{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,26]],"date-time":"2024-07-26T06:01:39Z","timestamp":1721973699338},"reference-count":49,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2023,5,23]],"date-time":"2023-05-23T00:00:00Z","timestamp":1684800000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,5,23]],"date-time":"2023-05-23T00:00:00Z","timestamp":1684800000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimed Tools Appl"],"published-print":{"date-parts":[[2024,1]]},"DOI":"10.1007\/s11042-023-15827-7","type":"journal-article","created":{"date-parts":[[2023,5,23]],"date-time":"2023-05-23T05:01:36Z","timestamp":1684818096000},"page":"763-786","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Analysis of region of interest (RoI) of brain for detection of depression using EEG signal"],"prefix":"10.1007","volume":"83","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8766-0340","authenticated-orcid":false,"given":"Shalini","family":"Mahato","sequence":"first","affiliation":[]},{"given":"Sanchita","family":"Paul","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,5,23]]},"reference":[{"key":"15827_CR1","unstructured":"American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders. 5th edition. American Psychiatric Association Washington, DC. World Health Organization (2017) Depression and Other Common Mental Disorders Global Health Estimates, WHO Document Production Services, Geneva, Switzerland"},{"key":"15827_CR2","doi-asserted-by":"publisher","first-page":"65880","DOI":"10.1109\/ACCESS.2020.2983917","volume":"8","author":"R Asif","year":"2020","unstructured":"Asif R, Saleem S, Hassan SA, Alharbi SA, Kamboh AM (2020) Epileptic Seizure Detection With a Reduced Montage: A Way Forward or Ambulatory EEG Devices. IEEE Access 8:65880\u201365890. https:\/\/doi.org\/10.1109\/ACCESS.2020.2983917","journal-title":"IEEE Access"},{"key":"15827_CR3","unstructured":"Beck AT (1994) \u201cDepression: Causes and treatment.\u201d, University of Pennsylvania Press, Philadelphia, pp 3\u201342, 1967 American Psychiatric Association, Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington, DC, pp. 339\u2013345"},{"key":"15827_CR4","doi-asserted-by":"publisher","first-page":"206992","DOI":"10.1109\/ACCESS.2020.3037995","volume":"8","author":"G Bouallegue","year":"2020","unstructured":"Bouallegue G, Djemal R, Alshebeili SA, Aldhalaan H (2020) A Dynamic Filtering DF-RNN Deep-Learning-Based Approach for EEG-Based Neurological Disorders Diagnosis. IEEE Access 8:206992\u2013207007. https:\/\/doi.org\/10.1109\/ACCESS.2020.3037995","journal-title":"IEEE Access"},{"key":"15827_CR5","doi-asserted-by":"publisher","unstructured":"Cai H, Han J, Chen Y, Sha X, Wang Z, Hu B, Yang J, Feng L, Ding Z, Chen Y, Gutknecht J (2018) A Pervasive Approach to EEG-Based Depression Detection. Complexity, Hindawi:1\u201313. https:\/\/doi.org\/10.1155\/2018\/5238028","DOI":"10.1155\/2018\/5238028"},{"key":"15827_CR6","doi-asserted-by":"publisher","unstructured":"Cai H, Zhang X, Zhang Y, Wang Z, Hu B A Case-Based Reasoning Model for Depression Based on Three-Electrode EEG Data. In IEEE Trans Affect Comput 11(3):383\u2013392. https:\/\/doi.org\/10.1109\/TAFFC.2018.2801289","DOI":"10.1109\/TAFFC.2018.2801289"},{"key":"15827_CR7","doi-asserted-by":"publisher","first-page":"20080","DOI":"10.1109\/ACCESS.2020.2969055","volume":"8","author":"Z Chen","year":"2020","unstructured":"Chen Z, Lu G, Xie Z, Shang W (2020) A Unified Framework and Method for EEG-Based Early Epileptic Seizure Detection and Epilepsy Diagnosis. IEEE Access 8:20080\u201320092. https:\/\/doi.org\/10.1109\/ACCESS.2020.2969055","journal-title":"IEEE Access"},{"key":"15827_CR8","doi-asserted-by":"publisher","unstructured":"Cortes C, Vapnik V Support-Vector Networks. Mach Learn 20(3):273\u2013297. https:\/\/doi.org\/10.1023\/A:1022627411411","DOI":"10.1023\/A:1022627411411"},{"key":"15827_CR9","unstructured":"Dataset: https:\/\/figshare.com\/articles\/dataset\/EEG_Data_New\/4244171 (last accessed 27\/07\/2022)"},{"key":"15827_CR10","doi-asserted-by":"publisher","unstructured":"Delorme A, Makeig S EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9\u201321. https:\/\/doi.org\/10.1016\/j.jneumeth.2003.10.009","DOI":"10.1016\/j.jneumeth.2003.10.009"},{"issue":"4","key":"15827_CR11","doi-asserted-by":"publisher","first-page":"1443","DOI":"10.1016\/j.neuroimage.2006.11.004","volume":"34","author":"T Delorme","year":"2007","unstructured":"Delorme T, Sejnowski S, Makeig S (2007) Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimage 34(4):1443\u20131449. https:\/\/doi.org\/10.1016\/j.neuroimage.2006.11.004","journal-title":"Neuroimage"},{"issue":"1","key":"15827_CR12","doi-asserted-by":"publisher","first-page":"34","DOI":"10.3758\/BF03209414","volume":"30","author":"J Dien","year":"1998","unstructured":"Dien J (1998) Issues in the application of the average reference: review, critiques and recommendations. Behav Res Methods Instrum Comput 30(1):34\u201343. https:\/\/doi.org\/10.3758\/BF03209414","journal-title":"Behav Res Methods Instrum Comput"},{"key":"15827_CR13","doi-asserted-by":"publisher","unstructured":"Ding C, Peng H (2003) Minimum redundancy feature selection from microarray gene expression data. Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference, CSB2003, Stanford, CA, USA, pp. 523\u2013528, https:\/\/doi.org\/10.1109\/CSB.2003.1227396","DOI":"10.1109\/CSB.2003.1227396"},{"key":"15827_CR14","first-page":"21","volume-title":"Brain computer interfacing for assistive robotics. Electroencephalograms, recurrent quantum neural networks, and user-centric graphical interfaces","author":"V Gandhi","year":"2014","unstructured":"Gandhi V (2014) Brain computer interfacing for assistive robotics. Electroencephalograms, recurrent quantum neural networks, and user-centric graphical interfaces, 1st edn. Academic Press, Cambridge, pp 21\u201329","edition":"1"},{"key":"15827_CR15","doi-asserted-by":"publisher","unstructured":"Grassberger\u00a0P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica 9D 9(1\u20132):189\u2013208. https:\/\/doi.org\/10.1016\/0167-2789(83)90298-1","DOI":"10.1016\/0167-2789(83)90298-1"},{"key":"15827_CR16","doi-asserted-by":"publisher","first-page":"327","DOI":"10.1016\/B978-0-12-381479-1.00008-3","volume-title":"Data Mining: Concepts and Techniques","author":"J Han","year":"2012","unstructured":"Han J, Kamber K, Pei J (2012) Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann, Elsevier, USA, pp 327\u2013413","edition":"3"},{"key":"15827_CR17","doi-asserted-by":"publisher","first-page":"3417","DOI":"10.1109\/ACCESS.2020.3046993","volume":"9","author":"F Hasanzadeh","year":"2021","unstructured":"Hasanzadeh F, Mohebbi M, Rostami R (2021) Single Channel EEG Classification: A Case Study on Prediction of Major Depressive Disorder Treatment Outcome. IEEE Access 9:3417\u20133427. https:\/\/doi.org\/10.1109\/ACCESS.2020.3046993","journal-title":"IEEE Access"},{"key":"15827_CR18","unstructured":"Hosseinifard B, Moradi MH, Rostami R (2011) Classifying depression patients and normal subjects using machine learning techniques. 2011 19th Iranian Conference on Electrical Engineering, Tehran, pp. 1\u20134"},{"key":"15827_CR19","first-page":"138","volume-title":"An introduction to statistical learning with applications in R","author":"G James","year":"2017","unstructured":"James G, Witten D, Hastie T, Tibshirani R (2017) In: Casella G, Fienberg S, Olkin I (eds) An introduction to statistical learning with applications in R. Springer, New York, pp 138\u2013150"},{"key":"15827_CR20","doi-asserted-by":"publisher","unstructured":"Jernajczyk W, Gosek P, Latka M, Kozlowska K, \u015awi\u0119cicki L, West BJ (2017) Alpha Wavelet Power as a Biomarker of Antidepressant Treatment Response in Bipolar Depression. Adv Exp Med