{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T11:35:17Z","timestamp":1743075317604,"version":"3.37.3"},"reference-count":34,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2023,6,21]],"date-time":"2023-06-21T00:00:00Z","timestamp":1687305600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,6,21]],"date-time":"2023-06-21T00:00:00Z","timestamp":1687305600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimed Tools Appl"],"published-print":{"date-parts":[[2024,1]]},"DOI":"10.1007\/s11042-023-15811-1","type":"journal-article","created":{"date-parts":[[2023,6,21]],"date-time":"2023-06-21T08:02:55Z","timestamp":1687334575000},"page":"11687-11715","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":14,"title":["Parkinson\u2019s disease diagnosis using recurrent neural network based deep learning model by analyzing online handwriting"],"prefix":"10.1007","volume":"83","author":[{"given":"Kaushal","family":"Kumar","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8553-8656","authenticated-orcid":false,"given":"Rajib","family":"Ghosh","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,6,21]]},"reference":[{"key":"15811_CR1","doi-asserted-by":"crossref","unstructured":"Abdullah SM, Abbas T, Bashir MH, Khaja IA, Ahmad M, Soliman NF, El-Shafai W (2023) Deep transfer learning based parkinson\u2019s disease detection using optimized feature selection. IEEE Access","DOI":"10.1109\/ACCESS.2023.3233969"},{"key":"15811_CR2","doi-asserted-by":"publisher","first-page":"116480","DOI":"10.1109\/ACCESS.2019.2932037","volume":"7","author":"L Ali","year":"2019","unstructured":"Ali L, Zhu C, Golilarz NA, Javeed A, Zhou M, Liu Y (2019) Reliable parkinson\u2019s disease detection by analyzing handwritten drawings: Construction of an unbiased cascaded learning system based on feature selection and adaptive boosting model. Ieee Access 7:116480\u2013116489","journal-title":"Ieee Access"},{"key":"15811_CR3","doi-asserted-by":"crossref","unstructured":"Alissa M, Lones MA, Cosgrove J, Alty JE, Jamieson S, Smith SL, Vallejo M (2022) Parkinson\u2019s disease diagnosis using convolutional neural networks and figure-copying tasks. Neural Comput Appl pp 1\u201321","DOI":"10.1007\/s00521-021-06469-7"},{"issue":"4","key":"15811_CR4","doi-asserted-by":"publisher","first-page":"783","DOI":"10.1016\/j.humov.2010.08.008","volume":"30","author":"C Bidet-Ildei","year":"2011","unstructured":"Bidet-Ildei C, Pollak P, Kandel S, Fraix V, Orliaguet JP (2011) Handwriting in patients with parkinson disease: effect of l-dopa and stimulation of the sub-thalamic nucleus on motor anticipation. Hum Mov Sci 30(4):783\u2013791","journal-title":"Hum Mov Sci"},{"issue":"S1","key":"15811_CR5","doi-asserted-by":"publisher","first-page":"S76","DOI":"10.1002\/mds.22783","volume":"25","author":"RE Burke","year":"2010","unstructured":"Burke RE (2010) Evaluation of the braak staging scheme for parkinson\u2019s disease: Introduction to a panel presentation. Mov Disord 25(S1):S76\u2013S77","journal-title":"Mov Disord"},{"issue":"6","key":"15811_CR6","doi-asserted-by":"publisher","first-page":"525","DOI":"10.1016\/S1474-4422(06)70471-9","volume":"5","author":"LML De Lau","year":"2006","unstructured":"De Lau LML, Breteler MMB (2006) Epidemiology of parkinson\u2019s disease. Lancet Neurol 5(6):525\u2013535","journal-title":"Lancet Neurol"},{"key":"15811_CR7","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1016\/j.patrec.2018.05.013","volume":"121","author":"C De Stefano","year":"2019","unstructured":"De Stefano C, Fontanella F, Impedovo D, Pirlo G, di Freca AS (2019) Handwriting analysis to support neurodegenerative diseases diagnosis: A review. Pattern Recog Lett 121:37\u201345","journal-title":"Pattern Recog Lett"},{"issue":"4","key":"15811_CR8","doi-asserted-by":"publisher","first-page":"835","DOI":"10.1002\/mds.10189","volume":"17","author":"P