{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,25]],"date-time":"2024-07-25T08:29:14Z","timestamp":1721896154812},"reference-count":119,"publisher":"Springer Science and Business Media LLC","issue":"17","license":[{"start":{"date-parts":[[2023,11,13]],"date-time":"2023-11-13T00:00:00Z","timestamp":1699833600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,11,13]],"date-time":"2023-11-13T00:00:00Z","timestamp":1699833600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimed Tools Appl"],"DOI":"10.1007\/s11042-023-17288-4","type":"journal-article","created":{"date-parts":[[2023,11,13]],"date-time":"2023-11-13T06:01:50Z","timestamp":1699855310000},"page":"52365-52403","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["A comprehensive review on detection and classification of dementia using neuroimaging and machine learning"],"prefix":"10.1007","volume":"83","author":[{"given":"Nikhil","family":"Pateria","sequence":"first","affiliation":[]},{"given":"Dilip","family":"Kumar","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,11,13]]},"reference":[{"key":"17288_CR1","unstructured":"Https:\/\/www.alz.org\/alzheimers-dementia\/what-is-alzheimers, What is Alzheimer\u2019s Disease?"},{"key":"17288_CR2","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1109\/RBME.2018.2886237","volume":"12","author":"MR Ahmed","year":"2019","unstructured":"Ahmed MR, Zhang Y, Feng Z, Lo B, Inan OT, Liao H (2019) Neuroimaging and Machine Learning for Dementia Diagnosis: Recent Advancements and Future Prospects. IEEE Rev Biomed Eng 12:19\u201333. https:\/\/doi.org\/10.1109\/RBME.2018.2886237","journal-title":"IEEE Rev Biomed Eng"},{"key":"17288_CR3","unstructured":"Patro S (2019) Early Detection of Alzheimer \u2019 s Disease using Image Processing, vol. 8, no. 05, pp. 468\u2013471"},{"issue":"37","key":"17288_CR4","doi-asserted-by":"publisher","first-page":"37","DOI":"10.7748\/ns.29.37.37.e9405","volume":"29","author":"T Dening","year":"2015","unstructured":"Dening T, Sandilyan MB (2015) Dementia: definitions and types. Nurs Stand 29(37):37\u201342. https:\/\/doi.org\/10.7748\/ns.29.37.37.e9405","journal-title":"Nurs Stand"},{"issue":"3","key":"17288_CR5","doi-asserted-by":"publisher","first-page":"1113","DOI":"10.3233\/JAD-170584","volume":"62","author":"B Borroni","year":"2018","unstructured":"Borroni B (2018) Biological, Neuroimaging, and Neurophysiological Markers in Frontotemporal Dementia: Three Faces of the Same Coin. J Alzheimers Dis 62(3):1113\u20131123. https:\/\/doi.org\/10.3233\/JAD-170584","journal-title":"J Alzheimers Dis"},{"key":"17288_CR6","doi-asserted-by":"publisher","unstructured":"Jellinger KA (2018) Dementia with Lewy bodies and Parkinson\u2019s disease-dementia: current concepts and controversies, vol. 125, no. 4. Springer Vienna, doi: https:\/\/doi.org\/10.1007\/s00702-017-1821-9","DOI":"10.1007\/s00702-017-1821-9"},{"issue":"7","key":"17288_CR7","doi-asserted-by":"publisher","first-page":"653","DOI":"10.1177\/1533317513494442","volume":"30","author":"S Ghosh","year":"2015","unstructured":"Ghosh S, Lippa CF (2015) Clinical Subtypes of Frontotemporal Dementia. Am J Alzheimers Dis Other Dement 30(7):653\u2013661. https:\/\/doi.org\/10.1177\/1533317513494442","journal-title":"Am J Alzheimers Dis Other Dement"},{"key":"17288_CR8","unstructured":"Https:\/\/www.rxlist.com\/collection-of-images\/x-linked_ichthyosis_picture\/pictures.htm, collection of images"},{"issue":"9","key":"17288_CR9","doi-asserted-by":"publisher","first-page":"1642","DOI":"10.3174\/ajnr.A4337","volume":"36","author":"SW Kim","year":"2015","unstructured":"Kim SW, Chung SJ, Oh Y-S, Yoon JH, Sunwoo MK, Hong JY, Kim J-S, Lee PH (2015) Cerebral microbleeds in patients with dementia with lewy bodies and Parkinson disease dementia. Am J Neuroradiol 36(9):1642\u20131647. https:\/\/doi.org\/10.3174\/ajnr.A4337","journal-title":"Am J Neuroradiol"},{"key":"17288_CR10","doi-asserted-by":"crossref","unstructured":"Saeed U, Compagnone J, Aviv RI, Strafella AP, Black SE, Lang AE, Masellis M (2017) Imaging biomarkers in Parkinson\u2019s disease and Parkinsonian syndromes: Current and emerging concepts, Transl Neurodegener, vol. 6, no. 1, doi: 10.1186\/s40035-017-0076-6","DOI":"10.1186\/s40035-017-0076-6"},{"key":"17288_CR11","doi-asserted-by":"publisher","unstructured":"Billeci L, Badolato A, Bachi L, Tonacci A (2020) Machine learning for the classification of alzheimer\u2019s disease and its prodromal stage using brain diffusion tensor imaging data: A systematic review, Processes, vol. 8, no. 9, doi: https:\/\/doi.org\/10.3390\/pr8091071","DOI":"10.3390\/pr8091071"},{"key":"17288_CR12","doi-asserted-by":"crossref","unstructured":"Wen J et al. (2020) Overview of classification of Alzheimer\u2019s disease, Med. Image Anal., vol. 63","DOI":"10.1016\/j.media.2020.101694"},{"key":"17288_CR13","unstructured":"Www.medicinenet.com, medicinenet"},{"key":"17288_CR14","doi-asserted-by":"crossref","unstructured":"Perani D, Iaccarino L, Sala A, Caminiti SP (2017) The emerging role of PET imaging in dementia, F1000Research, vol. 6, no. 0, doi: 10.12688\/f1000research.11603.1","DOI":"10.12688\/f1000research.11603.1"},{"key":"17288_CR15","unstructured":"Https:\/\/www.nia.nih.gov\/], NIA"},{"key":"17288_CR16","doi-asserted-by":"crossref","unstructured":"Tanveer M, Richhariya B, Khan RU, Rashid AH, Khanna P, Prasad M, Lin CT (2020) Machine learning techniques for the diagnosis of alzheimer\u2019s disease: A review, ACM Trans. Multimed. Comput. Commun. Appl, vol. 16, no. 1s, doi: 10.1145\/3344998","DOI":"10.1145\/3344998"},{"key":"17288_CR17","doi-asserted-by":"crossref","unstructured":"Chiu SI, Lin CH, Lim WS, Chiu MJ, Chen TF, Jang JSR (2019) Predicting Neurodegenerative Diseases Using a Novel Blood Biomarkers-based Model by Machine Learning, Proc. - 2019 Int Conf Technol Appl Artif Intell. TAAI 2019, pp. 4\u20139, doi: 10.1109\/TAAI48200.2019.8959854","DOI":"10.1109\/TAAI48200.2019.8959854"},{"key":"17288_CR18","unstructured":"Altinkaya E, Polat K, B. B.