets in a metric space. arXiv:1706.02413"},{"key":"17816_CR10","unstructured":"Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J (2015) 3D ShapeNets: A deep representation for volumetric shapes. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1912-1920"},{"key":"17816_CR11","doi-asserted-by":"crossref","unstructured":"Maturana D, Scherer S (2015) VoxNet: A 3D convolutional neural network for real-time object recognition. In: 2015 IEEE\/RSJ international conference on intelligent robots and systems (IROS), pp 922-928","DOI":"10.1109\/IROS.2015.7353481"},{"key":"17816_CR12","doi-asserted-by":"crossref","unstructured":"Sedaghat N, Zolfaghari M, Amiri E, Brox T (2016) Orientation-boosted voxel nets for 3D object recognition. arXiv:1604.03351","DOI":"10.5244\/C.31.97"},{"key":"17816_CR13","doi-asserted-by":"crossref","unstructured":"Qi CR, Su H, NieSSner M, Dai A, Yan M, Guibas LJ (2016) Volumetric and multi-view CNNs for object classification on 3D data. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5648-5656","DOI":"10.1109\/CVPR.2016.609"},{"key":"17816_CR14","unstructured":"Brock A, Lim T, Ritchie JM, Weston N (2016) Generative and discriminative voxel modeling with convolutional neural networks. arXiv:1608.04236"},{"key":"17816_CR15","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1016\/j.neucom.2018.09.075","volume":"323","author":"C Wang","year":"2019","unstructured":"Wang C, Cheng M, Sohel F, Bennamoun M, Li J (2019) NormalNet: A voxel-based CNN for 3D object classification and retrieval. Neurocomputing 323:139\u2013147","journal-title":"Neurocomputing"},{"key":"17816_CR16","doi-asserted-by":"crossref","unstructured":"Kumawat S, Raman S (2019) LP-3DCNN: Unveiling local phase in 3D convolutional neural networks. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 4903-4912","DOI":"10.1109\/CVPR.2019.00504"},{"key":"17816_CR17","unstructured":"Zhi S, Liu Y, Li X, Guo Y (2017) LightNet: A Lightweight 3D Convolutional Neural Network for Real-Time 3D Object Recognition. In: Proceedings of the workshop on 3D object retrieval, pp 9-16"},{"issue":"1","key":"17816_CR18","doi-asserted-by":"publisher","first-page":"38","DOI":"10.1109\/TIM.2018.2840598","volume":"68","author":"C Ma","year":"2018","unstructured":"Ma C, Guo Y, Lei Y, An W (2018) Binary volumetric convolutional neural networks for 3-D object recognition. IEEE Trans Instrum Meas 68(1):38\u201348","journal-title":"IEEE Trans Instrum Meas"},{"key":"17816_CR19","doi-asserted-by":"crossref","unstructured":"Tran D, Wang H, Torresani L, Ray J, LeCun Y, Paluri M (2018) A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6450-6459","DOI":"10.1109\/CVPR.2018.00675"},{"key":"17816_CR20","doi-asserted-by":"crossref","unstructured":"Xie S, Sun C, Huang J, Tu Z, Murphy K (2018) Rethinking spatiotemporal feature learning: Speed-accuracy trade-offs in video classification. In: Proceedings of the European conference on computer vision (ECCV), pp 305-321","DOI":"10.1007\/978-3-030-01267-0_19"},{"issue":"3","key":"17816_CR21","doi-asserted-by":"publisher","first-page":"1173","DOI":"10.1007\/s10044-021-00965-1","volume":"24","author":"L Li","year":"2021","unstructured":"Li L, Qin S, Lu Z, Zhang D, Xu K, Hu Z (2021) Real-time one-shot learning gesture recognition based on lightweight 3D Inception-ResNet with separable convolutions. Pattern Anal Appl 24(3):1173\u20131192","journal-title":"Pattern Anal Appl"},{"key":"17816_CR22","unstructured":"Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861"},{"key":"17816_CR23","doi-asserted-by":"publisher","first-page":"151","DOI":"10.1016\/j.neucom.2018.08.042","volume":"318","author":"Z Hu","year":"2018","unstructured":"Hu Z, Hu Y, Liu J, Wu B, Han D, Kurfess T (2018) 3D separable convolutional neural network for dynamic hand gesture recognition. Neurocomputing 