{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,29]],"date-time":"2024-08-29T16:43:18Z","timestamp":1724949798774},"reference-count":40,"publisher":"Springer Science and Business Media LLC","issue":"30","license":[{"start":{"date-parts":[[2023,5,3]],"date-time":"2023-05-03T00:00:00Z","timestamp":1683072000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,5,3]],"date-time":"2023-05-03T00:00:00Z","timestamp":1683072000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"name":"National Science and technology projects of China","award":["D5120190078"]},{"DOI":"10.13039\/100014103","name":"Key Technology Research and Development Program of Shandong","doi-asserted-by":"publisher","award":["D5140190006"],"id":[{"id":"10.13039\/100014103","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimed Tools Appl"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1007\/s11042-023-15237-9","type":"journal-article","created":{"date-parts":[[2023,5,3]],"date-time":"2023-05-03T09:02:32Z","timestamp":1683104552000},"page":"47695-47717","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Quality and content-aware fusion optimization mechanism of infrared and visible images"],"prefix":"10.1007","volume":"82","author":[{"given":"Weigang","family":"Li","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0425-7626","authenticated-orcid":false,"given":"Aiqing","family":"Fang","sequence":"additional","affiliation":[]},{"given":"Junsheng","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Ying","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,5,3]]},"reference":[{"issue":"1","key":"15237_CR1","first-page":"1","volume":"2","author":"V Aardt","year":"2008","unstructured":"Aardt V (2008) Jan: assessment of image fusion procedures using entropy, image quality, and multispectral classification. J Appl Remote Sens 2(1):1\u201328","journal-title":"J Appl Remote Sens"},{"key":"15237_CR2","doi-asserted-by":"publisher","first-page":"52","DOI":"10.1016\/j.infrared.2016.01.009","volume":"76","author":"DP Bavirisetti","year":"2016","unstructured":"Bavirisetti D P, Dhuli R (2016) Two-scale image fusion of visible and infrared images using saliency detection. Infrared Phys Technol 76:52\u201364","journal-title":"Infrared Phys Technol"},{"issue":"2","key":"15237_CR3","doi-asserted-by":"publisher","first-page":"193","DOI":"10.1016\/j.inffus.2005.10.001","volume":"8","author":"H Chen","year":"2007","unstructured":"Chen H, Varshney P K (2007) A human perception inspired quality metric for image fusion based on regional information. Inf Fusion 8(2):193\u2013207","journal-title":"Inf Fusion"},{"issue":"341","key":"15237_CR4","doi-asserted-by":"publisher","first-page":"199","DOI":"10.1016\/j.optcom.2014.12.032","volume":"341","author":"G Cui","year":"2015","unstructured":"Cui G, Feng H, Xu Z, Li Q, Chen Y (2015) Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition. Opt Commun 341(341):199\u2013209","journal-title":"Opt Commun"},{"issue":"12","key":"15237_CR5","doi-asserted-by":"publisher","first-page":"2959","DOI":"10.1109\/26.477498","volume":"43","author":"AM Eskicioglu","year":"1995","unstructured":"Eskicioglu A M, Fisher P S (1995) Image quality measures and their performance. IEEE Trans Commun 43(12):2959\u20132965","journal-title":"IEEE Trans Commun"},{"key":"15237_CR6","doi-asserted-by":"publisher","first-page":"333","DOI":"10.1016\/j.neucom.2020.07.014","volume":"414","author":"A Fang","year":"2020","unstructured":"Fang A, Zhao X, Zhang Y (2020) Cross-modal image fusion guided by subjective visual attention. Neurocomputing 414:333\u2013345","journal-title":"Neurocomputing"},{"issue":"9","key":"15237_CR7","doi-asserted-by":"publisher","first-page":"1480","DOI":"10.1109\/TCSVT.2014.2372392","volume":"25","author":"K Gu","year":"2015","unstructured":"Gu K, Zhai G, Yang X, Zhang W, Chen C W (2015) Automatic contrast enhancement technology with saliency preservation. IEEE Trans Circuits Syst Video Technol 25(9):1480\u20131494","journal-title":"IEEE Trans Circuits Syst Video Technol"},{"issue":"5","key":"15237_CR8","doi-asserted-by":"publisher","first-page":"3903","DOI":"10.1109\/TIE.2017.2652339","volume":"64","author":"K Gu","year":"2017","unstructured":"Gu K, Li L, Lu H, Min X, Lin W (2017) A fast reliable image quality predictor by fusing micro- and macro-structures. IEEE Trans Ind Electron 64(5):3903\u20133912","journal-title":"IEEE Trans Ind Electron"},{"issue":"1","key":"15237_CR9","doi-asserted-by":"publisher","first-page":"394","DOI":"10.1109\/TIP.2017.2733164","volume":"27","author":"K Gu","year":"2018","unstructured":"Gu K, Jakhetiya V, Qiao J -F, Li X, Lin W, Thalmann D (2018) Model-based referenceless quality metric of 3d synthesized images using local image description. IEEE Trans Image Process 27(1):394\u2013405","journal-title":"IEEE Trans Image Process"},{"key":"15237_CR10","doi-asserted-by":"crossref","unstructured":"Ha Q, Watanabe K, Karasawa T, Ushiku Y, Harada T (2017) Mfnet: towards real-time semantic segmentation for autonomous vehicles with multi-spectral scenes. In: 2017 IEEE\/RSJ International conference on intelligent robots and systems, pp 