{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,25]],"date-time":"2024-10-25T22:40:03Z","timestamp":1729896003666,"version":"3.28.0"},"reference-count":85,"publisher":"Springer Science and Business Media LLC","issue":"8","license":[{"start":{"date-parts":[[2023,8,9]],"date-time":"2023-08-09T00:00:00Z","timestamp":1691539200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,8,9]],"date-time":"2023-08-09T00:00:00Z","timestamp":1691539200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100002322","name":"Coordena\u00e7\u00e3o de Aperfei\u00e7oamento de Pessoal de N\u00edvel Superior","doi-asserted-by":"publisher","award":["Finance Code 001"],"id":[{"id":"10.13039\/501100002322","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003593","name":"Conselho Nacional de Desenvolvimento Cient\u00edfico e Tecnol\u00f3gico","doi-asserted-by":"publisher","award":["#132940\/2019-1","311404\/2021-9","#313643\/2021-0"],"id":[{"id":"10.13039\/501100003593","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004901","name":"Funda\u00e7\u00e3o de Amparo \u00e0 Pesquisa do Estado de Minas Gerais","doi-asserted-by":"publisher","award":["APQ-00578-18"],"id":[{"id":"10.13039\/501100004901","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001807","name":"Funda\u00e7\u00e3o de Amparo \u00e0 Pesquisa do Estado de S\u00e3o Paulo","doi-asserted-by":"publisher","award":["2022\/03020-1"],"id":[{"id":"10.13039\/501100001807","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimed Tools Appl"],"DOI":"10.1007\/s11042-023-16351-4","type":"journal-article","created":{"date-parts":[[2023,8,9]],"date-time":"2023-08-09T02:02:02Z","timestamp":1691546522000},"page":"21929-21952","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["Hybrid models for classifying histological images: An association of deep features by transfer learning with ensemble classifier"],"prefix":"10.1007","volume":"83","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3623-6889","authenticated-orcid":false,"given":"Cl\u00e9ber I.","family":"de Oliveira","sequence":"first","affiliation":[]},{"given":"Marcelo Z.","family":"do Nascimento","sequence":"additional","affiliation":[]},{"given":"Guilherme F.","family":"Roberto","sequence":"additional","affiliation":[]},{"given":"Tha\u00edna A. A.","family":"Tosta","sequence":"additional","affiliation":[]},{"given":"Alessandro S.","family":"Martins","sequence":"additional","affiliation":[]},{"given":"Leandro A.","family":"Neves","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,8,9]]},"reference":[{"key":"16351_CR1","unstructured":"Yang M, Kpalma K, Ronsin J (2008) A survey of shape feature extraction techniques"},{"key":"16351_CR2","unstructured":"Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press"},{"key":"16351_CR3","doi-asserted-by":"crossref","unstructured":"Gad AF (2018) Convolutional neural networks. In: Practical Computer Vision Applications Using Deep Learning with CNNs, Springer, pp 183\u2013227","DOI":"10.1007\/978-1-4842-4167-7_5"},{"issue":"10","key":"16351_CR4","doi-asserted-by":"publisher","first-page":"428","DOI":"10.1016\/j.tics.2007.09.004","volume":"11","author":"GE Hinton","year":"2007","unstructured":"Hinton GE (2007) Learning multiple layers of representation. Trends Cogn Sci 11(10):428\u2013434","journal-title":"Trends Cogn Sci"},{"key":"16351_CR5","doi-asserted-by":"crossref","unstructured":"Le QV (2013) Building high-level features using large scale unsupervised learning. In: 2013 IEEE international conference on acoustics, speech and signal processing, IEEE, pp 8595\u20138598","DOI":"10.1109\/ICASSP.2013.6639343"},{"issue":"3","key":"16351_CR6","doi-asserted-by":"publisher","first-page":"792","DOI":"10.1109\/TMI.2017.2781228","volume":"37","author":"A BenTaieb","year":"2017","unstructured":"BenTaieb A, Hamarneh G (2017) Adversarial stain transfer for histopathology image analysis. IEEE