-J. of the I. of Electronics, and undefined 2020, (2019) Detection of Alzheimer\u2019s disease and dementia states based on deep learning from MRI images: a comprehensive review, Iecscience. Org, vol. 1, pp. 39\u201353, doi: 10.33969\/JIEC.2019.11005"},{"key":"17288_CR19","doi-asserted-by":"publisher","first-page":"2020","DOI":"10.1155\/2020\/5629090","volume":"1","author":"F Zhu","year":"2020","unstructured":"Zhu F et al (2020) Machine Learning for the Preliminary Diagnosis of Dementia. Sci Program 1:2020. https:\/\/doi.org\/10.1155\/2020\/5629090","journal-title":"Sci Program"},{"key":"17288_CR20","doi-asserted-by":"crossref","unstructured":"Alashwal H, El Halaby M, Crouse JJ, Abdalla A, Moustafa AA (2019) The application of unsupervised clustering methods to Alzheimer\u2019s disease, Front Comput Neurosci, vol. 13, no. May, pp. 1\u20139, doi: 10.3389\/fncom.2019.00031","DOI":"10.3389\/fncom.2019.00031"},{"key":"17288_CR21","unstructured":"Cmeri C, Alzheimer \u2019 s Disease Classification in Brain MRI using Modified kNN Algorithm, vol. i"},{"key":"17288_CR22","doi-asserted-by":"crossref","unstructured":"Acharya UR et al. (2019) Automated Detection of Alzheimer\u2019s Disease Using Brain MRI Images\u2013 A Study with Various Feature Extraction Techniques, J Med Syst, vol. 43, no. 9, doi: 10.1007\/s10916-019-1428-9","DOI":"10.1007\/s10916-019-1428-9"},{"issue":"1","key":"17288_CR23","doi-asserted-by":"publisher","first-page":"277","DOI":"10.3233\/jad-191169","volume":"75","author":"S Gill","year":"2020","unstructured":"Gill S et al (2020) Using Machine Learning to Predict Dementia from Neuropsychiatric Symptom and Neuroimaging Data. J Alzheimers Dis 75(1):277\u2013288. https:\/\/doi.org\/10.3233\/jad-191169","journal-title":"J Alzheimers Dis"},{"issue":"1","key":"17288_CR24","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1007\/s12539-016-0144-0","volume":"9","author":"A Kumar","year":"2017","unstructured":"Kumar A, Singh TR (2017) A New Decision Tree to Solve the Puzzle of Alzheimer\u2019s Disease Pathogenesis Through Standard Diagnosis Scoring System. Interdiscip Sci Comput Life Sci 9(1):107\u2013115. https:\/\/doi.org\/10.1007\/s12539-016-0144-0","journal-title":"Interdiscip Sci Comput Life Sci"},{"key":"17288_CR25","unstructured":"Pettersson J (2021) The use of Decision Trees to detect Alzheimer's Disease"},{"key":"17288_CR26","doi-asserted-by":"crossref","unstructured":"Al-Dlaeen D, Alashqur A (2014) Using decision tree classification to assist in the prediction of Alzheimer\u2019s disease, 2014 6th Int Conf Comput Sci Inf Technol CSIT 2014 - Proc., pp. 122\u2013126, doi: 10.1109\/CSIT.2014.6805989","DOI":"10.1109\/CSIT.2014.6805989"},{"key":"17288_CR27","doi-asserted-by":"crossref","unstructured":"Sadeghi N, Foster NL, Wang AY, Minoshima S, Lieberman AP, Tasdizen T (2008) Automatic Classification of Alzheimer's Disease vs Frontotemporal Dementia\u00a0: A Spatial Decision Tree Approach with FDG-PET\", School of Computing , University of Utah , Salt Lake City , UT 84112 Center for Alzheimer \u2019 s Care , Imaging and Research , Univ, Imaging, pp. 408\u2013411","DOI":"10.1109\/ISBI.2008.4541019"},{"key":"17288_CR28","unstructured":"Support Vector Machine. https:\/\/en.wikipedia.org\/wiki\/Support-vector_machine"},{"key":"17288_CR29","doi-asserted-by":"crossref","unstructured":"Waghere S, RajaRajeswari P, Ganesan V (2021) Design and Implementation of System Which Efficiently Retrieve Useful Data for Detection of Dementia Disease, vol. 698. Springer Singapore, doi: 10.1007\/978-981-15-7961-5_144","DOI":"10.1007\/978-981-15-7961-5_144"},{"key":"17288_CR30","doi-asserted-by":"crossref","unstructured":"Rajesh Kumar P, Arun Prasath T, Pallikonda Rajasekaran M, Vishnuvarthanan G (2018) Brain subject estimation using PSO K-means clustering - An automated aid for the assessment of clinical dementia, Smart Innov Syst Technol, vol. 83, no. Ictis, pp. 482\u2013489, doi: 10.1007\/978-3-319-63673-3_58","DOI":"10.1007\/978-3-319-63673-3_58"},{"key":"17288_CR31","doi-asserted-by":"publisher","unstructured":"Vijayalakshmi SS, Pallawi S, Genish T (2020) Alzheimer Disease Detection Using Edge Enhanced K Means Clustering Algorithm. SSRN Electron J:1\u201310. https:\/\/doi.org\/10.2139\/ssrn.3545092","DOI":"10.2139\/ssrn.3545092"},{"key":"17288_CR32","doi-asserted-by":"crossref","unstructured":"Lins AJCC, Muniz MTC, Bastos-Filho CJA (2019) Comparing Machine Learning Techniques for Dementia Diagnosis, 2018 IEEE Lat Am Conf Comput Intell. LA-CCI 2018, no. 1, p. 90, doi: 10.1109\/LA-CCI.2018.8625209","DOI":"10.1109\/LA-CCI.2018.8625209"},{"key":"17288_CR33","unstructured":"Suk H, Lee S, Shen D, Initiative N, C. Engineering (2018) Applications of chlorophyll fluorescence imaging technique in horticultural.pdf, pp. 101\u2013113, doi: 10.1016\/j.media.2017.01.008.Deep"},{"key":"17288_CR34","doi-asserted-by":"crossref","unstructured":"Kim J Lim J (2021) A deep neural network-based method for prediction of dementia using big data, Int J Environ Res Public Health vol. 18, no. 10, doi: 10.3390\/ijerph18105386","DOI":"10.3390\/ijerph18105386"},{"key":"17288_CR35","doi-asserted-by":"publisher","first-page":"101645","DOI":"10.1016\/j.nicl.2018.101645","volume":"21","author":"S Basaia","year":"2019","unstructured":"Basaia S et al (2019) Automated classification of Alzheimer\u2019s disease and mild cognitive impairment using a single MRI and deep neural networks. NeuroImage Clin 21:101645. https:\/\/doi.org\/10.1016\/j.nicl.2018.101645","journal-title":"NeuroImage Clin"},{"key":"17288_CR36","doi-asserted-by":"publisher","first-page":"101","DOI":"10.1016\/j.compmedimag.2018.09.009","volume":"70","author":"F Li","year":"2018","unstructured":"Li F, Liu M (2018) Alzheimer\u2019s disease diagnosis based on multiple cluster dense convolutional networks. Comput Med Imaging Graph 70:101\u2013110. https:\/\/doi.org\/10.1016\/j.compmedimag.2018.09.009","journal-title":"Comput Med Imaging Graph"},{"key":"17288_CR37","doi-asserted-by":"publisher","first-page":"276","DOI":"10.1016\/j.neuroimage.2019.01.031","volume":"189","author":"S Spasov","year":"2019","unstructured":"Spasov S, Passamonti L, Duggento A, Li\u00f2 P, Toschi N (2019) A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer\u2019s disease. Neuroimage 189:276\u2013287. https:\/\/doi.org\/10.1016\/j.neuroimage.2019.01.031","journal-title":"Neuroimage"},{"key":"17288_CR38","doi-asserted-by":"publisher","first-page":"145","DOI":"10.1016\/j.neucom.2018.12.018","volume":"333","author":"H Wang","year":"2019","unstructured":"Wang H et al (2019) Ensemble of 3D densely connected convolutional network for diagnosis of mild cognitive impairment and Alzheimer\u2019s disease. Neurocomputing 333:145\u2013156. https:\/\/doi.org\/10.1016\/j.neucom.2018.12.018","journal-title":"Neurocomputing"},{"key":"17288_CR39","doi-asserted-by":"publisher","first-page":"101694","DOI":"10.1016\/j.media.2020.101694","volume":"63","author":"J Wen","year":"2020","unstructured":"Wen J et al (2020) Convolutional neural networks for classification of Alzheimer\u2019s disease: Overview and reproducible evaluation. Med Image Anal 63:101694. https:\/\/doi.org\/10.1016\/j.media.2020.101694","journal-title":"Med Image Anal"},{"key":"17288_CR40","doi-asserted-by":"publisher","first-page":"176","DOI":"10.1016\/j.neunet.2019.12.006","volume":"123","author":"C Ieracitano","year":"2020","unstructured":"Ieracitano C, Mammone N, Hussain A, Morabito FC (2020) A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia. Neural Netw 123:176\u2013190. https:\/\/doi.org\/10.1016\/j.neunet.2019.12.006","journal-title":"Neural Netw"},{"key":"17288_CR41","doi-asserted-by":"publisher","unstructured":"Ucuzal H, Arslan AK, Colak C (2019) Deep learning based-classification of dementia in magnetic resonance imaging scans, 2019 Int. Conf. Artif. Intell. Data Process. Symp. IDAP 2019, pp. 1\u20136, doi: https:\/\/doi.org\/10.1109\/IDAP.2019.8875961","DOI":"10.1109\/IDAP.2019.8875961"},{"key":"17288_CR42","doi-asserted-by":"crossref","unstructured":"Backstrom K, Nazari M, Gu IYH, Jakola AS (2018) An efficient 3D deep convolutional network for Alzheimer\u2019s disease diagnosis using MR images, Proc. - Int. Symp. Biomed. Imaging, vol. 2018-April, no. Isbi, pp. 149\u2013153, oi: 10.1109\/ISBI.2018.8363543","DOI":"10.1109\/ISBI.2018.8363543"},{"key":"17288_CR43","doi-asserted-by":"crossref","unstructured":"Kim JP et al. (2019) Machine learning based hierarchical classification of frontotemporal dementia and Alzheimer\u2019s disease, NeuroImage Clin, vol. 23, no. March, p. 101811, doi: 10.1016\/j.nicl.2019.101811","DOI":"10.1016\/j.nicl.2019.101811"},{"issue":"5","key":"17288_CR44","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10916-018-0932-7","volume":"42","author":"SH Wang","year":"2018","unstructured":"Wang SH, Phillips P, Sui Y, Liu B, Yang M, Cheng H (2018) Classification of Alzheimer\u2019s Disease Based on Eight-Layer Convolutional Neural Network with Leaky Rectified Linear Unit and Max Pooling. J Med Syst 42(5):1\u201311. https:\/\/doi.org\/10.1007\/s10916-018-0932-7","journal-title":"J Med Syst"},{"key":"17288_CR45","doi-asserted-by":"publisher","first-page":"569","DOI":"10.1016\/j.neuroimage.2014.06.077","volume":"101","author":"H Il Suk","year":"2014","unstructured":"Il Suk H, Lee SW, Shen D (2014) Hierarchical feature representation and multimodal fusion with deep learning for AD\/MCI diagnosis. Neuroimage 101:569\u2013582. https:\/\/doi.org\/10.1016\/j.neuroimage.2014.06.077","journal-title":"Neuroimage"},{"key":"17288_CR46","doi-asserted-by":"crossref","unstructured":"Zeighami Y et al. (2019) A clinical-anatomical signature of Parkinson\u2019s disease identified with partial least squares and magnetic resonance imaging, Neuroimage, vol. 190, no. December, pp. 69\u201378, doi: 10.1016\/j.neuroimage.2017.12.050","DOI":"10.1016\/j.neuroimage.2017.12.050"},{"key":"17288_CR47","doi-asserted-by":"crossref","unstructured":"Canu E et al. (2017) Multiparametric MRI to distinguish early onset Alzheimer\u2019s disease and behavioural variant of frontotemporal dementia, vol. 15. Elsevier Inc, doi: 10.1016\/j.nicl.2017.05.018","DOI":"10.1016\/j.nicl.2017.05.018"},{"issue":"5","key":"17288_CR48","doi-asserted-by":"publisher","first-page":"1617","DOI":"10.1109\/JBHI.2015.2432832","volume":"19","author":"EE Bron","year":"2015","unstructured":"Bron EE, Smits M, Niessen WJ, Klein S (2015) Feature Selection Based on the SVM Weight Vector for Classification of Dementia. IEEE J Biomed Heal Inform 19(5):1617\u20131626. https:\/\/doi.org\/10.1109\/JBHI.2015.2432832","journal-title":"IEEE J Biomed Heal Inform"},{"issue":"5","key":"17288_CR49","doi-asserted-by":"publisher","first-page":"808","DOI":"10.1016\/j.media.2014.04.006","volume":"18","author":"T Tong","year":"2014","unstructured":"Tong T, Wolz R, Gao Q, Guerrero R, Hajnal JV, Rueckert D (2014) Multiple instance learning for classification of dementia in brain MRI. Med Image Anal 18(5):808\u2013818. https:\/\/doi.org\/10.1016\/j.media.2014.04.006","journal-title":"Med Image Anal"},{"issue":"4","key":"17288_CR50","doi-asserted-by":"publisher","first-page":"1476","DOI":"10.1016\/j.neuroimage.2009.05.036","volume":"47","author":"E Gerardin","year":"2009","unstructured":"Gerardin E et al (2009) Multidimensional classification of hippocampal shape features discriminates Alzheimer\u2019s disease and mild cognitive impairment from normal aging. Neuroimage 47(4):1476\u20131486. https:\/\/doi.org\/10.1016\/j.neuroimage.2009.05.036","journal-title":"Neuroimage"},{"key":"17288_CR51","doi-asserted-by":"crossref","unstructured":"Zhang