{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,27]],"date-time":"2024-10-27T04:06:01Z","timestamp":1730001961207,"version":"3.28.0"},"reference-count":48,"publisher":"Springer Science and Business Media LLC","issue":"8","license":[{"start":{"date-parts":[[2023,8,14]],"date-time":"2023-08-14T00:00:00Z","timestamp":1691971200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,8,14]],"date-time":"2023-08-14T00:00:00Z","timestamp":1691971200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimed Tools Appl"],"DOI":"10.1007\/s11042-023-16400-y","type":"journal-article","created":{"date-parts":[[2023,8,14]],"date-time":"2023-08-14T13:02:10Z","timestamp":1692018130000},"page":"23311-23331","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Unsupervised Domain Adaptation for Cross-domain Histopathology Image Classification"],"prefix":"10.1007","volume":"83","author":[{"given":"Xiangning","family":"Li","sequence":"first","affiliation":[]},{"given":"Chen","family":"Pan","sequence":"additional","affiliation":[]},{"given":"Lingmin","family":"He","sequence":"additional","affiliation":[]},{"given":"Xinyu","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,8,14]]},"reference":[{"key":"16400_CR1","doi-asserted-by":"publisher","first-page":"9","DOI":"10.1016\/j.neucom.2019.09.044","volume":"375","author":"Y Benhammou","year":"2020","unstructured":"Benhammou Y, Achchab B, Herrera F, Tabik S (2020) Breakhis based breast cancer automatic diagnosis using deep learning: Taxonomy, survey and insights. Neurocomputing 375:9\u201324","journal-title":"Neurocomputing"},{"key":"16400_CR2","unstructured":"Borkowski, A.A., Bui, M.M., Thomas, L.B., Wilson, C.P., DeLand, L.A., Mastorides, S.M.: Lung and colon cancer histopathological image dataset (lc25000). arXiv preprint http:\/\/arxiv.org\/abs\/1912.12142arXiv:1912.12142 (2019)"},{"key":"16400_CR3","doi-asserted-by":"publisher","DOI":"10.1016\/j.mlwa.2021.100134","volume":"6","author":"J Chai","year":"2021","unstructured":"Chai J, Zeng H, Li A, Ngai EW (2021) Deep learning in computer vision: A critical review of emerging techniques and application scenarios. Machine Learning with Applications 6:100134","journal-title":"Machine Learning with Applications"},{"issue":"01","key":"16400_CR4","doi-asserted-by":"publisher","first-page":"129","DOI":"10.1055\/s-0040-1702009","volume":"29","author":"A Choudhary","year":"2020","unstructured":"Choudhary A, Tong L, Zhu Y, Wang MD (2020) Advancing medical imaging informatics by deep learning-based domain adaptation. Yearbook of medical informatics 29(01):129\u2013138","journal-title":"Yearbook of medical informatics"},{"key":"16400_CR5","unstructured":"Csurka, G.: Domain adaptation for visual applications: A comprehensive survey. arXiv preprint http:\/\/arxiv.org\/abs\/1702.05374arXiv:1702.05374 (2017)"},{"key":"16400_CR6","doi-asserted-by":"crossref","unstructured":"Dou, Q., Ouyang, C., Chen, C., Chen, H., Heng, P.-A.: Unsupervised cross-modality domain adaptation of convnets for biomedical image segmentations with adversarial loss. arXiv preprint http:\/\/arxiv.org\/abs\/1804.10916arXiv:1804.10916 (2018)","DOI":"10.24963\/ijcai.2018\/96"},{"key":"16400_CR7","unstructured":"Dziugaite, G.K., Roy, D.M., Ghahramani, Z.: Training generative neural networks via maximum mean discrepancy optimization. arXiv preprint http:\/\/arxiv.org\/abs\/1505.03906arXiv:1505.03906 (2015)"},{"key":"16400_CR8","unstructured":"Falahkheirkhah, K., Lu, A., Alvarez-Melis, D., Huynh, G.: Domain adaptation using optimal transport for invariant learning using histopathology datasets. arXiv preprint http:\/\/arxiv.org\/abs\/2303.02241arXiv:2303.02241 (2023)"},{"key":"16400_CR9","doi-asserted-by":"crossref","unstructured":"Figueira, G., Wang, Y., Sun, L., Zhou, H., Zhang, Q.: Adversarial-based domain adaptation networks for unsupervised tumour detection in histopathology. In:2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp.1284\u20131288 (2020). IEEE","DOI":"10.1109\/ISBI45749.2020.9098699"},{"key":"16400_CR10","unstructured":"Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In:International Conference on Machine Learning, pp.1180\u20131189 (2015). PMLR"},{"key":"16400_CR11","unstructured":"Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In:International