{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T19:15:04Z","timestamp":1735586104942},"reference-count":58,"publisher":"Springer Science and Business Media LLC","issue":"6","license":[{"start":{"date-parts":[[2023,7,22]],"date-time":"2023-07-22T00:00:00Z","timestamp":1689984000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,7,22]],"date-time":"2023-07-22T00:00:00Z","timestamp":1689984000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimed Tools Appl"],"DOI":"10.1007\/s11042-023-16174-3","type":"journal-article","created":{"date-parts":[[2023,7,22]],"date-time":"2023-07-22T13:01:35Z","timestamp":1690030895000},"page":"15711-15732","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":36,"title":["Identifying emotions from facial expressions using a deep convolutional neural network-based approach"],"prefix":"10.1007","volume":"83","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-5528-2437","authenticated-orcid":false,"given":"Gaurav","family":"Meena","sequence":"first","affiliation":[]},{"given":"Krishna Kumar","family":"Mohbey","sequence":"additional","affiliation":[]},{"given":"Ajay","family":"Indian","sequence":"additional","affiliation":[]},{"given":"Mohammad Zubair","family":"Khan","sequence":"additional","affiliation":[]},{"given":"Sunil","family":"Kumar","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,7,22]]},"reference":[{"key":"16174_CR1","doi-asserted-by":"publisher","first-page":"1031","DOI":"10.1007\/s11760-020-01828-8","volume":"15","author":"Y Huang","year":"2021","unstructured":"Huang Y, Xu H (2021) Fully convolutional network with attention modules for semantic segmentation. Signal, Image and Video Processing 15:1031\u20131039","journal-title":"Signal, Image and Video Processing"},{"key":"16174_CR2","doi-asserted-by":"crossref","unstructured":"You, Q., Luo, J., Jin, H., Yang, J.: Robust image sentiment analysis using progressively trained and domain transferred deep networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29 (2015)","DOI":"10.1609\/aaai.v29i1.9179"},{"key":"16174_CR3","doi-asserted-by":"crossref","unstructured":"Islam, J., Zhang, Y.: Visual sentiment analysis for social images using transfer learning approach. In: 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom)(BDCloud-SocialCom-SustainCom), pp. 124\u2013130 (2016). IEEE","DOI":"10.1109\/BDCloud-SocialCom-SustainCom.2016.29"},{"key":"16174_CR4","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1016\/j.imavis.2017.01.011","volume":"65","author":"V Campos","year":"2017","unstructured":"Campos V, Jou B, Giro-i-Nieto X (2017) From pixels to sentiment: Fine-tuning cnns for visual sentiment prediction. Image and Vision Computing 65:15\u201322","journal-title":"Image and Vision Computing"},{"key":"16174_CR5","doi-asserted-by":"publisher","first-page":"478","DOI":"10.1007\/s10618-011-0238-6","volume":"24","author":"M Tsytsarau","year":"2012","unstructured":"Tsytsarau M, Palpanas T (2012) Survey on mining subjective data on the web. Data Mining and Knowledge Discovery 24:478\u2013514","journal-title":"Data Mining and Knowledge Discovery"},{"key":"16174_CR6","doi-asserted-by":"crossref","unstructured":"Goodfellow, I.J., Erhan, D., Carrier, P.L., Courville, A., Mirza, M., Hamner, B., Cukierski, W., Tang, Y., Thaler, D., Lee, D.