Trans Med Imaging 37(3):792\u2013802","journal-title":"IEEE Trans Med Imaging"},{"issue":"7","key":"16351_CR7","doi-asserted-by":"publisher","first-page":"9631","DOI":"10.1007\/s11042-021-11756-5","volume":"81","author":"PK Sethy","year":"2022","unstructured":"Sethy PK, Behera SK (2022) Automatic classification with concatenation of deep and handcrafted features of histological images for breast carcinoma diagnosis. Multimedia Tools and Applications 81(7):9631\u20139643","journal-title":"Multimedia Tools and Applications"},{"key":"16351_CR8","doi-asserted-by":"crossref","unstructured":"Saxena S, Shukla S, Gyanchandani M (2020) Breast cancer histopathology image classification using kernelized weighted extreme learning machine. International Journal of Imaging Systems and Technology","DOI":"10.1002\/ima.22465"},{"key":"16351_CR9","first-page":"1276","volume-title":"ICASSP 2022\u20132022 IEEE International Conference on Acoustics","author":"R Zhang","year":"2022","unstructured":"Zhang R, Zhu J, Yang S, Hosseini MS, Genovese A, Chen L, Rowsell C, Damaskinos S, Varma S, Plataniotis KN (2022) Histokt: Cross knowledge transfer in computational pathology. ICASSP 2022\u20132022 IEEE International Conference on Acoustics. Speech and Signal Processing (ICASSP), IEEE, pp 1276\u20131280"},{"key":"16351_CR10","doi-asserted-by":"crossref","unstructured":"Roberto GF, Lumini A, Neves LA, do Nascimento MZ, (2021) Fractal neural network: A new ensemble of fractal geometry and convolutional neural networks for the classification of histology images. Expert Syst Appl 166:114103","DOI":"10.1016\/j.eswa.2020.114103"},{"key":"16351_CR11","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770\u2013778","DOI":"10.1109\/CVPR.2016.90"},{"issue":"1","key":"16351_CR12","doi-asserted-by":"publisher","first-page":"3605","DOI":"10.1038\/s41598-021-83199-9","volume":"11","author":"YJ Kim","year":"2021","unstructured":"Kim YJ, Bae JP, Chung JW, Park DK, Kim KG, Kim YJ (2021) New polyp image classification technique using transfer learning of network-in-network structure in endoscopic images. Sci Rep 11(1):3605","journal-title":"Sci Rep"},{"key":"16351_CR13","doi-asserted-by":"crossref","unstructured":"Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C (2018) A survey on deep transfer learning. In: International conference on artificial neural networks, Springer, pp 270\u2013279","DOI":"10.1007\/978-3-030-01424-7_27"},{"key":"16351_CR14","first-page":"1","volume-title":"2022 29th International Conference on Systems","author":"LHDC Longo","year":"2022","unstructured":"Longo LHDC, Martins AS, Do Nascimento MZ, Dos Santos LFS, Roberto GF, Neves LA (2022) Ensembles of fractal descriptors with multiple deep learned features for classification of histological images. 2022 29th International Conference on Systems. Signals and Image Processing (IWSSIP), IEEE, pp 1\u20134"},{"key":"16351_CR15","doi-asserted-by":"crossref","unstructured":"Ghandour C, El-Shafai W, El-Rabaie S (2023) Medical image enhancement algorithms using deep learning-based convolutional neural network. Journal of Optics pp 1\u201311","DOI":"10.1007\/s12596-022-01078-6"},{"key":"16351_CR16","doi-asserted-by":"crossref","unstructured":"Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, Ieee, pp 248\u2013255","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"16351_CR17","doi-asserted-by":"crossref","unstructured":"Kumar S, Sharma S (2021) Sub-classification of invasive and non-invasive cancer from magnification independent histopathological images using hybrid neural networks. Evolutionary Intelligence pp 1\u201313","DOI":"10.1007\/s12065-021-00564-3"},{"key":"16351_CR18","doi-asserted-by":"publisher","first-page":"241","DOI":"10.1109\/SIBGRAPI.2019.00040","volume-title":"2019 32nd SIBGRAPI Conference on Graphics","author":"FP dos Santos","year":"2019","unstructured":"dos Santos FP, Ponti MA (2019) Alignment of local and global features from multiple layers of convolutional neural network for image classification. 