Y et al. (2015) Detection of subjects and brain regions related to Alzheimer\u2019s disease using 3D MRI scans based on eigenbrain and machine learning, Front Comput Neurosci, vol. 9, no. June, pp. 1\u201315, doi: 10.3389\/fncom.2015.00066","DOI":"10.3389\/fncom.2015.00066"},{"key":"17288_CR52","doi-asserted-by":"publisher","first-page":"58","DOI":"10.1016\/j.bspc.2015.05.014","volume":"21","author":"Y Zhang","year":"2015","unstructured":"Zhang Y, Wang S, Phillips P, Dong Z, Ji G, Yang J (2015) Detection of Alzheimer\u2019s disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC. Biomed Signal Process Control 21:58\u201373. https:\/\/doi.org\/10.1016\/j.bspc.2015.05.014","journal-title":"Biomed Signal Process Control"},{"issue":"9","key":"17288_CR53","doi-asserted-by":"publisher","first-page":"1","DOI":"10.7717\/peerj.1251","volume":"2015","author":"Y Zhang","year":"2015","unstructured":"Zhang Y, Wang S (2015) Detection of Alzheimer\u2019s disease by displacement field and machine learning. PeerJ 2015(9):1\u201329. https:\/\/doi.org\/10.7717\/peerj.1251","journal-title":"PeerJ"},{"issue":"3","key":"17288_CR54","doi-asserted-by":"publisher","first-page":"527","DOI":"10.1007\/s10489-014-0611-4","volume":"42","author":"Y Xu","year":"2015","unstructured":"Xu Y, Pan X, Zhou Z, Yang Z, Zhang Y (2015) Structural least square twin support vector machine for classification. Appl Intell 42(3):527\u2013536. https:\/\/doi.org\/10.1007\/s10489-014-0611-4","journal-title":"Appl Intell"},{"key":"17288_CR55","doi-asserted-by":"crossref","unstructured":"Huang C, Yan B, Jiang H, Wang D (2008) Combining voxel-based morphometry with Artifical Neural Network theory in the application research of diagnosing Alzheimer\u2019s disease, Biomed. Eng. Informatics New Dev. Futur. - Proc. 1st Int. Conf. Biomed. Eng. Informatics, BMEI 2008, vol. 1, pp. 250\u2013254, doi: 10.1109\/BMEI.2008.245","DOI":"10.1109\/BMEI.2008.245"},{"issue":"1","key":"17288_CR56","doi-asserted-by":"publisher","first-page":"165","DOI":"10.1016\/j.jneumeth.2011.01.027","volume":"197","author":"Z Sankari","year":"2011","unstructured":"Sankari Z, Adeli H (2011) Probabilistic neural networks for diagnosis of Alzheimer\u2019s disease using conventional and wavelet coherence. J Neurosci Methods 197(1):165\u2013170. https:\/\/doi.org\/10.1016\/j.jneumeth.2011.01.027","journal-title":"J Neurosci Methods"},{"key":"17288_CR57","doi-asserted-by":"crossref","unstructured":"Il Suk H, Shen D (2013) Deep learning-based feature representation for AD\/MCI classification, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8150 LNCS, no. PART 2, pp. 583\u2013590, doi: 10.1007\/978-3-642-40763-5_72","DOI":"10.1007\/978-3-642-40763-5_72"},{"key":"17288_CR58","doi-asserted-by":"publisher","first-page":"147","DOI":"10.1016\/j.cogsys.2018.12.015","volume":"57","author":"R Jain","year":"2019","unstructured":"Jain R, Jain N, Aggarwal A, Hemanth DJ (2019) Convolutional neural network based Alzheimer\u2019s disease classification from magnetic resonance brain images. Cogn Syst Res 57:147\u2013159. https:\/\/doi.org\/10.1016\/j.cogsys.2018.12.015","journal-title":"Cogn Syst Res"},{"issue":"3","key":"17288_CR59","doi-asserted-by":"publisher","first-page":"293","DOI":"10.1016\/j.neulet.2009.06.052","volume":"461","author":"R Chaves","year":"2009","unstructured":"Chaves R et al (2009) SVM-based computer-aided diagnosis of the Alzheimer\u2019s disease using t-test NMSE feature selection with feature correlation weighting. Neurosci Lett 461(3):293\u2013297. https:\/\/doi.org\/10.1016\/j.neulet.2009.06.052","journal-title":"Neurosci Lett"},{"issue":"1","key":"17288_CR60","doi-asserted-by":"publisher","first-page":"162","DOI":"10.1016\/j.neuroimage.2009.11.046","volume":"50","author":"C Plant","year":"2010","unstructured":"Plant C et al (2010) Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer\u2019s disease. Neuroimage 50(1):162\u2013174. https:\/\/doi.org\/10.1016\/j.neuroimage.2009.11.046","journal-title":"Neuroimage"},{"issue":"1","key":"17288_CR61","doi-asserted-by":"publisher","first-page":"58","DOI":"10.1016\/j.neulet.2010.03.010","volume":"474","author":"F Segovia","year":"2010","unstructured":"Segovia F et al (2010) Classification of functional brain images using a GMM-based multi-variate approach. Neurosci Lett 474(1):58\u201362. https:\/\/doi.org\/10.1016\/j.neulet.2010.03.010","journal-title":"Neurosci Lett"},{"issue":"3","key":"17288_CR62","doi-asserted-by":"publisher","first-page":"192","DOI":"10.1016\/j.neulet.2010.05.047","volume":"479","author":"P Padilla","year":"2010","unstructured":"Padilla P et al (2010) Analysis of SPECT brain images for the diagnosis of Alzheimer\u2019s disease based on NMF for feature extraction. Neurosci Lett 479(3):192\u2013196. https:\/\/doi.org\/10.1016\/j.neulet.2010.05.047","journal-title":"Neurosci Lett"},{"issue":"2","key":"17288_CR63","doi-asserted-by":"publisher","first-page":"766","DOI":"10.1016\/j.neuroimage.2010.06.013","volume":"56","author":"R Cuingnet","year":"2011","unstructured":"Cuingnet R et al (2011) Automatic classification of patients with Alzheimer\u2019s disease from structural MRI: A comparison of ten methods using the ADNI database. Neuroimage 56(2):766\u2013781. https:\/\/doi.org\/10.1016\/j.neuroimage.2010.06.013","journal-title":"Neuroimage"},{"issue":"10","key":"17288_CR64","doi-asserted-by":"publisher","first-page":"1318","DOI":"10.1001\/archneurol.2012.1282","volume":"69","author":"JD Doecke","year":"2012","unstructured":"Doecke JD et al (2012) Blood-based protein biomarkers for diagnosis of Alzheimer disease. Arch Neurol 69(10):1318\u20131325. https:\/\/doi.org\/10.1001\/archneurol.2012.1282","journal-title":"Arch Neurol"},{"issue":"3","key":"17288_CR65","doi-asserted-by":"publisher","first-page":"230","DOI":"10.1016\/j.pscychresns.2012.04.007","volume":"212","author":"J