-H., Challenges in representation learning: A report on three machine learning contests. In: Neural Information Processing: 20th International Conference, ICONIP 2013, Daegu, Korea, November 3-7, 2013. Proceedings, Part III 20, pp. 117\u2013124 (2013). Springer","DOI":"10.1007\/978-3-642-42051-1_16"},{"issue":"4","key":"16174_CR7","doi-asserted-by":"publisher","first-page":"675","DOI":"10.1016\/j.dss.2012.05.022","volume":"53","author":"A Montoyo","year":"2012","unstructured":"Montoyo A, Mart\u00ednez-Barco P, Balahur A (2012) Subjectivity and sentiment analysis: An overview of the current state of the area and envisaged developments. Decision Support Systems 53(4):675\u2013679","journal-title":"Decision Support Systems"},{"key":"16174_CR8","doi-asserted-by":"crossref","unstructured":"Maynard, D., Funk, A.: Automatic detection of political opinions in tweets. In: The Semantic Web: ESWC 2011 Workshops: ESWC 2011 Workshops, Heraklion, Greece, May 29-30, 2011, Revised Selected Papers 8, pp. 88\u201399 (2012). Springer","DOI":"10.1007\/978-3-642-25953-1_8"},{"key":"16174_CR9","volume-title":"Deep learning","author":"Y Bengio","year":"2017","unstructured":"Bengio Y, Goodfellow I, Courville A (2017) Deep learning. MIT press Cambridge, MA, USA"},{"key":"16174_CR10","unstructured":"Dalai, R., Senapati, K.K.: Comparison of various rcnn techniques for classification of object from image. International Research Journal of Engineering and Technology (IRJET) 4(07) (2017)"},{"key":"16174_CR11","doi-asserted-by":"crossref","unstructured":"Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression. In: 2010 Ieee Computer Society Conference on Computer Vision and Pattern Recognition-workshops, pp. 94\u2013101 (2010). IEEE","DOI":"10.1109\/CVPRW.2010.5543262"},{"key":"16174_CR12","doi-asserted-by":"publisher","first-page":"90495","DOI":"10.1109\/ACCESS.2020.2993803","volume":"8","author":"K Patel","year":"2020","unstructured":"Patel K, Mehta D, Mistry C, Gupta R, Tanwar S, Kumar N, Alazab M (2020) Facial sentiment analysis using ai techniques: state-of-the-art, taxonomies, and challenges. IEEE Access 8:90495\u201390519","journal-title":"IEEE Access"},{"key":"16174_CR13","doi-asserted-by":"publisher","first-page":"218","DOI":"10.1016\/j.neucom.2018.05.104","volume":"312","author":"K Song","year":"2018","unstructured":"Song K, Yao T, Ling Q, Mei T (2018) Boosting image sentiment analysis with visual attention. Neurocomputing 312:218\u2013228","journal-title":"Neurocomputing"},{"key":"16174_CR14","doi-asserted-by":"crossref","unstructured":"Rashid, T.A.: Convolutional neural networks based method for improving facial expression recognition. In: Intelligent Systems Technologies and Applications 2016, pp. 73\u201384 (2016). Springer","DOI":"10.1007\/978-3-319-47952-1_6"},{"key":"16174_CR15","doi-asserted-by":"crossref","unstructured":"Torres, A.D., Yan, H., Aboutalebi, A.H., Das, A., Duan, L., Rad, P.: Patient facial emotion recognition and sentiment analysis using secure cloud with hardware acceleration. In: Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications, pp. 61\u201389. Elsevier, (2018)","DOI":"10.1016\/B978-0-12-813314-9.00003-7"},{"key":"16174_CR16","unstructured":"Wang, J., Fu, J., Xu, Y., Mei, T.: Beyond object recognition: Visual sentiment analysis with deep coupled adjective and noun neural networks. In: IJCAI, pp. 3484\u20133490 (2016). Citeseer"},{"key":"16174_CR17","doi-asserted-by":"crossref","unstructured":"Ain, Q.T., Ali, M., Riaz, A., Noureen, A., Kamran, M., Hayat, B., Rehman, A.: Sentiment analysis using deep learning techniques: a review. International Journal of Advanced Computer Science and Applications 8(6) (2017)","DOI":"10.14569\/IJACSA.2017.080657"},{"key":"16174_CR18","unstructured":"Chen, T., Borth, D., Darrell, T., Chang, S.