Biol 968. https:\/\/doi.org\/10.1007\/5584_2016_180","DOI":"10.1007\/5584_2016_180"},{"issue":"2","key":"15827_CR21","doi-asserted-by":"publisher","first-page":"163","DOI":"10.1111\/1469-8986.3720163","volume":"37","author":"TP Jung","year":"2000","unstructured":"Jung TP, Makeig S, Humphries C, Lee TW, McKeown ML, Iragui V, Sejnowski TJ (2000) Removing electroencephalographic artefacts by blind source separation. Psychophysiology 37(2):163\u2013178. https:\/\/doi.org\/10.1111\/1469-8986.3720163","journal-title":"Psychophysiology"},{"key":"15827_CR22","doi-asserted-by":"crossref","unstructured":"Khan AI, Alsolami F, Alqurashi F, Abushark YB, Sarker IH (2022) Novel energy management scheme in IoT enabled smart irrigation system using optimized intelligence methods. Eng Appl Artif Intell 114(June)","DOI":"10.1016\/j.engappai.2022.104996"},{"key":"15827_CR23","unstructured":"Kira K, Rendell LA (1992) The feature selection problem: traditional methods and a new algorithm\", In: Proceedings of the tenth national conference on Artificial intelligence AAAI'92, San Jose, California, pp. 129\u2013134"},{"key":"15827_CR24","doi-asserted-by":"crossref","unstructured":"Kononenko I (1994) Estimating attributes: Analysis and extensions of Relief. In L. De Raedt & F. Bergadano (Eds.), Machine Learning: ECML-94, vol.784, pp. 171\u2013182, Springer Verlag","DOI":"10.1007\/3-540-57868-4_57"},{"key":"15827_CR25","unstructured":"Kutner MH, Nachtsheim CJ, Neter J. Applied Linear Statistical Models. 5th Edition, McGraw-Hill, New York, pp. 555\u2013603"},{"issue":"4","key":"15827_CR26","doi-asserted-by":"publisher","first-page":"489","DOI":"10.1097\/00000542-198704000-0000","volume":"66","author":"WJ Levy","year":"1987","unstructured":"Levy WJ (1987) Effect of epoch length on power spectrum analysis of the EEG. Anesthesiology 66(4):489\u2013495. https:\/\/doi.org\/10.1097\/00000542-198704000-0000","journal-title":"Anesthesiology"},{"issue":"6","key":"15827_CR27","doi-asserted-by":"publisher","first-page":"1385","DOI":"10.3390\/s17061385","volume":"17","author":"SC Liao","year":"2017","unstructured":"Liao SC, Wu CT, Huang HC, Cheng WT, Liu YH (2017) Major Depression Detection from EEG Signals Using Kernel Eigen-Filter-Bank Common Spatial Patterns. Sensors 17(6):1385. https:\/\/doi.org\/10.3390\/s17061385","journal-title":"Sensors"},{"key":"15827_CR28","series-title":"Lecture Notes in Electrical Engineering","doi-asserted-by":"publisher","first-page":"323","DOI":"10.1007\/978-981-13-0776-8_30","volume-title":"Nanoelectronics, Circuits and Communication Systems","author":"S Mahato","year":"2019","unstructured":"Mahato S, Paul S (2019) Electroencephalogram (EEG) Signal Analysis for Diagnosis of Major Depressive Disorder (MDD): A Review. In: Nath V, Mandal J (eds) Nanoelectronics, Circuits and Communication Systems, Lecture Notes in Electrical Engineering, vol 511. Springer, Singapore, pp 323\u2013336. https:\/\/doi.org\/10.1007\/978-981-13-0776-8_30"},{"issue":"3","key":"15827_CR29","doi-asserted-by":"publisher","first-page":"1065","DOI":"10.1007\/s00542-018-4075-z","volume":"25","author":"S Mahato","year":"2019","unstructured":"Mahato S, Paul S (2019) Detection of major depressive disorder using linear and non-linear features from EEG signals. Microsyst Technol 25(3):1065\u20131076. https:\/\/doi.org\/10.1007\/s00542-018-4075-z","journal-title":"Microsyst Technol"},{"key":"15827_CR30","doi-asserted-by":"crossref","unstructured":"Mahato S, Paul S (2020) Classification of Depression Patients and Normal Subjects Based on Electroencephalogram (EEG) Signal Using Alpha Power and Theta Asymmetry, pp. 1\u20138","DOI":"10.1007\/s10916-019-1486-z"},{"issue":"1","key":"15827_CR31","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s12911-015-0227-6","volume":"15","author":"M Mohammadi","year":"2015","unstructured":"Mohammadi M, Al-Azab F, Raahemi B, Richards G, Jaworska