Dukart","year":"2013","unstructured":"Dukart J, Mueller K, Barthel H, Villringer A, Sabri O, Schroeter ML (2013) Meta-analysis based SVM classification enables accurate detection of Alzheimer\u2019s disease across different clinical centers using FDG-PET and MRI. Psychiatry Res Neuroimaging 212(3):230\u2013236. https:\/\/doi.org\/10.1016\/j.pscychresns.2012.04.007","journal-title":"Psychiatry Res Neuroimaging"},{"issue":"14","key":"17288_CR66","doi-asserted-by":"publisher","first-page":"1725","DOI":"10.1016\/j.patrec.2013.04.014","volume":"34","author":"A Ortiz","year":"2013","unstructured":"Ortiz A, G\u00f3rriz JM, Ram\u00edrez J, Mart\u00ednez-Murcia FJ (2013) LVQ-SVM based CAD tool applied to structural MRI for the diagnosis of the Alzheimer\u2019s disease. Pattern Recogn Lett 34(14):1725\u20131733. https:\/\/doi.org\/10.1016\/j.patrec.2013.04.014","journal-title":"Pattern Recogn Lett"},{"key":"17288_CR67","doi-asserted-by":"crossref","unstructured":"Dti WM (2013) Read-2012Individual Classification of Mild Cognitive Impairment subtypes by support vector machine analysis of wihite matter DTI.pdf, pp. 283\u2013291","DOI":"10.3174\/ajnr.A3223"},{"issue":"10","key":"17288_CR68","doi-asserted-by":"publisher","first-page":"1313","DOI":"10.1016\/j.compbiomed.2013.07.004","volume":"43","author":"W Lee","year":"2013","unstructured":"Lee W, Park B, Han K (2013) Classification of diffusion tensor images for the early detection of Alzheimer\u2019s disease. Comput Biol Med 43(10):1313\u20131320. https:\/\/doi.org\/10.1016\/j.compbiomed.2013.07.004","journal-title":"Comput Biol Med"},{"key":"17288_CR69","doi-asserted-by":"crossref","unstructured":"Hidalgo-Mu\u00f1oz AR, Ram\u00edrez J, G\u00f3rriz JM, Padilla P (2014) Regions of interest computed by SVM wrapped method for Alzheimer\u2019s disease examination from segmented MRI, Front Aging Neurosci, vol. 6, no. FEB, pp. 1\u201310, doi: 10.3389\/fnagi.2014.00020","DOI":"10.3389\/fnagi.2014.00020"},{"issue":"1","key":"17288_CR70","doi-asserted-by":"publisher","first-page":"32","DOI":"10.1049\/htl.2013.0022","volume":"1","author":"S Lahmiri","year":"2014","unstructured":"Lahmiri S, Boukadoum M (2014) New approach for automatic classification of Alzheimer\u2019s disease, mild cognitive impairment and healthy brain magnetic resonance images. Healthc Technol Lett 1(1):32\u201336. https:\/\/doi.org\/10.1049\/htl.2013.0022","journal-title":"Healthc Technol Lett"},{"issue":"3","key":"17288_CR71","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1142\/S0129065716500507","volume":"27","author":"L Khedher","year":"2017","unstructured":"Khedher L, Ill\u00e1n IA, G\u00f3rriz JM, Ram\u00edrez J, Brahim A, Meyer-Baese A (2017) Independent Component Analysis-Support Vector Machine-Based Computer-Aided Diagnosis System for Alzheimer\u2019s with Visual Support. Int J Neural Syst 27(3):1\u201318. https:\/\/doi.org\/10.1142\/S0129065716500507","journal-title":"Int J Neural Syst"},{"key":"17288_CR72","doi-asserted-by":"crossref","unstructured":"Ortiz A, Munilla J, \u00c1lvarez-Ill\u00e1n I, G\u00f3rriz JM, Ram\u00edrez J (2015) Exploratory graphical models of functional and structural connectivity patterns for Alzheimer\u2019s disease diagnosis, Front Comput Neurosci, vol. 9, no. November, pp. 1\u201318, doi: 10.3389\/fncom.2015.00132","DOI":"10.3389\/fncom.2015.00132"},{"issue":"4","key":"17288_CR73","doi-asserted-by":"publisher","first-page":"552","DOI":"10.1111\/jon.12163","volume":"25","author":"A Retico","year":"2015","unstructured":"Retico A, Bosco P, Cerello P, Fiorina E, Chincarini A, Fantacci ME (2015) Predictive Models Based on Support Vector Machines: Whole-Brain versus Regional Analysis of Structural MRI in the Alzheimer\u2019s Disease. J Neuroimaging 25(4):552\u2013563. https:\/\/doi.org\/10.1111\/jon.12163","journal-title":"J Neuroimaging"},{"key":"17288_CR74","doi-asserted-by":"crossref","unstructured":"Havaei M, Guizard N, Chapados N, Bengio Y (2011) Medical Image Computing and Computer-Assisted Intervention , MICCAI 2011 14th Int. Conf. (Vision, Pattern Recognition, Graph., p. 697, doi: 10.1007\/978-3-319-46720-7","DOI":"10.1007\/978-3-319-46720-7"},{"key":"17288_CR75","doi-asserted-by":"publisher","first-page":"35","DOI":"10.1016\/j.compmedimag.2017.01.001","volume":"60","author":"S Lu","year":"2017","unstructured":"Lu S, Xia Y, Cai W, Fulham M, Feng DD (2017) Early identification of mild cognitive impairment using incomplete random forest-robust support vector machine and FDG-PET imaging. Comput Med Imaging Graph 60:35\u201341. https:\/\/doi.org\/10.1016\/j.compmedimag.2017.01.001","journal-title":"Comput Med Imaging Graph"},{"key":"17288_CR76","doi-asserted-by":"publisher","unstructured":"Alam S, Kwon GR, Kim JI, Park CS (2017) Twin SVM-Based Classification of Alzheimer\u2019s Disease Using Complex Dual-Tree Wavelet Principal Coefficients and LDA, J Healthc Eng, vol. 2017, doi: https:\/\/doi.org\/10.1155\/2017\/8750506","DOI":"10.1155\/2017\/8750506"},{"key":"17288_CR77","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1016\/j.jneumeth.2017.03.006","volume":"282","author":"SH Hojjati","year":"2017","unstructured":"Hojjati SH, Ebrahimzadeh A, Khazaee A, Babajani-Feremi A (2017) Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM. J Neurosci Methods 282:69\u201380. https:\/\/doi.org\/10.1016\/j.jneumeth.2017.03.006","journal-title":"J Neurosci Methods"},{"key":"17288_CR78","doi-asserted-by":"publisher","first-page":"195","DOI":"10.1016\/j.neucom.2018.09.001","volume":"320","author":"N Zeng","year":"2018","unstructured":"Zeng N, Qiu H, Wang Z, Liu W, Zhang H, Li Y (2018) A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer\u2019s disease. Neurocomputing 320:195\u2013202. https:\/\/doi.org\/10.1016\/j.neucom.2018.09.001","journal-title":"Neurocomputing"},{"key":"17288_CR79","doi-asserted-by":"publisher","first-page":"414","DOI":"10.1016\/j.bspc.2018.08.009","volume":"52","author":"S