-F.: Deepsentibank: Visual sentiment concept classification with deep convolutional neural networks. arXiv preprint http:\/\/arxiv.org\/abs\/1410.8586arXiv:1410.8586 (2014)"},{"key":"16174_CR19","unstructured":"Chen, T., Borth, D., Darrell, T., Chang, S.-F.: Deepsentibank: Visual sentiment concept classification with deep convolutional neural networks. arXiv preprint http:\/\/arxiv.org\/abs\/1410.8586arXiv:1410.8586 (2014)"},{"key":"16174_CR20","doi-asserted-by":"crossref","unstructured":"Jindal, S., Singh, S.: Image sentiment analysis using deep convolutional neural networks with domain specific fine tuning. In: 2015 International Conference on Information Processing (ICIP), pp. 447\u2013451 (2015). IEEE","DOI":"10.1109\/INFOP.2015.7489424"},{"issue":"1","key":"16174_CR21","doi-asserted-by":"publisher","first-page":"142","DOI":"10.1109\/TPAMI.2015.2437384","volume":"38","author":"R Girshick","year":"2015","unstructured":"Girshick R, Donahue J, Darrell T, Malik J (2015) Region-based convolutional networks for accurate object detection and segmentation. IEEE transactions on pattern analysis and machine intelligence 38(1):142\u2013158","journal-title":"IEEE transactions on pattern analysis and machine intelligence"},{"key":"16174_CR22","doi-asserted-by":"crossref","unstructured":"Cai, G., Xia, B.: Convolutional neural networks for multimedia sentiment analysis. In: Natural Language Processing and Chinese Computing: 4th CCF Conference, NLPCC 2015, Nanchang, China, October 9-13, 2015, Proceedings 4, pp. 159\u2013167 (2015). Springer","DOI":"10.1007\/978-3-319-25207-0_14"},{"key":"16174_CR23","unstructured":"Jokhio, F.A., Jokhio, A.: Image classification using alexnet with svm classifier and transfer learning. Journal of Information Communication Technologies and Robotic Applications, 44\u201351 (2019)"},{"key":"16174_CR24","unstructured":"Gajarla, V., Gupta, A.: Emotion detection and sentiment analysis of images. Georgia Institute of Technology, 1\u20134 (2015)"},{"key":"16174_CR25","unstructured":"Mandhyani, J., Khatri, L., Ludhrani, V., Nagdev, R., Sahu, S.: Image sentiment analysis. International Journal of Engineering Science 4566 (2017)"},{"key":"16174_CR26","doi-asserted-by":"crossref","unstructured":"Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440\u20131448 (2015)","DOI":"10.1109\/ICCV.2015.169"},{"issue":"9","key":"16174_CR27","doi-asserted-by":"publisher","first-page":"2513","DOI":"10.1109\/TMM.2018.2803520","volume":"20","author":"J Yang","year":"2018","unstructured":"Yang J, She D, Sun M, Cheng M-M, Rosin PL, Wang L (2018) Visual sentiment prediction based on automatic discovery of affective regions. IEEE Transactions on Multimedia 20(9):2513\u20132525","journal-title":"IEEE Transactions on Multimedia"},{"key":"16174_CR28","doi-asserted-by":"crossref","unstructured":"Salunke, V., Panicker, S.S.: Image sentiment analysis using deep learning. In: Inventive Communication and Computational Technologies: Proceedings of ICICCT 2020, pp. 143\u2013153 (2021). Springer","DOI":"10.1007\/978-981-15-7345-3_12"},{"key":"16174_CR29","doi-asserted-by":"crossref","unstructured":"Onita, D., Dinu, L.P., Birlutiu, A.: From image to text in sentiment analysis via regression and deep learning. In: Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019), pp. 862\u2013868 (2019)","DOI":"10.26615\/978-954-452-056-4_100"},{"key":"16174_CR30","doi-asserted-by":"crossref","unstructured":"Gudi, A., Tasli, H.E., Den\u00a0Uyl, T.M., Maroulis, A.: Deep learning based facs action unit occurrence and intensity