Derkinderen","year":"2002","unstructured":"Derkinderen P, Dupont S, Vidal JS, Chedru F, Vidailhet M (2002) Micrographia secondary to lenticular lesions. Mov Disord 17(4):835\u2013837","journal-title":"Mov Disord"},{"key":"15811_CR9","doi-asserted-by":"publisher","first-page":"204","DOI":"10.1016\/j.patrec.2019.08.018","volume":"128","author":"M Diaz","year":"2019","unstructured":"Diaz M, Ferrer MA, Impedovo D, Pirlo G, Vessio G (2019) Dynamically enhanced static handwriting representation for parkinson\u2019s disease detection. Pattern Recogn Lett 128:204\u2013210","journal-title":"Pattern Recogn Lett"},{"key":"15811_CR10","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2020.114405","volume":"168","author":"M Diaz","year":"2021","unstructured":"Diaz M, Moetesum M, Siddiqi I, Vessio G (2021) Sequence-based dynamic handwriting analysis for parkinson\u2019s disease detection with one-dimensional convolutions and bigrus. Expert Syst Appl 168:114405","journal-title":"Expert Syst Appl"},{"issue":"3","key":"15811_CR11","doi-asserted-by":"publisher","first-page":"508","DOI":"10.1109\/TNSRE.2014.2359997","volume":"23","author":"P Drot\u00e1r","year":"2014","unstructured":"Drot\u00e1r P, Mekyska J, Rektorov\u00e1 I, Masarov\u00e1 L, Sm\u00e9kal Z, Faundez-Zanuy M (2014) Decision support framework for parkinson\u2019s disease based on novel handwriting markers. IEEE Trans Neural Syst Rehabil Eng 23(3):508\u2013516","journal-title":"IEEE Trans Neural Syst Rehabil Eng"},{"issue":"3","key":"15811_CR12","doi-asserted-by":"publisher","first-page":"405","DOI":"10.1016\/j.cmpb.2014.08.007","volume":"117","author":"P Drot\u00e1r","year":"2014","unstructured":"Drot\u00e1r P, Mekyska J, Rektorov\u00e1 I, Masarov\u00e1 L, Sm\u00e9kal Z, Faundez-Zanuy M (2014) Analysis of in-air movement in handwriting: A novel marker for parkinson\u2019s disease. Comput Methods Prog Biomed 117(3):405\u2013411","journal-title":"Comput Methods Prog Biomed"},{"key":"15811_CR13","doi-asserted-by":"publisher","first-page":"39","DOI":"10.1016\/j.artmed.2016.01.004","volume":"67","author":"P Drot\u00e1r","year":"2016","unstructured":"Drot\u00e1r P, Mekyska J, Rektorov\u00e1 I, Masarov\u00e1 L, Sm\u00e9kal Z, Faundez-Zanuy M (2016) Evaluation of handwriting kinematics and pressure for differential diagnosis of parkinson\u2019s disease. Artif Intell Med 67:39\u201346","journal-title":"Artif Intell Med"},{"key":"15811_CR14","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2020.114249","volume":"168","author":"R Ghosh","year":"2021","unstructured":"Ghosh R (2021) A recurrent neural network based deep learning model for offline signature verification and recognition system. Expert Syst Appl 168:114249","journal-title":"Expert Syst Appl"},{"issue":"1","key":"15811_CR15","first-page":"21","volume":"9","author":"R Ghosh","year":"2018","unstructured":"Ghosh R, Roy PP, Kumar P (2018) Smart device authentication based on online handwritten script identification and word recognition in indic scripts using zone-wise features. IJISMD 9(1):21\u201355","journal-title":"IJISMD"},{"key":"15811_CR16","doi-asserted-by":"publisher","first-page":"203","DOI":"10.1016\/j.patcog.2019.03.030","volume":"92","author":"R Ghosh","year":"2019","unstructured":"Ghosh R, Vamshi C, Kumar P (2019) Rnn based online handwritten word recognition in devanagari and bengali scripts using horizontal zoning. Pattern Recog 92:203\u2013218","journal-title":"Pattern Recog"},{"issue":"5","key":"15811_CR17","doi-asserted-by":"publisher","first-page":"855","DOI":"10.1109\/TPAMI.2008.137","volume":"31","author":"A Graves","year":"2008","unstructured":"Graves A, Liwicki M, Fern\u00e1ndez S, Bertolami R, Bunke H, Schmidhuber J (2008) A novel connectionist system for unconstrained handwriting recognition. IEEE Trans Pattern Anal Machine Intell 31(5):855\u2013868","journal-title":"IEEE Trans Pattern Anal Machine