2019 32nd SIBGRAPI Conference on Graphics. Patterns and Images (SIBGRAPI), IEEE, pp 241\u2013248"},{"key":"16351_CR19","doi-asserted-by":"publisher","DOI":"10.1016\/j.techsoc.2019.101198","volume":"60","author":"M Coccia","year":"2020","unstructured":"Coccia M (2020) Deep learning technology for improving cancer care in society: New directions in cancer imaging driven by artificial intelligence. Technol Soc 60:101198","journal-title":"Technol Soc"},{"key":"16351_CR20","doi-asserted-by":"publisher","first-page":"189","DOI":"10.1109\/SIBGRAPI.2018.00031","volume-title":"2018 31st SIBGRAPI Conference on Graphics","author":"FP dos Santos","year":"2018","unstructured":"dos Santos FP, Ponti MA (2018) Robust feature spaces from pre-trained deep network layers for skin lesion classification. 2018 31st SIBGRAPI Conference on Graphics. Patterns and Images (SIBGRAPI), IEEE, pp 189\u2013196"},{"key":"16351_CR21","doi-asserted-by":"crossref","unstructured":"Younas F, Usman M, Yan WQ (2022) An ensemble framework of deep neural networks for colorectal polyp classification. Multimedia Tools and Applications pp 1\u201322","DOI":"10.1007\/s11042-022-14177-0"},{"key":"16351_CR22","first-page":"1","volume-title":"2022 29th International Conference on Systems","author":"JJ Tenguam","year":"2022","unstructured":"Tenguam JJ, Longo LHDC, Silva AB, De Faria PR, Do Nascimento MZ, Neves LA (2022) Classification of h &e images exploring ensemble learning with two-stage feature selection. 2022 29th International Conference on Systems. Signals and Image Processing (IWSSIP), IEEE, pp 1\u20134"},{"issue":"4","key":"16351_CR23","doi-asserted-by":"publisher","first-page":"1436","DOI":"10.1016\/j.bbe.2020.08.005","volume":"40","author":"B Abraham","year":"2020","unstructured":"Abraham B, Nair MS (2020) Computer-aided detection of covid-19 from x-ray images using multi-cnn and bayesnet classifier. Biocybernetics and biomedical engineering 40(4):1436\u20131445","journal-title":"Biocybernetics and biomedical engineering"},{"key":"16351_CR24","unstructured":"Novitasari DCR, Hendradi R, Caraka RE, Rachmawati Y, Fanani NZ, Syarifudin A, Toharudin T, Chen RC (2020) Detection of covid-19 chest x-ray using support vector machine and convolutional neural network. Commun Math Biol Neurosci 2020:Article\u2013ID"},{"key":"16351_CR25","doi-asserted-by":"publisher","first-page":"189","DOI":"10.1016\/j.jbi.2018.07.014","volume":"85","author":"RJ Urbanowicz","year":"2018","unstructured":"Urbanowicz RJ, Meeker M, La Cava W, Olson RS, Moore JH (2018) Relief-based feature selection: Introduction and review. J Biomed Inform 85:189\u2013203","journal-title":"J Biomed Inform"},{"issue":"17","key":"16351_CR26","doi-asserted-by":"publisher","DOI":"10.1002\/cpe.6200","volume":"33","author":"II Manhrawy","year":"2021","unstructured":"Manhrawy II, Qaraad M, El-Kafrawy P (2021) Hybrid feature selection model based on relief-based algorithms and regulizer algorithms for cancer classification. Concurrency and Computation: Practice and Experience 33(17):e6200","journal-title":"Concurrency and Computation: Practice and Experience"},{"key":"16351_CR27","doi-asserted-by":"publisher","first-page":"19304","DOI":"10.1109\/ACCESS.2021.3053759","volume":"9","author":"P Ghosh","year":"2021","unstructured":"Ghosh P, Azam S, Jonkman M, Karim A, Shamrat FJM, Ignatious E, Shultana S, Beeravolu AR, De Boer F (2021) Efficient prediction of cardiovascular disease using machine learning algorithms with relief and lasso feature selection techniques. IEEE Access 9:19304\u201319326","journal-title":"IEEE Access"},{"issue":"2","key":"16351_CR28","doi-asserted-by":"publisher","first-page":"56","DOI":"10.38094\/jastt1224","volume":"1","author":"R Zebari","year":"2020","unstructured":"Zebari