Lahmiri","year":"2019","unstructured":"Lahmiri S, Shmuel A (2019) Performance of machine learning methods applied to structural MRI and ADAS cognitive scores in diagnosing Alzheimer\u2019s disease. Biomed Signal Process Control 52:414\u2013419. https:\/\/doi.org\/10.1016\/j.bspc.2018.08.009","journal-title":"Biomed Signal Process Control"},{"key":"17288_CR80","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1016\/j.bspc.2017.09.005","volume":"40","author":"RS Kamathe","year":"2018","unstructured":"Kamathe RS, Joshi KR (2018) A novel method based on independent component analysis for brain MR image tissue classification into CSF, WM and GM for atrophy detection in Alzheimer\u2019s disease. Biomed Signal Process Control 40:41\u201348. https:\/\/doi.org\/10.1016\/j.bspc.2017.09.005","journal-title":"Biomed Signal Process Control"},{"key":"17288_CR81","doi-asserted-by":"publisher","first-page":"370","DOI":"10.1016\/j.patcog.2018.11.027","volume":"88","author":"J Peng","year":"2019","unstructured":"Peng J, Zhu X, Wang Y, An L, Shen D (2019) Structured sparsity regularized multiple kernel learning for Alzheimer\u2019s disease diagnosis. Pattern Recogn 88:370\u2013382. https:\/\/doi.org\/10.1016\/j.patcog.2018.11.027","journal-title":"Pattern Recogn"},{"key":"17288_CR82","doi-asserted-by":"crossref","unstructured":"Sheng J et al. (2019) A novel joint HCPMMP method for automatically classifying Alzheimer\u2019s and different stage MCI patients, Behav Brain Res, vol. 365, no. Mci, pp. 210\u2013221, doi: 10.1016\/j.bbr.2019.03.004","DOI":"10.1016\/j.bbr.2019.03.004"},{"issue":"2","key":"17288_CR83","doi-asserted-by":"publisher","first-page":"153","DOI":"10.1002\/ima.22132","volume":"25","author":"S Wang","year":"2015","unstructured":"Wang S (2015) Feed-forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection. Int J Imaging Syst Technol 25(2):153\u2013164. https:\/\/doi.org\/10.1002\/ima.22132","journal-title":"Int J Imaging Syst Technol"},{"key":"17288_CR84","doi-asserted-by":"publisher","first-page":"2017","DOI":"10.1155\/2017\/5485080","volume":"1","author":"RK Lama","year":"2017","unstructured":"Lama RK, Gwak J, Park JS, Lee SW (2017) Diagnosis of Alzheimer\u2019s Disease Based on Structural MRI Images Using a Regularized Extreme Learning Machine and PCA Features. J Healthc Eng 1:2017. https:\/\/doi.org\/10.1155\/2017\/5485080","journal-title":"J Healthc Eng"},{"key":"17288_CR85","doi-asserted-by":"publisher","unstructured":"Jha D, Kim JI, Kwon GR (2017) Diagnosis of Alzheimer\u2019s Disease Using Dual-Tree Complex Wavelet Transform, PCA, and Feed-Forward Neural Network, J. Healthc. Eng., vol. 2017, doi: https:\/\/doi.org\/10.1155\/2017\/9060124","DOI":"10.1155\/2017\/9060124"},{"issue":"4","key":"17288_CR86","doi-asserted-by":"publisher","first-page":"913","DOI":"10.1007\/s11682-015-9356-x","volume":"9","author":"B Cheng","year":"2015","unstructured":"Cheng B, Liu M, Il Suk H, Shen D, Zhang D (2015) Multimodal manifold-regularized transfer learning for MCI conversion prediction. Brain Imag Behav 9(4):913\u2013926. https:\/\/doi.org\/10.1007\/s11682-015-9356-x","journal-title":"Brain Imag Behav"},{"issue":"2","key":"17288_CR87","doi-asserted-by":"publisher","first-page":"624","DOI":"10.1109\/TCBB.2016.2635144","volume":"15","author":"J Liu","year":"2018","unstructured":"Liu J, Li M, Lan W, Wu FX, Pan Y, Wang J (2018) Classification of Alzheimer\u2019s Disease Using Whole Brain Hierarchical Network. IEEE\/ACM Trans Comput Biol Bioinforma 15(2):624\u2013632. https:\/\/doi.org\/10.1109\/TCBB.2016.2635144","journal-title":"IEEE\/ACM Trans Comput Biol Bioinforma"},{"issue":"9","key":"17288_CR88","doi-asserted-by":"publisher","first-page":"3728","DOI":"10.1002\/hbm.24207","volume":"39","author":"J Kim","year":"2018","unstructured":"Kim J, Lee B (2018) Identification of Alzheimer\u2019s disease and mild cognitive impairment using multimodal sparse hierarchical extreme learning machine. Hum Brain Mapp 39(9):3728\u20133741. https:\/\/doi.org\/10.1002\/hbm.24207","journal-title":"Hum Brain Mapp"},{"key":"17288_CR89","doi-asserted-by":"crossref","unstructured":"Bi XA, Jiang Q, Sun Q, Shu Q, Liu Y (2018) Analysis of Alzheimer\u2019s Disease Based on the Random Neural Network Cluster in fMRI, Front Neuroinform, vol. 12, no. September, pp. 1\u201310, doi: 10.3389\/fninf.2018.00060","DOI":"10.3389\/fninf.2018.00060"},{"issue":"3","key":"17288_CR90","doi-asserted-by":"publisher","first-page":"1234","DOI":"10.1109\/JBHI.2018.2839771","volume":"23","author":"W Li","year":"2019","unstructured":"Li W, Zhao Y, Chen X, Xiao Y, Qin Y (2019) Detecting Alzheimer\u2019s Disease on Small Dataset: A Knowledge Transfer Perspective. IEEE J Biomed Heal Inform 23(3):1234\u20131242. https:\/\/doi.org\/10.1109\/JBHI.2018.2839771","journal-title":"IEEE J Biomed Heal Inform"},{"key":"17288_CR91","doi-asserted-by":"crossref","unstructured":"Mahmood R, Ghimire B (2013) Automatic detection and classification of Alzheimer\u2019s disease from MRI scans using principal component analysis and artificial neural networks, Int Conf Syst Signals, Image Process., pp. 133\u2013137, doi: 10.1109\/IWSSIP.2013.6623471","DOI":"10.1109\/IWSSIP.2013.6623471"},{"issue":"8","key":"17288_CR92","doi-asserted-by":"publisher","first-page":"389","DOI":"10.1049\/el.2009.0176","volume":"45","author":"M L\u00f3pez","year":"2009","unstructured":"L\u00f3pez M et al (2009) Automatic tool for Alzheimer\u2019s disease diagnosis using PCA and Bayesian classification rules. Electron Lett 45(8):389\u2013391. https:\/\/doi.org\/10.1049\/el.2009.0176","journal-title":"Electron Lett"},{"issue":"2","key":"17288_CR93","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1016\/j.neulet.2010.01.056","volume":"472","author":"J Ram\u00edrez","year":"2010","unstructured":"Ram\u00edrez