Conference on Machine Learning, pp.1180\u20131189 (2015). PMLR"},{"key":"16400_CR12","doi-asserted-by":"crossref","unstructured":"Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In:2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.2066\u20132073 (2012). IEEE","DOI":"10.1109\/CVPR.2012.6247911"},{"issue":"5","key":"16400_CR13","doi-asserted-by":"publisher","first-page":"1379","DOI":"10.1109\/JBHI.2019.2942429","volume":"24","author":"Y Gu","year":"2019","unstructured":"Gu Y, Ge Z, Bonnington CP, Zhou J (2019) Progressive transfer learning and adversarial domain adaptation for cross-domain skin disease classification. IEEE journal of biomedical and health informatics 24(5):1379\u20131393","journal-title":"IEEE journal of biomedical and health informatics"},{"issue":"3","key":"16400_CR14","doi-asserted-by":"publisher","first-page":"1173","DOI":"10.1109\/TBME.2021.3117407","volume":"69","author":"H Guan","year":"2021","unstructured":"Guan H, Liu M (2021) Domain adaptation for medical image analysis: a survey. IEEE Transactions on Biomedical Engineering 69(3):1173\u20131185","journal-title":"IEEE Transactions on Biomedical Engineering"},{"key":"16400_CR15","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"16400_CR16","doi-asserted-by":"crossref","unstructured":"Iacono, P., Khan, N.: Structure preserving cycle-gan for unsupervised medical image domain adaptation. arXiv preprint http:\/\/arxiv.org\/abs\/2304.09164arXiv:2304.09164 (2023)","DOI":"10.32920\/22734377.v1"},{"key":"16400_CR17","doi-asserted-by":"publisher","first-page":"64020","DOI":"10.1109\/ACCESS.2020.2984777","volume":"8","author":"X Jia","year":"2020","unstructured":"Jia X, Sun F (2020) Unsupervised deep domain adaptation based on weighted adversarial network. IEEE Access 8:64020\u201364027","journal-title":"IEEE Access"},{"key":"16400_CR18","unstructured":"Kang, G., Jiang, L., Wei, Y., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network for single-and multi-source domain adaptation. IEEE transactions on pattern analysis and machine intelligence (2020)"},{"issue":"6","key":"16400_CR19","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s00138-020-01093-2","volume":"31","author":"M Karimpour","year":"2020","unstructured":"Karimpour M, Noori Saray S, Tahmoresnezhad J, Pourmahmood Aghababa M (2020) Multi-source domain adaptation for image classification. Machine Vision and Applications 31(6):1\u201319","journal-title":"Machine Vision and Applications"},{"key":"16400_CR20","doi-asserted-by":"crossref","unstructured":"Khan, S., Guo, Y., Ye, Y., Li, C., Wu, Q.: Mini-batch dynamic geometric embedding for unsupervised domain adaptation. Neural Processing Letters, 1\u201318 (2023)","DOI":"10.1007\/s11063-023-11167-7"},{"key":"16400_CR21","unstructured":"Kouw, W.M., Loog, M.: An introduction to domain adaptation and transfer learning. arXiv preprint http:\/\/arxiv.org\/abs\/1812.11806arXiv:1812.11806 (2018)"},{"key":"16400_CR22","doi-asserted-by":"crossref","unstructured":"Kumagai, A., Iwata, T.: Unsupervised domain adaptation by matching distributions based on the maximum mean discrepancy via unilateral transformations. In:Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp.4106\u20134113 (2019)","DOI":"10.1609\/aaai.v33i01.33014106"},{"key":"16400_CR23","doi-asserted-by":"crossref","unstructured":"Kumar, D., Kumar, C., Shao, M.: Cross-database mammographic image analysis through unsupervised domain adaptation. In:2017 IEEE International Conference on Big Data (Big Data), pp.4035\u20134042 (2017). IEEE","DOI":"10.1109\/BigData.2017.8258419"},{"key":"16400_CR24","unstructured":"Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. Advances in neural information processing systems 29 (2016)"},{"key":"16400_CR25","doi-asserted-by":"crossref","unstructured":"Mahapatra, D., Korevaar, S., Bozorgtabar, B., Tennakoon, R.: Unsupervised domain adaptation using feature disentanglement and gcns for medical image classification. In:European Conference on Computer Vision, pp.735\u2013748 (2022). Springer","DOI":"10.1007\/978-3-031-25082-8_50"},{"key":"16400_CR26","unstructured":"Mahapatra, D.: Unsupervised domain adaptation using feature disentanglement and gcns for medical image classification. arXiv preprint