R, Abdulazeez A, Zeebaree D, Zebari D, Saeed J (2020) A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction. Journal of Applied Science and Technology Trends 1(2):56\u201370","journal-title":"Journal of Applied Science and Technology Trends"},{"key":"16351_CR29","doi-asserted-by":"publisher","first-page":"111","DOI":"10.1016\/j.ins.2014.05.042","volume":"282","author":"V Bol\u00f3n-Canedo","year":"2014","unstructured":"Bol\u00f3n-Canedo V, S\u00e1nchez-Marono N, Alonso-Betanzos A, Ben\u00edtez JM, Herrera F (2014) A review of microarray datasets and applied feature selection methods. Inf Sci 282:111\u2013135","journal-title":"Inf Sci"},{"key":"16351_CR30","doi-asserted-by":"publisher","first-page":"53687","DOI":"10.1109\/ACCESS.2021.3071057","volume":"9","author":"M Li","year":"2021","unstructured":"Li M, Ma X, Chen C, Yuan Y, Zhang S, Yan Z, Chen C, Chen F, Bai Y, Zhou P et al (2021) Research on the auxiliary classification and diagnosis of lung cancer subtypes based on histopathological images. Ieee Access 9:53687\u201353707","journal-title":"Ieee Access"},{"issue":"2","key":"16351_CR31","doi-asserted-by":"publisher","first-page":"521","DOI":"10.18280\/ts.390214","volume":"39","author":"KC Bur\u00e7ak","year":"2022","unstructured":"Bur\u00e7ak KC, U\u011fuz H (2022) A new hybrid breast cancer diagnosis model using deep learning model and relieff. Traitement du Signal 39(2):521\u2013529","journal-title":"Traitement du Signal"},{"key":"16351_CR32","doi-asserted-by":"crossref","unstructured":"Silva AB, De\u00a0Oliveira CI, Pereira DC, Tosta TA, Martins AS, Loyola AM, Cardoso SV, De\u00a0Faria PR, Neves LA, Do\u00a0Nascimento MZ (2022) Assessment of the association of deep features with a polynomial algorithm for automated oral epithelial dysplasia grading. In: 2022 35th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), IEEE, vol\u00a01, pp 264\u2013269","DOI":"10.1109\/SIBGRAPI55357.2022.9991758"},{"issue":"12","key":"16351_CR33","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0166413","volume":"11","author":"K Watanabe","year":"2016","unstructured":"Watanabe K, Kobayashi T, Wada T (2016) Semi-supervised feature transformation for tissue image classification. PLoS ONE 11(12):e0166413","journal-title":"PLoS ONE"},{"key":"16351_CR34","doi-asserted-by":"crossref","unstructured":"Dos Santos LFS, Neves LA, Rozendo GB, Ribeiro MG, do Nascimento MZ, Tosta TAA, (2018) Multidimensional and fuzzy sample entropy (sampenmf) for quantifying h &e histological images of colorectal cancer. Comput Biol Med 103:148\u2013160","DOI":"10.1016\/j.compbiomed.2018.10.013"},{"key":"16351_CR35","doi-asserted-by":"publisher","first-page":"134","DOI":"10.1016\/j.cag.2019.08.008","volume":"84","author":"GF Roberto","year":"2019","unstructured":"Roberto GF, Nascimento MZ, Martins AS, Tosta TA, Faria PR, Neves LA (2019) Classification of breast and colorectal tumors based on percolation of color normalized images. Computers & Graphics 84:134\u2013143","journal-title":"Computers & Graphics"},{"key":"16351_CR36","doi-asserted-by":"crossref","unstructured":"Bouziane A, Boumali S, Berkane N, Guendouz FS (2020) A hybrid approach for automatic breast cancer detection. In: 2020 International Conference on e-Health and Bioengineering (EHB), IEEE, pp 1\u20134","DOI":"10.1109\/EHB50910.2020.9280280"},{"issue":"6","key":"16351_CR37","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0177544","volume":"12","author":"T Ara\u00fajo","year":"2017","unstructured":"Ara\u00fajo T, Aresta G, Castro E, Rouco J, Aguiar P, Eloy C, Pol\u00f3nia A, Campilho A (2017) Classification of breast cancer histology images using convolutional neural networks. PLoS ONE 12(6):e0177544","journal-title":"PLoS ONE"},{"key":"16351_CR38","doi-asserted-by":"crossref","unstructured":"Papastergiou T, Zacharaki EI, Megalooikonomou V (2018) Tensor decomposition for