estimation. In: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 6, pp. 1\u20135 (2015). IEEE","DOI":"10.1109\/FG.2015.7284873"},{"key":"16174_CR31","doi-asserted-by":"crossref","unstructured":"Moran, J.L.: Classifying emotion using convolutional neural networks. UC Merced Undergraduate Research Journal 11(1) (2019)","DOI":"10.5070\/M4111041558"},{"issue":"2","key":"16174_CR32","first-page":"141","volume":"9","author":"H Sadr","year":"2021","unstructured":"Sadr H, Pedram MM, Teshnehlab M (2021) Convolutional neural network equipped with attention mechanism and transfer learning for enhancing performance of sentiment analysis. Journal of AI and data mining 9(2):141\u2013151","journal-title":"Journal of AI and data mining"},{"key":"16174_CR33","doi-asserted-by":"crossref","unstructured":"Parimala, M., Swarna\u00a0Priya, R., Praveen Kumar\u00a0Reddy, M., Lal\u00a0Chowdhary, C., Kumar\u00a0Poluru, R., Khan, S.: Spatiotemporal-based sentiment analysis on tweets for risk assessment of event using deep learning approach. Software: Practice and Experience 51(3), 550\u2013570 (2021)","DOI":"10.1002\/spe.2851"},{"key":"16174_CR34","doi-asserted-by":"publisher","first-page":"105","DOI":"10.1016\/j.patrec.2019.04.002","volume":"125","author":"Y Gan","year":"2019","unstructured":"Gan Y, Chen J, Xu L (2019) Facial expression recognition boosted by soft label with a diverse ensemble. Pattern Recognition Letters 125:105\u2013112","journal-title":"Pattern Recognition Letters"},{"key":"16174_CR35","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.eswa.2019.06.025","volume":"136","author":"A Renda","year":"2019","unstructured":"Renda A, Barsacchi M, Bechini A, Marcelloni F (2019) Comparing ensemble strategies for deep learning: An application to facial expression recognition. Expert Systems with Applications 136:1\u201311","journal-title":"Expert Systems with Applications"},{"key":"16174_CR36","doi-asserted-by":"crossref","unstructured":"Babajee, P., Suddul, G., Armoogum, S., Foogooa, R.: Identifying human emotions from facial expressions with deep learning. In: 2020 Zooming Innovation in Consumer Technologies Conference (ZINC), pp. 36\u201339 (2020). IEEE","DOI":"10.1109\/ZINC50678.2020.9161445"},{"key":"16174_CR37","unstructured":"Tai, Y., Tan, Y., Gong, W., Huang, H.: Bayesian convolutional neural networks for seven basic facial expression classifications. arXiv preprint http:\/\/arxiv.org\/abs\/2107.04834arXiv:2107.04834 (2021)"},{"issue":"1","key":"16174_CR38","doi-asserted-by":"publisher","first-page":"97","DOI":"10.3233\/ICA-200643","volume":"28","author":"NK Benamara","year":"2021","unstructured":"Benamara NK, Val-Calvo M, Alvarez-Sanchez JR, Diaz-Morcillo A, Ferrandez-Vicente JM, Fernandez-Jover E, Stambouli TB (2021) Real-time facial expression recognition using smoothed deep neural network ensemble. Integrated Computer-Aided Engineering 28(1):97\u2013111","journal-title":"Integrated Computer-Aided Engineering"},{"issue":"9","key":"16174_CR39","doi-asserted-by":"publisher","first-page":"2513","DOI":"10.1109\/TMM.2018.2803520","volume":"20","author":"J Yang","year":"2018","unstructured":"Yang J, She D, Sun M, Cheng M-M, Rosin PL, Wang L (2018) Visual sentiment prediction based on automatic discovery of affective regions. IEEE Transactions on Multimedia 20(9):2513\u20132525","journal-title":"IEEE Transactions on Multimedia"},{"key":"16174_CR40","unstructured":"Yu, J.X., Lim, K.M., Lee, C.P.: Move-cnns: Model averaging ensemble of convolutional neural networks for facial expression recognition. IAENG International Journal