J et al (2010) Computer aided diagnosis system for the Alzheimer\u2019s disease based on partial least squares and random forest SPECT image classification. Neurosci Lett 472(2):99\u2013103. https:\/\/doi.org\/10.1016\/j.neulet.2010.01.056","journal-title":"Neurosci Lett"},{"issue":"2","key":"17288_CR94","doi-asserted-by":"publisher","first-page":"469","DOI":"10.1016\/j.neuroimage.2011.05.083","volume":"58","author":"A Chincarini","year":"2011","unstructured":"Chincarini A et al (2011) Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer\u2019s disease. Neuroimage 58(2):469\u2013480. https:\/\/doi.org\/10.1016\/j.neuroimage.2011.05.083","journal-title":"Neuroimage"},{"key":"17288_CR95","doi-asserted-by":"publisher","unstructured":"Islam J, Zhang Y (2018) Brain MRI analysis for Alzheimer\u2019s disease diagnosis using an ensemble system of deep convolutional neural networks, Brain Informatics, vol. 5, no. 2, doi: https:\/\/doi.org\/10.1186\/s40708-018-0080-3","DOI":"10.1186\/s40708-018-0080-3"},{"issue":"4","key":"17288_CR96","doi-asserted-by":"publisher","first-page":"396","DOI":"10.1111\/joim.12028","volume":"273","author":"G Spulber","year":"2013","unstructured":"Spulber G et al (2013) An MRI-based index to measure the severity of Alzheimer\u2019s disease-like structural pattern in subjects with mild cognitive impairment. J Intern Med 273(4):396\u2013409. https:\/\/doi.org\/10.1111\/joim.12028","journal-title":"J Intern Med"},{"key":"17288_CR97","doi-asserted-by":"publisher","first-page":"167","DOI":"10.1016\/j.neuroimage.2012.09.065","volume":"65","author":"KR Gray","year":"2013","unstructured":"Gray KR, Aljabar P, Heckemann RA, Hammers A, Rueckert D (2013) Random forest-based similarity measures for multi-modal classification of Alzheimer\u2019s disease. Neuroimage 65:167\u2013175. https:\/\/doi.org\/10.1016\/j.neuroimage.2012.09.065","journal-title":"Neuroimage"},{"issue":"SUPPL 1","key":"17288_CR98","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/1475-925X-12-S1-S2","volume":"12","author":"Y Chen","year":"2013","unstructured":"Chen Y, Pham TD (2013) Development of a brain MRI-based hidden Markov model for dementia recognition. Biomed Eng Online 12(SUPPL 1):1\u201316. https:\/\/doi.org\/10.1186\/1475-925X-12-S1-S2","journal-title":"Biomed Eng Online"},{"issue":"1","key":"17288_CR99","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1371\/journal.pone.0082450","volume":"9","author":"H Li","year":"2014","unstructured":"Li H, Liu Y, Gong P, Zhang C, Ye J (2014) Hierarchical interactions model for predicting Mild Cognitive Impairment (MCI) to Alzheimer\u2019s Disease (AD) conversion. PLoS One 9(1):1\u201311. https:\/\/doi.org\/10.1371\/journal.pone.0082450","journal-title":"PLoS One"},{"issue":"4","key":"17288_CR100","doi-asserted-by":"publisher","first-page":"1132","DOI":"10.1109\/TBME.2014.2372011","volume":"62","author":"S Liu","year":"2015","unstructured":"Liu S et al (2015) Multimodal Neuroimaging Feature Learning for Multiclass Diagnosis of Alzheimer\u2019s Disease. IEEE Trans Biomed Eng 62(4):1132\u20131140. https:\/\/doi.org\/10.1109\/TBME.2014.2372011","journal-title":"IEEE Trans Biomed Eng"},{"key":"17288_CR101","doi-asserted-by":"publisher","first-page":"292","DOI":"10.1016\/j.neuroimage.2016.01.005","volume":"129","author":"H Il Suk","year":"2016","unstructured":"Il Suk H, Wee CY, Lee SW, Shen D (2016) State-space model with deep learning for functional dynamics estimation in resting-state fMRI. Neuroimage 129:292\u2013307. https:\/\/doi.org\/10.1016\/j.neuroimage.2016.01.005","journal-title":"Neuroimage"},{"issue":"2","key":"17288_CR102","doi-asserted-by":"publisher","first-page":"219","DOI":"10.1016\/j.trci.2017.01.006","volume":"3","author":"M Asgari","year":"2017","unstructured":"Asgari M, Kaye J, Dodge H (2017) Predicting mild cognitive impairment from spontaneous spoken utterances. Alzheimer\u2019s Dement Transl Res Clin Interv 3(2):219\u2013228. https:\/\/doi.org\/10.1016\/j.trci.2017.01.006","journal-title":"Alzheimer\u2019s Dement Transl Res Clin Interv"},{"key":"17288_CR103","doi-asserted-by":"publisher","first-page":"26","DOI":"10.1016\/j.media.2018.02.002","volume":"46","author":"D Lu","year":"2018","unstructured":"Lu D, Popuri K, Ding GW, Balachandar R, Beg MF (2018) Multiscale deep neural network based analysis of FDG-PET images for the early diagnosis of Alzheimer\u2019s disease. Med Image Anal 46:26\u201334. https:\/\/doi.org\/10.1016\/j.media.2018.02.002","journal-title":"Med Image Anal"},{"key":"17288_CR104","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1016\/j.jneumeth.2019.01.011","volume":"318","author":"K Vaithinathan","year":"2019","unstructured":"Vaithinathan K, Parthiban L (2019) A Novel Texture Extraction Technique with T1 Weighted MRI for the Classification of Alzheimer\u2019s Disease. J Neurosci Methods 318:84\u201399. https:\/\/doi.org\/10.1016\/j.jneumeth.2019.01.011","journal-title":"J Neurosci Methods"},{"key":"17288_CR105","doi-asserted-by":"crossref","unstructured":"Casini L, Roccetti M (2020) Medical Imaging and Artificial Intelligence. In: Lalumera, E., Fanti, S. (eds) Philosophy of Advanced Medical Imaging. SpringerBriefs in Ethics. Springer, Cham, pp. 81-95, doi: 10.1007\/978-3-030-61412-6_7","DOI":"10.1007\/978-3-030-61412-6_7"},{"key":"17288_CR106","doi-asserted-by":"crossref","unstructured":"Ong KT (2018) \u2018Challenges in Dementia Studies\u2019, Alzheimer\u2019s Disease - The 21st Century Challenge. InTech, Jul. 18, doi: 10.5772\/intechopen.72866","DOI":"10.5772\/intechopen.72866"},{"key":"17288_CR107","doi-asserted-by":"crossref","unstructured":"Martin SA, Townend FJ, Barkhof F, Cole JH (2023) Interpretable Machine Learning for Dementia: A Systematic Review. Alzheimer's & Dementia, vol. 19, Issue 5, pp. 2135-2149, doi: 10.1002\/alz.12948","DOI":"10.1002\/alz.12948"},{"key":"17288_CR108","doi-asserted-by":"publisher","unstructured":"Javeed