multiple-instance classification of high-order medical data. Complexity 2018","DOI":"10.1155\/2018\/8651930"},{"issue":"4","key":"16351_CR39","doi-asserted-by":"publisher","first-page":"967","DOI":"10.1016\/j.bbe.2019.09.003","volume":"39","author":"T Kausar","year":"2019","unstructured":"Kausar T, Wang M, Idrees M, Lu Y (2019) Hwdcnn: Multi-class recognition in breast histopathology with haar wavelet decomposed image based convolution neural network. Biocybernetics and Biomedical Engineering 39(4):967\u2013982","journal-title":"Biocybernetics and Biomedical Engineering"},{"issue":"2","key":"16351_CR40","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1007\/s11548-017-1663-9","volume":"13","author":"Y Feng","year":"2018","unstructured":"Feng Y, Zhang L, Yi Z (2018) Breast cancer cell nuclei classification in histopathology images using deep neural networks. Int J Comput Assist Radiol Surg 13(2):179\u2013191","journal-title":"Int J Comput Assist Radiol Surg"},{"issue":"1","key":"16351_CR41","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s12859-019-2979-y","volume":"20","author":"Y Li","year":"2019","unstructured":"Li Y, Xie X, Shen L, Liu S (2019) Reverse active learning based atrous densenet for pathological image classification. BMC Bioinformatics 20(1):1\u201315","journal-title":"BMC Bioinformatics"},{"issue":"1","key":"16351_CR42","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-019-55257-w","volume":"9","author":"TE Tavolara","year":"2019","unstructured":"Tavolara TE, Niazi MKK, Arole V, Chen W, Frankel W, Gurcan MN (2019) A modular cgan classification framework: Application to colorectal tumor detection. Sci Rep 9(1):1\u20138","journal-title":"Sci Rep"},{"issue":"24","key":"16351_CR43","doi-asserted-by":"publisher","first-page":"9838","DOI":"10.3390\/s22249838","volume":"22","author":"JS Lee","year":"2022","unstructured":"Lee JS, Wu WK (2022) Breast tumor tissue image classification using diu-net. Sensors 22(24):9838","journal-title":"Sensors"},{"issue":"6","key":"16351_CR44","first-page":"6101","volume":"18","author":"P Sena","year":"2019","unstructured":"Sena P, Fioresi R, Faglioni F, Losi L, Faglioni G, Roncucci L (2019) Deep learning techniques for detecting preneoplastic and neoplastic lesions in human colorectal histological images. Oncol Lett 18(6):6101\u20136107","journal-title":"Oncol Lett"},{"key":"16351_CR45","doi-asserted-by":"publisher","DOI":"10.1016\/j.compeleceng.2019.106450","volume":"85","author":"R Awan","year":"2020","unstructured":"Awan R, Al-Maadeed S, Al-Saady R, Bouridane A (2020) Glandular structure-guided classification of microscopic colorectal images using deep learning. Computers & Electrical Engineering 85:106450","journal-title":"Computers & Electrical Engineering"},{"key":"16351_CR46","doi-asserted-by":"crossref","unstructured":"Dabass M, Vig R, Vashisth S (2018) Five-grade cancer classification of colon histology images via deep learning. In: CRC Press, p\u00a018","DOI":"10.1201\/9780429444272-3"},{"key":"16351_CR47","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2022.105680","volume":"147","author":"M Dabass","year":"2022","unstructured":"Dabass M, Vashisth S, Vig R (2022) A convolution neural network with multi-level convolutional and attention learning for classification of cancer grades and tissue structures in colon histopathological images. Comput Biol Med 147:105680","journal-title":"Comput Biol Med"},{"issue":"11","key":"16351_CR48","doi-asserted-by":"publisher","first-page":"3337","DOI":"10.3390\/cancers12113337","volume":"12","author":"F Bianconi","year":"2020","unstructured":"Bianconi F, Kather JN, Reyes-Aldasoro CC (2020) Experimental assessment of color deconvolution and color normalization for automated classification of histology images stained with hematoxylin and eosin. Cancers 12(11):3337","journal-title":"Cancers"},{"key":"16351_CR49","unstructured":"MATLAB (2019) 9.6.0.1072779 (R2019a). The MathWorks Inc., Natick, Massachusetts"},{"issue":"1","key":"16351_CR50","doi-asserted-by":"publisher","first-page":"76","DOI":"10.1145\/507338.507355","volume":"31","author":"IH Witten","year":"2002","unstructured":"Witten IH, Frank E (2002) Data mining: practical machine learning tools and techniques with java implementations. ACM SIGMOD Rec 31(1):76\u201377","journal-title":"ACM SIGMOD Rec"},{"key":"16351_CR51","doi-asserted-by":"crossref","unstructured":"Gelasca ED, Byun J, Obara B, Manjunath B (2008) Evaluation and benchmark for biological image segmentation. In: 2008 15th IEEE International Conference on Image Processing, IEEE, pp 1816\u20131819","DOI":"10.1109\/ICIP.2008.4712130"},{"key":"16351_CR52","doi-asserted-by":"publisher","first-page":"489","DOI":"10.1016\/j.media.2016.08.008","volume":"35","author":"K Sirinukunwattana","year":"2017","unstructured":"Sirinukunwattana K, Pluim JP, Chen H, Qi X, Heng PA, Guo YB, Wang LY, Matuszewski BJ, Bruni E, Sanchez U et al (2017) Gland segmentation in colon histology images: The glas challenge contest. Med Image Anal 35:489\u2013502","journal-title":"Med Image Anal"},{"key":"16351_CR53","unstructured":"AGEMAP NIoA (2020) The atlas of gene expression in mouse aging project (agemap). https:\/\/ome.grc.nia.nih.gov\/iicbu2008\/agemap\/index.html, acesso em: 04\/05\/2020"},{"key":"16351_CR54","unstructured":"Rajesh G, Anirudh V, Archana R, Kumar PP, Manoj K (2023) An improved skin cancer classification method using deep convolutional neural networks and transfer learning models. Journal of Engineering Sciences 14(05)"},{"issue":"1","key":"16351_CR55","first-page":"5","volume":"10","author":"T Viet-Linh","year":"2023","unstructured":"Viet-Linh T (2023) Deep convolutional neural network-based transfer learning method for health condition identification of cable in cable-stayed bridge. Journal of Materials and Engineering Structures 10(1):5\u201318","journal-title":"Journal of Materials and Engineering Structures"},{"key":"16351_CR56","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1016\/j.jocs.2018.11.008","volume":"30","author":"S Lu","year":"2019","unstructured":"Lu S, Lu Z, Zhang YD (2019) Pathological brain detection based on alexnet and transfer learning. Journal of computational science 30:41\u201347","journal-title":"Journal of computational science"},{"key":"16351_CR57","unstructured":"Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097\u20131105"},{"key":"16351_CR58","unstructured":"Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 807\u2013814"},{"key":"16351_CR59","doi-asserted-by":"crossref","unstructured":"Al\u00a0Rahhal MM, Bazi Y, Abdullah T, Mekhalfi ML, AlHichri H, Zuair M (2018) Learning a multi-branch neural network from multiple sources for knowledge adaptation in remote sensing imagery. Remote Sensing 10(12):1890","DOI":"10.3390\/rs10121890"},{"key":"16351_CR60","doi-asserted-by":"crossref","unstructured":"Ribeiro MG, Neves LA, do Nascimento MZ, Roberto GF, Martins AS, Tosta TAA, (2019) Classification of colorectal cancer based on the association of multidimensional and multiresolution features. Expert Syst Appl 120:262\u2013278","DOI":"10.1016\/j.eswa.2018.11.034"},{"key":"16351_CR61","unstructured":"Kononenko I, Robnik-Sikonja M, Pompe U (1996) Relieff for estimation and discretization of attributes in classification, regression, and ilp problems. Artificial intelligence: methodology, systems, applications pp 31\u201340"},{"issue":"1","key":"16351_CR62","doi-asserted-by":"publisher","first-page":"39","DOI":"10.1023\/A:1008280620621","volume":"7","author":"I Kononenko","year":"1997","unstructured":"Kononenko I, \u0160imec E, Robnik-\u0160ikonja M (1997) Overcoming the myopia of inductive learning algorithms with relieff. Appl Intell 7(1):39\u201355","journal-title":"Appl