of Computer Science 48(3) (2021)"},{"issue":"2","key":"16174_CR41","doi-asserted-by":"publisher","first-page":"405","DOI":"10.1007\/s00371-019-01630-9","volume":"36","author":"A Agrawal","year":"2020","unstructured":"Agrawal A, Mittal N (2020) Using cnn for facial expression recognition: a study of the effects of kernel size and number of filters on accuracy. The Visual Computer 36(2):405\u2013412","journal-title":"The Visual Computer"},{"issue":"6","key":"16174_CR42","doi-asserted-by":"publisher","first-page":"2026","DOI":"10.3390\/s21062026","volume":"21","author":"JH Kim","year":"2021","unstructured":"Kim JH, Poulose A, Han DS (2021) The extensive usage of the facial image threshing machine for facial emotion recognition performance. Sensors 21(6):2026","journal-title":"Sensors"},{"key":"16174_CR43","doi-asserted-by":"publisher","first-page":"9297","DOI":"10.1007\/s11042-014-2082-3","volume":"74","author":"A Benmohamed","year":"2015","unstructured":"Benmohamed A, Neji M, Ramdani M, Wali A, Alimi AM (2015) Feast: face and emotion analysis system for smart tablets. Multimedia Tools and Applications 74:9297\u20139322","journal-title":"Multimedia Tools and Applications"},{"issue":"16","key":"16174_CR44","doi-asserted-by":"publisher","first-page":"25241","DOI":"10.1007\/s11042-021-10918-9","volume":"80","author":"Y Said","year":"2021","unstructured":"Said Y, Barr M (2021) Human emotion recognition based on facial expressions via deep learning on high-resolution images. Multimedia Tools and Applications 80(16):25241\u201325253","journal-title":"Multimedia Tools and Applications"},{"key":"16174_CR45","doi-asserted-by":"crossref","unstructured":"Gupta, S., Kumar, P., Tekchandani, R.K.: Facial emotion recognition based real-time learner engagement detection system in online learning context using deep learning models. Multimedia Tools and Applications, 1\u201330 (2022)","DOI":"10.1007\/s11042-022-13558-9"},{"key":"16174_CR46","doi-asserted-by":"crossref","unstructured":"Castellano, G., De\u00a0Carolis, B., Macchiarulo, N.: Automatic facial emotion recognition at the covid-19 pandemic time. Multimedia Tools and Applications, 1\u201319 (2022)","DOI":"10.1007\/s11042-022-14050-0"},{"key":"16174_CR47","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2021.108255","volume":"122","author":"A Kumar","year":"2022","unstructured":"Kumar A, Tripathi AR, Satapathy SC, Zhang Y-D (2022) Sars-net: Covid-19 detection from chest x-rays by combining graph convolutional network and convolutional neural network. Pattern Recognition 122:108255","journal-title":"Pattern Recognition"},{"key":"16174_CR48","unstructured":"Ng, A.: Deep learning specialization. Internet: https:\/\/www.coursera.org\/specializations\/deep-learning (2017)"},{"key":"16174_CR49","unstructured":"Haykin, S.: Neural networks and learning machines, 3\/E. Pearson Education India (2009)"},{"issue":"2","key":"16174_CR50","doi-asserted-by":"publisher","first-page":"116","DOI":"10.1007\/s42979-021-00993-y","volume":"3","author":"G Meena","year":"2022","unstructured":"Meena G, Mohbey KK, Indian A (2022) Categorizing sentiment polarities in social networks data using convolutional neural network. SN Computer Science 3(2):116","journal-title":"SN Computer Science"},{"key":"16174_CR51","doi-asserted-by":"crossref","unstructured":"Pandey, A., Shukla, S., Mohbey, K.K.: Comparative analysis of a deep learning approach with various classification techniques for credit score computation. Recent Advances in Computer Science and Communications (Formerly: Recent Patents