N, Smith D, Salle SDL, Blier P, Knott V (2015) Data mining EEG signals in depression for their diagnostic value. BMC Med Inform Dec Making 15(1):1\u201314. https:\/\/doi.org\/10.1186\/s12911-015-0227-6","journal-title":"BMC Med Inform Dec Making"},{"issue":"5","key":"15827_CR32","doi-asserted-by":"publisher","first-page":"875","DOI":"10.1007\/s10548-018-0651-x","volume":"31","author":"W Mumtaz","year":"2018","unstructured":"Mumtaz W, Malik AS (2018) A Comparative Study of Different EEG Reference Choices for Diagnosing Unipolar Depression. Brain Topogr 31(5):875\u2013885. https:\/\/doi.org\/10.1007\/s10548-018-0651-x","journal-title":"Brain Topogr"},{"key":"15827_CR33","doi-asserted-by":"publisher","unstructured":"Mumtaz W, Xia L, Yasin MAM, Ali SSA, Malik AS (2017) A wavelet-based technique to predict treatment outcome for Major Depressive Disorder. PLOS ONE:1\u201330. https:\/\/doi.org\/10.1371\/journal.pone.0171409","DOI":"10.1371\/journal.pone.0171409"},{"issue":"1","key":"15827_CR34","doi-asserted-by":"publisher","first-page":"90","DOI":"10.1016\/S0022-2496(02)00028-7","volume":"47","author":"J Myung","year":"2003","unstructured":"Myung J (2003) Tutorial on maximum likelihood estimation. J Math Psychol 47(1):90\u2013100. https:\/\/doi.org\/10.1016\/S0022-2496(02)00028-7","journal-title":"J Math Psychol"},{"key":"15827_CR35","doi-asserted-by":"publisher","unstructured":"Niemiec J, Lithgow BJ (2005) Alpha-band characteristics in EEG spectrum indicate reliability of frontal brain asymmetry measures in diagnosis of depression. 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, 2005, pp. 7517\u20137520. https:\/\/doi.org\/10.1109\/IEMBS.2005.1616251","DOI":"10.1109\/IEMBS.2005.1616251"},{"key":"15827_CR36","unstructured":"Paul J, Puthankattil SD (2014) Analysis of EEG signals using wavelet entropy and approximate entropy: a case study on depression patients. World Acad Sci, Engin Technol Int J Bioengin Life Sci 8(7)"},{"key":"15827_CR37","doi-asserted-by":"publisher","unstructured":"Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5(1). https:\/\/doi.org\/10.1063\/1.166141","DOI":"10.1063\/1.166141"},{"issue":"6","key":"15827_CR38","doi-asserted-by":"publisher","first-page":"2297","DOI":"10.1073\/pnas.88.6.2297","volume":"88","author":"SM Pincus","year":"1991","unstructured":"Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci 88(6):2297\u20132301. https:\/\/doi.org\/10.1073\/pnas.88.6.2297","journal-title":"Proc Natl Acad Sci"},{"key":"15827_CR39","doi-asserted-by":"publisher","unstructured":"Richman J, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278(6). https:\/\/doi.org\/10.1152\/ajpheart.2000.278.6.H2039","DOI":"10.1152\/ajpheart.2000.278.6.H2039"},{"key":"15827_CR40","doi-asserted-by":"publisher","first-page":"172","DOI":"10.1016\/S0076-6879(04)84011-4","volume":"384","author":"JS Richman","year":"2004","unstructured":"Richman JS, Lake DE, Moorman JR (2004) Sample Entropy. Methods Enzymol 384:172\u2013184. https:\/\/doi.org\/10.1016\/S0076-6879(04)84011-4","journal-title":"Methods Enzymol"},{"issue":"1\u20132","key":"15827_CR41","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1023\/A:1025667309714","volume":"53","author":"M Robnik-Sikonja","year":"2003","unstructured":"Robnik-Sikonja M, Kononenko I (2003) Theoretical and Empirical Analysis of ReliefF and RReliefF. Mach Learn 53(1\u20132):23\u201369. https:\/\/doi.org\/10.1023\/A:1025667309714","journal-title":"Mach Learn"},{"issue":"5","key":"15827_CR42","doi-asserted-by":"publisher","first-page":"2309","DOI":"10.12785\/amis\/090512","volume":"9","author":"G Rodriguez-Bermudez","year":"2015","unstructured":"Rodriguez-Bermudez G, Garcia-Laencina PJ (2015) Analysis of EEG Signals using Nonlinear Dynamics and Chaos: A review. App Mathema Inform Sci 9(5):2309\u20132321. https:\/\/doi.org\/10.12785\/amis\/090512","journal-title":"App Mathema Inform