Intell"},{"issue":"1","key":"16351_CR63","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1023\/A:1025667309714","volume":"53","author":"M Robnik-\u0160ikonja","year":"2003","unstructured":"Robnik-\u0160ikonja M, Kononenko I (2003) Theoretical and empirical analysis of relieff and rrelieff. Mach Learn 53(1):23\u201369","journal-title":"Mach Learn"},{"issue":"5","key":"16351_CR64","doi-asserted-by":"publisher","first-page":"5063","DOI":"10.1007\/s10489-021-02659-x","volume":"52","author":"X Cui","year":"2022","unstructured":"Cui X, Li Y, Fan J, Wang T (2022) A novel filter feature selection algorithm based on relief. Appl Intell 52(5):5063\u20135081","journal-title":"Appl Intell"},{"issue":"4","key":"16351_CR65","volume":"8","author":"O Sagi","year":"2018","unstructured":"Sagi O, Rokach L (2018) Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 8(4):e1249","journal-title":"Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery"},{"key":"16351_CR66","doi-asserted-by":"publisher","first-page":"76","DOI":"10.1016\/j.tice.2019.04.009","volume":"58","author":"SH Kassani","year":"2019","unstructured":"Kassani SH, Kassani PH (2019) A comparative study of deep learning architectures on melanoma detection. Tissue Cell 58:76\u201383","journal-title":"Tissue Cell"},{"key":"16351_CR67","doi-asserted-by":"crossref","unstructured":"Cleary JG, Trigg LE (1995) K*: An instance-based learner using an entropic distance measure. In: Machine Learning Proceedings 1995, Elsevier, pp 108\u2013114","DOI":"10.1016\/B978-1-55860-377-6.50022-0"},{"issue":"1","key":"16351_CR68","first-page":"191","volume":"41","author":"S Le Cessie","year":"1992","unstructured":"Le Cessie S, Van Houwelingen JC (1992) Ridge estimators in logistic regression. J Roy Stat Soc: Ser C (Appl Stat) 41(1):191\u2013201","journal-title":"J Roy Stat Soc: Ser C (Appl Stat)"},{"key":"16351_CR69","doi-asserted-by":"crossref","unstructured":"Lewis DD (1998) Naive (bayes) at forty: The independence assumption in information retrieval. In: Machine Learning: ECML-98: 10th European Conference on Machine Learning Chemnitz, Germany, April 21\u201323, 1998 Proceedings 10, Springer, pp 4\u201315","DOI":"10.1007\/BFb0026666"},{"issue":"1","key":"16351_CR70","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman L (2001) Random forests. Machine learning 45(1):5\u201332","journal-title":"Random forests. Machine learning"},{"key":"16351_CR71","unstructured":"Alpaydin E (2009) Introduction to machine learning. MIT press"},{"issue":"3","key":"16351_CR72","doi-asserted-by":"publisher","first-page":"226","DOI":"10.1109\/34.667881","volume":"20","author":"J Kittler","year":"1998","unstructured":"Kittler J, Hatef M, Duin RP, Matas J (1998) On combining classifiers. IEEE Trans Pattern Anal Mach Intell 20(3):226\u2013239","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"16351_CR73","first-page":"119","volume-title":"King AP","author":"AP King","year":"2019","unstructured":"King AP, Eckersley RJ (2019) Chapter 6 - inferential statistics iii: Nonparametric hypothesis testing. In: Eckersley RJ (ed) King AP. Statistics for Biomedical Engineers and Scientists, Academic Press, pp 119\u2013145"},{"key":"16351_CR74","first-page":"1","volume-title":"2016 Sixth International Conference on Image Processing Theory","author":"T Majtner","year":"2016","unstructured":"Majtner T, Yildirim-Yayilgan S, Hardeberg JY (2016) Combining deep learning and hand-crafted features for skin lesion classification. 