318:151\u2013161","journal-title":"Neurocomputing"},{"key":"17816_CR24","doi-asserted-by":"publisher","first-page":"811","DOI":"10.1016\/j.jmsy.2021.01.017","volume":"62","author":"T Liu","year":"2022","unstructured":"Liu T, Wang J, Huang X, Lu Y, Bao J (2022) 3DSMDA-Net: An improved 3DCNN with separable structure and multi-dimensional attention for welding status recognition. J Manuf Syst 62:811\u2013822","journal-title":"J Manuf Syst"},{"key":"17816_CR25","doi-asserted-by":"publisher","first-page":"2678","DOI":"10.1109\/TIP.2023.3272826","volume":"32","author":"D Liu","year":"2023","unstructured":"Liu D, Liang J, Geng T, Loui A, Zhou T (2023) Tripartite feature enhanced pyramid network for dense prediction. IEEE Trans Image Process 32:2678\u20132692","journal-title":"IEEE Trans Image Process"},{"key":"17816_CR26","doi-asserted-by":"crossref","unstructured":"Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7132-7141","DOI":"10.1109\/CVPR.2018.00745"},{"key":"17816_CR27","doi-asserted-by":"crossref","unstructured":"Woo S, Park J, Lee J-Y, Kweon IS (2018) CBAM: Convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV), pp 3-19","DOI":"10.1007\/978-3-030-01234-2_1"},{"key":"17816_CR28","unstructured":"De Deuge M, Quadros A, Hung C, Douillard B (2013) Unsupervised feature learning for classification of outdoor 3D scans. In: Australasian conference on robitics and automation, pp 1-9"},{"key":"17816_CR29","unstructured":"Chang AX, Funkhouser T, Guibas L, Hanrahan P, Huang Q, Li Z, Savarese S, Savva M, Song S, Su H (2015) ShapeNet: An information-rich 3D model repository. arXiv:1512.03012"},{"key":"17816_CR30","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026-1034","DOI":"10.1109\/ICCV.2015.123"},{"key":"17816_CR31","unstructured":"Hegde V, Zadeh R (2016) FusionNet: 3D object classification using multiple data representations. arXiv:1607.05695"},{"issue":"10","key":"17816_CR32","doi-asserted-by":"publisher","first-page":"3409","DOI":"10.3390\/app10103409","volume":"10","author":"F Gomez-Donoso","year":"2020","unstructured":"Gomez-Donoso F, Escalona F, Cazorla M (2020) Par3DNet: Using 3DCNNs for object recognition on tridimensional partial views. Appl Sci 10(10):3409","journal-title":"Appl Sci"},{"issue":"1","key":"17816_CR33","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1007\/s41095-019-0135-2","volume":"5","author":"M Liu","year":"2019","unstructured":"Liu M, Shi Y, Zheng L, Xu K, Huang H, Manocha D (2019) Recurrent 3D attentional networks for end-to-end active object recognition. Comput Vis Med 5(1):91\u2013104","journal-title":"Comput Vis Med"},{"key":"17816_CR34","doi-asserted-by":"crossref","unstructured":"Han C, Wang Q, Cui Y, Cao Z, Wang W, Qi S, Liu D (2023) E2VPT: An effective and efficient approach for visual prompt tuning. arXiv:2307.13770","DOI":"10.1109\/ICCV51070.2023.01604"}],"container-title":["Multimedia Tools and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-17816-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11042-023-17816-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-17816-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,4]],"date-time":"2024-06-04T04:15:39Z","timestamp":1717474539000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11042-023-17816-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1,4]]},"references-count":34,"journal-issue":{"issue":"21","published-online":{"date-parts":[[2024,6]]}},"alternative-id":["17816"],"URL":"https:\/\/doi.org\/10.1007\/s11042-023-17816-2","relation":{},"ISSN":["1573-7721"],"issn-type":[{"value":"1573-7721","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,1,4]]},"assertion":[{"value":"14 September 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"31 October 2023","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"30 November 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"4 January 2024","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflicts of interest"}}]}}