http:\/\/arxiv.org\/abs\/2206.13123arXiv:2206.13123 (2022)"},{"key":"16400_CR27","doi-asserted-by":"crossref","unstructured":"Niu, S., Hu, Y., Wang, J., Liu, Y., Song, H.: Feature-based distant domain transfer learning. In:2020 IEEE International Conference on Big Data (Big Data), pp.5164\u20135171 (2020). IEEE","DOI":"10.1109\/BigData50022.2020.9378493"},{"issue":"10","key":"16400_CR28","doi-asserted-by":"publisher","first-page":"3784","DOI":"10.1109\/JBHI.2021.3051470","volume":"25","author":"S Niu","year":"2021","unstructured":"Niu S, Liu M, Liu Y, Wang J, Song H (2021) Distant domain transfer learning for medical imaging. IEEE Journal of Biomedical and Health Informatics 25(10):3784\u20133793","journal-title":"IEEE Journal of Biomedical and Health Informatics"},{"key":"16400_CR29","doi-asserted-by":"crossref","unstructured":"O\u2019Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G.V., Krpalkova, L., Riordan, D., Walsh, J.: Deep learning vs. traditional computer vision. In:Science and Information Conference, pp.128\u2013144 (2019). Springer","DOI":"10.1007\/978-3-030-17795-9_10"},{"key":"16400_CR30","doi-asserted-by":"crossref","unstructured":"Pei, Z., Cao, Z., Long, M., Wang, J.: Multi-adversarial domain adaptation. In:Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)","DOI":"10.1609\/aaai.v32i1.11767"},{"key":"16400_CR31","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.neuroimage.2019.03.026","volume":"194","author":"CS Perone","year":"2019","unstructured":"Perone CS, Ballester P, Barros RC, Cohen-Adad J (2019) Unsupervised domain adaptation for medical imaging segmentation with self-ensembling. NeuroImage 194:1\u201311","journal-title":"NeuroImage"},{"issue":"12","key":"16400_CR32","doi-asserted-by":"publisher","first-page":"6246","DOI":"10.1002\/mp.14507","volume":"47","author":"M Romero","year":"2020","unstructured":"Romero M, Interian Y, Solberg T, Valdes G (2020) Targeted transfer learning to improve performance in small medical physics datasets. Medical Physics 47(12):6246\u20136256","journal-title":"Medical Physics"},{"key":"16400_CR33","doi-asserted-by":"crossref","unstructured":"Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In:Computer Vision\u2013ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part IV 11, pp.213\u2013226 (2010). Springer","DOI":"10.1007\/978-3-642-15561-1_16"},{"issue":"5","key":"16400_CR34","doi-asserted-by":"publisher","first-page":"1285","DOI":"10.1109\/TMI.2016.2528162","volume":"35","author":"H-C Shin","year":"2016","unstructured":"Shin H-C, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM (2016) Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning. IEEE transactions on medical imaging 35(5):1285\u20131298","journal-title":"IEEE transactions on medical imaging"},{"key":"16400_CR35","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1016\/j.inffus.2014.12.003","volume":"24","author":"S Sun","year":"2015","unstructured":"Sun S, Shi H, Wu Y (2015) A survey of multi-source domain adaptation. Information Fusion 24:84\u201392","journal-title":"Information Fusion"},{"key":"16400_CR36","doi-asserted-by":"crossref","unstructured":"Tan, B., Zhang, Y., Pan, S., Yang, Q.: Distant domain transfer learning. In:Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)","DOI":"10.1609\/aaai.v31i1.10826"},{"key":"16400_CR37","unstructured":"Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: Maximizing for domain invariance. arXiv preprint http:\/\/arxiv.org\/abs\/1412.3474arXiv:1412.3474 (2014)"},{"issue":"8","key":"16400_CR38","doi-asserted-by":"publisher","first-page":"1962","DOI":"10.1109\/TMI.2016.2529665","volume":"35","author":"A Vahadane","year":"2016","unstructured":"Vahadane A, Peng T, Sethi A, Albarqouni S, Wang L, Baust M, Steiger K, Schlitter AM, Esposito I, Navab N (2016) Structure-preserving color normalization and sparse stain separation for histological images. IEEE transactions on medical imaging 35(8):1962\u20131971","journal-title":"IEEE transactions on medical imaging"},{"key":"16400_CR39","doi-asserted-by":"publisher","first-page":"135","DOI":"10.1016\/j.neucom.2018.05.083","volume":"312","author":"M Wang","year":"2018","unstructured":"Wang M, Deng W (2018) Deep visual domain adaptation: A survey. Neurocomputing 