Intell"},{"issue":"3","key":"15811_CR18","doi-asserted-by":"publisher","first-page":"131","DOI":"10.1155\/1999\/327643","volume":"11","author":"AK Ho","year":"1998","unstructured":"Ho AK, Iansek R, Marigliani C, Bradshaw JL, Gates S (1998) Speech impairment in a large sample of patients with parkinson\u2019s disease. Behav Neurol 11(3):131\u2013137","journal-title":"Behav Neurol"},{"issue":"3","key":"15811_CR19","doi-asserted-by":"publisher","first-page":"169","DOI":"10.1007\/PL00013559","volume":"3","author":"S Jaeger","year":"2001","unstructured":"Jaeger S, Manke S, Reichert J, Waibel A (2001) Online handwriting recognition: the npen$$++$$ recognizer. IJDAR 3(3):169\u2013180","journal-title":"IJDAR"},{"key":"15811_CR20","unstructured":"Johri A, Tripathi A, et\u00a0al. (2019) Parkinson disease detection using deep neural networks. In 2019 twelfth international conference on contemporary computing (IC3), pp 1\u20134 IEEE"},{"key":"15811_CR21","unstructured":"Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980"},{"issue":"4\u20135","key":"15811_CR22","doi-asserted-by":"publisher","first-page":"492","DOI":"10.1016\/j.humov.2006.05.006","volume":"25","author":"KW Lange","year":"2006","unstructured":"Lange KW, Mecklinger L, Walitza S, Becker G, Gerlach M, Naumann M, Tucha O (2006) Brain dopamine and kinematics of graphomotor functions. Hum Mov Sci 25(4\u20135):492\u2013509","journal-title":"Hum Mov Sci"},{"key":"15811_CR23","doi-asserted-by":"publisher","first-page":"28","DOI":"10.1016\/j.patrec.2018.04.006","volume":"121","author":"C Loconsole","year":"2019","unstructured":"Loconsole C, Cascarano GD, Brunetti A, Trotta GF, Losavio G, Bevilacqua V, Di Sciascio E (2019) A model-free technique based on computer vision and semg for classification in parkinson\u2019s disease by using computer-assisted handwriting analysis. Pattern Recogn Lett 121:28\u201336","journal-title":"Pattern Recogn Lett"},{"key":"15811_CR24","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2022.117400","volume":"203","author":"C Ma","year":"2022","unstructured":"Ma C, Zhang P, Pan L, Li X, Yin C, Li A, Zong R, Zhang Z (2022) A feature fusion sequence learning approach for quantitative analysis of tremor symptoms based on digital handwriting. Expert Syst Appl 203:117400","journal-title":"Expert Syst Appl"},{"key":"15811_CR25","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1016\/j.patrec.2018.04.008","volume":"121","author":"M Moetesum","year":"2019","unstructured":"Moetesum M, Siddiqi I, Vincent N, Cloppet F (2019) Assessing visual attributes of handwriting for prediction of neurological disorders-a case study on parkinson\u2019s disease. Pattern Recog Lett 121:19\u201327","journal-title":"Pattern Recog Lett"},{"issue":"12","key":"15811_CR26","doi-asserted-by":"publisher","first-page":"2566","DOI":"10.3390\/app8122566","volume":"8","author":"J Mucha","year":"2018","unstructured":"Mucha J, Mekyska J, Galaz Z, Faundez-Zanuy M, Lopez-de Ipina K, Zvoncak V, Kiska T, Smekal Z, Brabenec L, Rektorova I (2018) Identification and monitoring of parkinson\u2019s disease dysgraphia based on fractional-order derivatives of online handwriting. Appl Sci 8(12):2566","journal-title":"Appl Sci"},{"issue":"3","key":"15811_CR27","doi-asserted-by":"publisher","first-page":"839","DOI":"10.1007\/s00521-019-04069-0","volume":"32","author":"A Naseer","year":"2020","unstructured":"Naseer A, Rani M, Naz S, Razzak MI, Imran M, Xu G (2020) Refining parkinson\u2019s neurological disorder identification through deep transfer learning. Neural Comput Appl 32(3):839\u2013854","journal-title":"Neural Comput Appl"},{"key":"15811_CR28","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1016\/j.cmpb.2016.08.005","volume":"136","author":"CR Pereira","year":"2016","unstructured":"Pereira CR, Pereira DR, Silva FA, Masieiro JP, Weber SAT, Hook C, Papa JP (2016) A new computer vision-based approach to aid the diagnosis of parkinson\u2019s