on Computer Science) 14(9), 2785\u20132799 (2021)","DOI":"10.2174\/2666255813999200721004720"},{"key":"16174_CR52","unstructured":"Qin, Z., Wu, J.: Visual saliency maps can apply to facial expression recognition. arXiv preprint http:\/\/arxiv.org\/abs\/1811.04544arXiv:1811.04544 (2018)"},{"issue":"4","key":"16174_CR53","doi-asserted-by":"publisher","first-page":"1087","DOI":"10.3390\/s20041087","volume":"20","author":"MN Riaz","year":"2020","unstructured":"Riaz MN, Shen Y, Sohail M, Guo M (2020) Exnet: An efficient approach for emotion recognition in the wild. Sensors 20(4):1087","journal-title":"Sensors"},{"key":"16174_CR54","doi-asserted-by":"publisher","first-page":"1954","DOI":"10.1109\/LSP.2020.3031504","volume":"27","author":"P Jiang","year":"2020","unstructured":"Jiang P, Wan B, Wang Q, Wu J (2020) Fast and efficient facial expression recognition using a gabor convolutional network. IEEE Signal Processing Letters 27:1954\u20131958","journal-title":"IEEE Signal Processing Letters"},{"key":"16174_CR55","doi-asserted-by":"publisher","first-page":"64487","DOI":"10.1109\/ACCESS.2021.3075389","volume":"9","author":"H Zang","year":"2021","unstructured":"Zang H, Foo SY, Bernadin S, Meyer-Baese A (2021) Facial emotion recognition using asymmetric pyramidal networks with gradient centralization. IEEE Access 9:64487\u201364498","journal-title":"IEEE Access"},{"issue":"16","key":"16174_CR56","doi-asserted-by":"publisher","first-page":"6105","DOI":"10.3390\/s22166105","volume":"22","author":"MF Alsharekh","year":"2022","unstructured":"Alsharekh MF (2022) Facial emotion recognition in verbal communication based on deep learning. Sensors 22(16):6105","journal-title":"Sensors"},{"key":"16174_CR57","doi-asserted-by":"crossref","unstructured":"Borgalli, M.R.A., Surve, S.: Deep learning for facial emotion recognition using custom cnn architecture. In: Journal of Physics: Conference Series, vol. 2236, p. 012004 (2022). IOP Publishing","DOI":"10.1088\/1742-6596\/2236\/1\/012004"},{"key":"16174_CR58","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1155\/2019\/3581419","volume":"2019","author":"I Ul Haq","year":"2019","unstructured":"Ul Haq I, Ullah A, Muhammad K, Lee MY, Baik SW (2019) Personalized movie summarization using deep cnn-assisted facial expression recognition. Complexity 2019:1\u201310","journal-title":"Complexity"}],"container-title":["Multimedia Tools and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-16174-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11042-023-16174-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-16174-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,31]],"date-time":"2024-01-31T09:02:41Z","timestamp":1706691761000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11042-023-16174-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,7,22]]},"references-count":58,"journal-issue":{"issue":"6","published-online":{"date-parts":[[2024,2]]}},"alternative-id":["16174"],"URL":"https:\/\/doi.org\/10.1007\/s11042-023-16174-3","relation":{},"ISSN":["1573-7721"],"issn-type":[{"value":"1573-7721","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,7,22]]},"assertion":[{"value":"6 October 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 February 2023","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"3 July 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 July 2023","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors confirm that this article\u2019s content has no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflicts of interest"}}]}}