312:135\u2013153","journal-title":"Neurocomputing"},{"key":"16400_CR40","doi-asserted-by":"crossref","unstructured":"Xie, B., Yuan, L., Li, S., Liu, C.H., Cheng, X., Wang, G.: Active learning for domain adaptation: An energy-based approach. In:Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp.8708\u20138716 (2022)","DOI":"10.1609\/aaai.v36i8.20850"},{"key":"16400_CR41","doi-asserted-by":"crossref","unstructured":"Zhang, H., Liu, J., Wang, P., Yu, Z., Liu, W., Chen, H.: Cross-boosted multi-target domain adaptation for multi-modality histopathology image translation and segmentation. IEEE Journal of Biomedical and Health Informatics (2022)","DOI":"10.1109\/JBHI.2022.3153793"},{"key":"16400_CR42","unstructured":"Zhao, S., Li, B., Xu, P., Keutzer, K.: Multi-source domain adaptation in the deep learning era: A systematic survey. arXiv preprint http:\/\/arxiv.org\/abs\/2002.12169arXiv:2002.12169 (2020)"},{"key":"16400_CR43","unstructured":"Zhao, S., Yue, X., Zhang, S., Li, B., Zhao, H., Wu, B., Krishna, R., Gonzalez, J.E., Sangiovanni-Vincentelli, A.L., Seshia, S.A., et al.: A review of single-source deep unsupervised visual domain adaptation. IEEE Transactions on Neural Networks and Learning Systems (2020)"},{"key":"16400_CR44","doi-asserted-by":"crossref","unstructured":"Zhu, D., Li, Y., Shao, Y., Hao, J., Wu, F., Kuang, K., Xiao, J., Wu, C.: Generalized universal domain adaptation with generative flow networks. arXiv preprint http:\/\/arxiv.org\/abs\/2305.04466arXiv:2305.04466 (2023)","DOI":"10.1145\/3581783.3612225"},{"key":"16400_CR45","doi-asserted-by":"crossref","unstructured":"Zhu, Y., Zhuang, F., Wang, D.: Aligning domain-specific distribution and classifier for cross-domain classification from multiple sources. In:Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp.5989\u20135996 (2019)","DOI":"10.1609\/aaai.v33i01.33015989"},{"key":"16400_CR46","doi-asserted-by":"publisher","first-page":"214","DOI":"10.1016\/j.neunet.2019.07.010","volume":"119","author":"Y Zhu","year":"2019","unstructured":"Zhu Y, Zhuang F, Wang J, Chen J, Shi Z, Wu W, He Q (2019) Multi-representation adaptation network for cross-domain image classification. Neural Networks 119:214\u2013221","journal-title":"Neural Networks"},{"issue":"4","key":"16400_CR47","doi-asserted-by":"publisher","first-page":"1713","DOI":"10.1109\/TNNLS.2020.2988928","volume":"32","author":"Y Zhu","year":"2020","unstructured":"Zhu Y, Zhuang F, Wang J, Ke G, Chen J, Bian J, Xiong H, He Q (2020) Deep subdomain adaptation network for image classification. IEEE transactions on neural networks and learning systems 32(4):1713\u20131722","journal-title":"IEEE transactions on neural networks and learning systems"},{"issue":"5","key":"16400_CR48","doi-asserted-by":"publisher","DOI":"10.1007\/s11704-022-1349-5","volume":"17","author":"Y Zhu","year":"2023","unstructured":"Zhu Y, Wu X, Qiang J, Yuan Y, Li Y (2023) Representation learning via an integrated autoencoder for unsupervised domain adaptation. Frontiers of Computer Science 17(5):175334","journal-title":"Frontiers of Computer Science"}],"container-title":["Multimedia Tools and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-16400-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11042-023-16400-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-16400-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,26]],"date-time":"2024-10-26T04:04:22Z","timestamp":1729915462000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11042-023-16400-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8,14]]},"references-count":48,"journal-issue":{"issue":"8","published-online":{"date-parts":[[2024,3]]}},"alternative-id":["16400"],"URL":"https:\/\/doi.org\/10.1007\/s11042-023-16400-y","relation":{},"ISSN":["1573-7721"],"issn-type":[{"type":"electronic","value":"1573-7721"}],"subject":[],"published":{"date-parts":[[2023,8,14]]},"assertion":[{"value":"5 October 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"13 June 2023","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"21 July 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"14 August 2023","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interests.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflicts of interest"}}]}}