disease. Comput Methods Prog Biomed 136:79\u201388","journal-title":"Comput Methods Prog Biomed"},{"issue":"4","key":"15811_CR29","doi-asserted-by":"publisher","first-page":"828","DOI":"10.1109\/JBHI.2013.2245674","volume":"17","author":"BE Sakar","year":"2013","unstructured":"Sakar BE, Isenkul ME, Sakar CO, Sertbas A, Gurgen F, Delil S, Apaydin H, Kursun O (2013) Collection and analysis of a parkinson speech dataset with multiple types of sound recordings. IEEE J Biomed Health Inform 17(4):828\u2013834","journal-title":"IEEE J Biomed Health Inform"},{"key":"15811_CR30","doi-asserted-by":"crossref","unstructured":"Shah PM, Zeb A, Shafi U, Farhan\u00a0Alam Zaidi S, Shah MA (2018) Detection of parkinson disease in brain mri using convolutional neural network. In 2018 24th international conference on automation and computing (ICAC), pp 1\u20136 IEEE","DOI":"10.23919\/IConAC.2018.8749023"},{"key":"15811_CR31","doi-asserted-by":"publisher","first-page":"181","DOI":"10.3389\/fneur.2023.1093690","volume":"14","author":"S Toffoli","year":"2023","unstructured":"Toffoli S, Lunardini F, Parati M, Gallotta M, De Maria B, Longoni L, Dell\u2019Anna ME, Ferrante S (2023) Spiral drawing analysis with a smart ink pen to identify parkinson\u2019s disease fine motor deficits. Frontiers in Neurology 14:181","journal-title":"Frontiers in Neurology"},{"issue":"10","key":"15811_CR32","doi-asserted-by":"publisher","first-page":"919","DOI":"10.5014\/ajot.47.10.919","volume":"47","author":"MH Tseng","year":"1993","unstructured":"Tseng MH, Cermak SA (1993) The influence of ergonomic factors and perceptual-motor abilities on handwriting performance. Am J Occup Ther 47(10):919\u2013926","journal-title":"Am J Occup Ther"},{"key":"15811_CR33","doi-asserted-by":"publisher","DOI":"10.1016\/j.bspc.2022.103551","volume":"75","author":"E Valla","year":"2022","unstructured":"Valla E, N\u00f5mm S, Medijainen K, Taba P, Toomela A (2022) Tremor-related feature engineering for machine learning based parkinson\u2019s disease diagnostics. Biomed Sig Process Control 75:103551","journal-title":"Biomed Sig Process Control"},{"issue":"4","key":"15811_CR34","doi-asserted-by":"publisher","first-page":"473","DOI":"10.1016\/j.euroneuro.2005.04.007","volume":"15","author":"S von Campenhausen","year":"2005","unstructured":"von Campenhausen S, Bornschein B, Wick R, B\u00f6tzel K, Sampaio C, Poewe W, Oertel W, Siebert U, Berger K, Dodel R (2005) Prevalence and incidence of parkinson\u2019s disease in europe. Eur Neuropsychopharmacol 15(4):473\u2013490","journal-title":"Eur Neuropsychopharmacol"}],"container-title":["Multimedia Tools and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-15811-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11042-023-15811-1\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-15811-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,10]],"date-time":"2024-01-10T09:18:23Z","timestamp":1704878303000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11042-023-15811-1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,6,21]]},"references-count":34,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2024,1]]}},"alternative-id":["15811"],"URL":"https:\/\/doi.org\/10.1007\/s11042-023-15811-1","relation":{},"ISSN":["1380-7501","1573-7721"],"issn-type":[{"type":"print","value":"1380-7501"},{"type":"electronic","value":"1573-7721"}],"subject":[],"published":{"date-parts":[[2023,6,21]]},"assertion":[{"value":"20 July 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"16 March 2023","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"10 May 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"21 June 2023","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors have no conflict of interest\/competing interest to declare that are relevant to the content of this article","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest statement"}}]}}