A et al. (2023) Machine learning for dementia prediction: A systematic review and Future Research Directions, J Med Syst, vol. 47, no. 1, doi:https:\/\/doi.org\/10.1007\/s10916-023-01906-7","DOI":"10.1007\/s10916-023-01906-7"},{"key":"17288_CR109","doi-asserted-by":"publisher","first-page":"104773","DOI":"10.1016\/j.neubiorev.2022.104773","volume":"140","author":"L Fenton","year":"2022","unstructured":"Fenton L et al (2022) Cognitive and neuroimaging correlates of financial exploitation vulnerability in older adults without dementia: Implications for early detection of Alzheimer\u2019s disease. Neurosci & Biobehav Rev 140:104773. https:\/\/doi.org\/10.1016\/j.neubiorev.2022.104773","journal-title":"Neurosci & Biobehav Rev"},{"issue":"12","key":"17288_CR110","doi-asserted-by":"publisher","first-page":"2109","DOI":"10.3390\/diagnostics13122109","volume":"13","author":"C-C Wu","year":"2023","unstructured":"Wu C-C, Su C-H, Islam MM, Liao M-H (2023) Artificial Intelligence in dementia: A bibliometric study. Diagnostics 13(12):2109. https:\/\/doi.org\/10.3390\/diagnostics13122109","journal-title":"Diagnostics"},{"key":"17288_CR111","doi-asserted-by":"publisher","unstructured":"Ford E, Milne R, Curlewis K (2023) Ethical issues when using digital biomarkers and artificial intelligence for the early detection of dementia, WIREs Data Mining and Knowledge Discovery, vol. 13, no. 3, doi:https:\/\/doi.org\/10.1002\/widm.1492","DOI":"10.1002\/widm.1492"},{"issue":"3","key":"17288_CR112","doi-asserted-by":"publisher","first-page":"1464","DOI":"10.3390\/app13031464","volume":"13","author":"A Hashmi","year":"2023","unstructured":"Hashmi A, Barukab O (2023) Dementia classification using Deep Reinforcement Learning for early diagnosis. Appl Sci 13(3):1464. https:\/\/doi.org\/10.3390\/app13031464","journal-title":"Appl Sci"},{"key":"17288_CR113","unstructured":"Https:\/\/www.alz.org\/alzheimers-dementia\/s, Stages of Alzheimer\u2019s"},{"key":"17288_CR114","doi-asserted-by":"publisher","first-page":"108099","DOI":"10.1016\/j.asoc.2021.108099","volume":"115","author":"R Sharma","year":"2022","unstructured":"Sharma R, Goel T, Tanveer M, Murugan R (2022) FDN-ADNet: Fuzzy LS-TWSVM based deep learning network for prognosis of the Alzheimer\u2019s disease using the sagittal plane of MRI scans. Appl Soft Comput 115:108099. https:\/\/doi.org\/10.1016\/j.asoc.2021.108099","journal-title":"Appl Soft Comput"},{"key":"17288_CR115","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/S11042-020-10331-8","volume":"2021","author":"A Ashraf","year":"2021","unstructured":"Ashraf A, Naz S, Shirazi SH, Razzak I, Parsad M (Jan. 2021) Deep transfer learning for alzheimer neurological disorder detection. Multimed Tools Appl 2021:1\u201326. https:\/\/doi.org\/10.1007\/S11042-020-10331-8","journal-title":"Multimed Tools Appl"},{"key":"17288_CR116","doi-asserted-by":"publisher","first-page":"103217","DOI":"10.1016\/j.bspc.2021.103217","volume":"71","author":"JV Shanmugam","year":"2022","unstructured":"Shanmugam JV, Duraisamy B, Simon BC, Bhaskaran P (2022) Alzheimer\u2019s disease classification using pre-trained deep networks. Biomed Signal Process Control 71:103217. https:\/\/doi.org\/10.1016\/j.bspc.2021.103217","journal-title":"Biomed Signal Process Control"},{"key":"17288_CR117","doi-asserted-by":"publisher","first-page":"103500","DOI":"10.1016\/j.bspc.2022.103500","volume":"74","author":"N Goenka","year":"2022","unstructured":"Goenka N, Tiwari S (2022) AlzVNet: A volumetric convolutional neural network for multiclass classification of Alzheimer\u2019s disease through multiple neuroimaging computational approaches. Biomed Signal Process Control 74:103500. https:\/\/doi.org\/10.1016\/j.bspc.2022.103500","journal-title":"Biomed Signal Process Control"},{"key":"17288_CR118","doi-asserted-by":"publisher","first-page":"102309","DOI":"10.1016\/j.artmed.2022.102309","volume":"129","author":"M Leming","year":"2022","unstructured":"Leming M, Das S, Im H (2022) Construction of a confounder-free clinical MRI dataset in the Mass General Brigham system for classification of Alzheimer\u2019s disease. Artif Intell Med 129:102309. https:\/\/doi.org\/10.1016\/j.artmed.2022.102309","journal-title":"Artif Intell Med"},{"key":"17288_CR119","doi-asserted-by":"publisher","first-page":"108231","DOI":"10.1016\/j.asoc.2021.108231","volume":"115","author":"Z Liang","year":"2022","unstructured":"Liang Z, Zhang L (2022) Intuitionistic fuzzy twin support vector machines with the insensitive pinball loss. Appl Soft Comput 115:108231. https:\/\/doi.org\/10.1016\/j.asoc.2021.108231","journal-title":"Appl Soft Comput"}],"container-title":["Multimedia Tools and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-17288-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11042-023-17288-4\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-17288-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,15]],"date-time":"2024-05-15T07:38:08Z","timestamp":1715758688000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11042-023-17288-4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11,13]]},"references-count":119,"journal-issue":{"issue":"17","published-online":{"date-parts":[[2024,5]]}},"alternative-id":["17288"],"URL":"https:\/\/doi.org\/10.1007\/s11042-023-17288-4","relation":{},"ISSN":["1573-7721"],"issn-type":[{"value":"1573-7721","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,11,13]]},"assertion":[{"value":"26 July 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"25 August 2023","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"25 September 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"13 November 2023","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"Also there is no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflicts of interests"}}]}}