2016 Sixth International Conference on Image Processing Theory. Tools and Applications (IPTA), IEEE, pp 1\u20136"},{"key":"16351_CR75","doi-asserted-by":"crossref","unstructured":"Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. nature 542(7639):115\u2013118","DOI":"10.1038\/nature21056"},{"key":"16351_CR76","doi-asserted-by":"publisher","first-page":"407","DOI":"10.1016\/j.jvcir.2019.02.035","volume":"60","author":"FP dos Santos","year":"2019","unstructured":"dos Santos FP, Ribeiro LS, Ponti MA (2019) Generalization of feature embeddings transferred from different video anomaly detection domains. J Vis Commun Image Represent 60:407\u2013416","journal-title":"J Vis Commun Image Represent"},{"issue":"1","key":"16351_CR77","doi-asserted-by":"publisher","first-page":"1017","DOI":"10.1007\/s11042-018-6082-6","volume":"78","author":"Z Shi","year":"2019","unstructured":"Shi Z, Hao H, Zhao M, Feng Y, He L, Wang Y, Suzuki K (2019) A deep cnn based transfer learning method for false positive reduction. Multimedia Tools and Applications 78(1):1017\u20131033","journal-title":"Multimedia Tools and Applications"},{"key":"16351_CR78","unstructured":"Ng AY (2004) Feature selection, l 1 vs. l 2 regularization, and rotational invariance. In: Proceedings of the twenty-first international conference on Machine learning, p\u00a078"},{"key":"16351_CR79","doi-asserted-by":"crossref","unstructured":"Kolter JZ, Ng AY (2009) Regularization and feature selection in least-squares temporal difference learning. In: Proceedings of the 26th annual international conference on machine learning, pp 521\u2013528","DOI":"10.1145\/1553374.1553442"},{"key":"16351_CR80","doi-asserted-by":"crossref","unstructured":"Sch\u00f6lkopf B, Smola AJ, Bach F, et\u00a0al (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press","DOI":"10.7551\/mitpress\/4175.001.0001"},{"key":"16351_CR81","unstructured":"Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, et\u00a0al (2011) Scikit-learn: Machine learning in python. Journal of machine learning research 12(Oct):2825\u20132830"},{"key":"16351_CR82","unstructured":"Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ (2008) Liblinear: A library for large linear classification. Journal of machine learning research 9(Aug):1871\u20131874"},{"key":"16351_CR83","unstructured":"Dem\u0161ar J (2006) Statistical comparisons of classifiers over multiple data sets. Journal of Machine learning research 7(Jan):1\u201330"},{"key":"16351_CR84","doi-asserted-by":"crossref","unstructured":"Nanni L, Brahnam S, Ghidoni S, Maguolo G (2019) General purpose (genp) bioimage ensemble of handcrafted and learned features with data augmentation. arXiv preprint arXiv:1904.08084","DOI":"10.1109\/TCBB.2018.2821127"},{"key":"16351_CR85","doi-asserted-by":"publisher","first-page":"241","DOI":"10.1007\/s11704-019-8208-z","volume":"14","author":"X Dong","year":"2020","unstructured":"Dong X, Yu Z, Cao W, Shi Y, Ma Q (2020) A survey on ensemble learning. Front Comp Sci 14:241\u2013258","journal-title":"Front Comp Sci"}],"container-title":["Multimedia Tools and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-16351-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11042-023-16351-4\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-16351-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,25]],"date-time":"2024-10-25T22:17:06Z","timestamp":1729894626000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11042-023-16351-4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8,9]]},"references-count":85,"journal-issue":{"issue":"8","published-online":{"date-parts":[[2024,3]]}},"alternative-id":["16351"],"URL":"https:\/\/doi.org\/10.1007\/s11042-023-16351-4","relation":{},"ISSN":["1573-7721"],"issn-type":[{"type":"electronic","value":"1573-7721"}],"subject":[],"published":{"date-parts":[[2023,8,9]]},"assertion":[{"value":"11 October 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"3 June 2023","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"17 July 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"9 August 2023","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors have no conflicts of interest to declare that are relevant to the content of this article.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflicts of interest \/ Competing interests"}}]}}