Sci"},{"key":"15827_CR43","unstructured":"Sarker IH, Khan AI, Abushark YB, et al. Internet of Things (IoT) Security Intelligence: A Comprehensive Overview, Machine Learning Solutions and Research Directions. Mobile Netw Appl"},{"key":"15827_CR44","first-page":"52","volume-title":"Cognitive Psychology","author":"RJ Sternberg","year":"2012","unstructured":"Sternberg RJ, Sternberg K (2012) Cognitive Psychology, 6th edn. Wadsworth, Cengage Learning, Belmont, USA, pp 52\u201356","edition":"6"},{"issue":"2","key":"15827_CR45","doi-asserted-by":"publisher","first-page":"145","DOI":"10.1504\/IJAPR.2016.079050","volume":"3","author":"A Tharwat","year":"2016","unstructured":"Tharwat A (2016) Linear vs. quadratic discriminant analysis classifier: a tutorial. Int J Appl, Pattern Recogn 3(2):145\u2013180. https:\/\/doi.org\/10.1504\/IJAPR.2016.079050","journal-title":"Int J Appl, Pattern Recogn"},{"key":"15827_CR46","doi-asserted-by":"publisher","unstructured":"Tharwat A Independent component analysis: An introduction. Appl ComputInform 17(2):222\u2013249. https:\/\/doi.org\/10.1016\/j.aci.2018.08.006","DOI":"10.1016\/j.aci.2018.08.006"},{"key":"15827_CR47","first-page":"215","volume-title":"Pattern Recognition","author":"S Theodoridis","year":"2009","unstructured":"Theodoridis S, Koutroumbas K (2009) Pattern Recognition, 4th edn. Academic Press, Burlington, USA, pp 215\u2013219","edition":"4"},{"key":"15827_CR48","first-page":"495","volume-title":"Principles of Anatomy and Physiology","author":"GJ Tortora","year":"2012","unstructured":"Tortora GJ, Derrickson BH (2012) Principles of Anatomy and Physiology, 11th edn. John Wiley and Sons, USA, pp 495\u2013499","edition":"11"},{"key":"15827_CR49","volume-title":"Depression and other common mental disorders global health estimates","author":"World Health Organization","year":"2017","unstructured":"World Health Organization (2017) Depression and other common mental disorders global health estimates. WHO Document Production Services, Geneva, Switzerland"}],"container-title":["Multimedia Tools and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-15827-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11042-023-15827-7\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-15827-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,2]],"date-time":"2024-01-02T08:51:31Z","timestamp":1704185491000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11042-023-15827-7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5,23]]},"references-count":49,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2024,1]]}},"alternative-id":["15827"],"URL":"https:\/\/doi.org\/10.1007\/s11042-023-15827-7","relation":{},"ISSN":["1380-7501","1573-7721"],"issn-type":[{"value":"1380-7501","type":"print"},{"value":"1573-7721","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,5,23]]},"assertion":[{"value":"17 June 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"2 March 2023","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"10 May 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"23 May 2023","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that there are no conflicts of interest regarding the publication of this paper.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of Interest"}},{"value":"This article does not contain any studies with human participants or animals performed by any of the authors.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethics approval"}},{"value":"Informed consent was obtained from all individual participants included in the study.","order":4,"name":"Ethics","group":{"name":"EthicsHeading","label":"Consent to participate"}},{"value":"The authors give the consent for the publication of identifiable details, which can include photograph(s), tables and other details to be published in the Journal.","order":5,"name":"Ethics","group":{"name":"EthicsHeading","label":"Consent for publication"}}]}}