5108\u20135115","DOI":"10.1109\/IROS.2017.8206396"},{"key":"15237_CR11","doi-asserted-by":"crossref","unstructured":"Hou R, Nie R, Zhou D, Cao J, Liu D (2019) Infrared and visible images fusion using visual saliency and optimized spiking cortical model in non-subsampled shearlet transform domain. Multimed Tools Appl (78):28609\u201328632","DOI":"10.1007\/s11042-018-6099-x"},{"key":"15237_CR12","doi-asserted-by":"publisher","first-page":"11","DOI":"10.1016\/j.inffus.2018.09.004","volume":"48","author":"M Jiayi","year":"2019","unstructured":"Jiayi M, Wei Y, Pengwei L, Chang L, Junjun J (2019) Fusiongan: a generative adversarial network for infrared and visible image fusion. Inf Fusion 48:11\u201326","journal-title":"Inf Fusion"},{"issue":"99","key":"15237_CR13","first-page":"1","volume":"PP","author":"G Ke","year":"2017","unstructured":"Ke G, Zhou J, Qiao J, Zhai G, Bovik A C (2017) No-reference quality assessment of screen content pictures. IEEE Trans Image Process PP(99):1\u20131","journal-title":"IEEE Trans Image Process"},{"key":"15237_CR14","doi-asserted-by":"publisher","first-page":"106977","DOI":"10.1016\/j.patcog.2019.106977","volume":"96","author":"C Li","year":"2019","unstructured":"Li C, Liang X, Lu Y, Zhao N, Tang J (2019) Rgb-t object tracking: benchmark and baseline. Pattern Recogn 96:106977","journal-title":"Pattern Recogn"},{"issue":"5","key":"15237_CR15","doi-asserted-by":"publisher","first-page":"2614","DOI":"10.1109\/TIP.2018.2887342","volume":"28","author":"H Li","year":"2019","unstructured":"Li H, Wu X -J (2019) Densefuse: a fusion approach to infrared and visible images. IEEE Trans Image Process 28(5):2614\u20132623","journal-title":"IEEE Trans Image Process"},{"issue":"12","key":"15237_CR16","doi-asserted-by":"publisher","first-page":"9645","DOI":"10.1109\/TIM.2020.3005230","volume":"69","author":"H Li","year":"2020","unstructured":"Li H, Wu X -J, Durrani T (2020) Nestfuse: an infrared and visible image fusion architecture based on nest connection and spatial\/channel attention models. IEEE Trans Instrum Meas 69(12):9645\u20139656","journal-title":"IEEE Trans Instrum Meas"},{"key":"15237_CR17","doi-asserted-by":"publisher","first-page":"72","DOI":"10.1016\/j.inffus.2021.02.023","volume":"73","author":"H Li","year":"2021","unstructured":"Li H, Wu X -J, Kittler J (2021) Rfn-nest: an end-to-end residual fusion network for infrared and visible images. Inf Fusion 73:72\u201386","journal-title":"Inf Fusion"},{"key":"15237_CR18","doi-asserted-by":"publisher","first-page":"103016","DOI":"10.1016\/j.cviu.2020.103016","volume":"197\u2013198","author":"J Ma","year":"2020","unstructured":"Ma J, Zhou Y (2020) Infrared and visible image fusion via gradientlet filter. Comput Vis Image Underst 197\u2013198:103016","journal-title":"Comput Vis Image Underst"},{"key":"15237_CR19","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1016\/j.inffus.2019.07.005","volume":"54","author":"J Ma","year":"2019","unstructured":"Ma J, Liang P, Yu W, Chen C, Jiang J (2019) Infrared and visible image fusion via detail preserving adversarial learning. Inf Fusion 54:85\u201398","journal-title":"Inf Fusion"},{"key":"15237_CR20","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TIP.2020.2977573","volume":"29","author":"J Ma","year":"2020","unstructured":"Ma J, Xu H, Jiang J, Mei X, Zhang X -P (2020) Ddcgan: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion. IEEE Trans Image Process 29:1\u20131","journal-title":"IEEE Trans Image Process"},{"key":"15237_CR21","first-page":"1","volume":"70","author":"J Ma","year":"2021","unstructured":"Ma J, Tang L, Xu M, Zhang H, Xiao G (2021) Stdfusionnet: an infrared and visible image fusion network based on salient target detection. IEEE Trans Instrum Meas 70:1\u201313","journal-title":"IEEE Trans Instrum Meas"},{"key":"15237_CR22","first-page":"5005014","volume":"70","author":"J Ma","year":"2021","unstructured":"Ma J, Zhang H, Shao Z, Liang P, Xu H (2021) Ganmcc: a generative adversarial network with multi-classification constraints for infrared and visible image fusion. IEEE Trans Instrum Meas 70:5005014","journal-title":"IEEE Trans Instrum Meas"},{"issue":"5","key":"15237_CR23","doi-asserted-by":"publisher","first-page":"479","DOI":"10.14429\/dsj.61.705","volume":"61","author":"V Naidu","year":"2011","unstructured":"Naidu V (2011) Image fusion technique using multi-resolution singular value decomposition. Def Sci J 61(5):479\u2013484","journal-title":"Def Sci J"},{"key":"15237_CR24","doi-asserted-by":"publisher","first-page":"188","DOI":"10.1016\/j.neunet.2021.01.021","volume":"137","author":"C Peng","year":"2021","unstructured":"Peng C, Tian T, Chen C, Guo X, Ma J (2021) Bilateral attention decoder: a lightweight decoder for real-time semantic segmentation. Neural Netw 137:188\u2013199","journal-title":"Neural Netw"},{"issue":"1","key":"15237_CR25","doi-asserted-by":"publisher","first-page":"95","DOI":"10.1007\/s11760-011-0219-7","volume":"7","author":"P Shah","year":"2013","unstructured":"Shah P, Merchant S N, Desai U B (2013) Multifocus and multispectral image fusion based on pixel significance using multiresolution decomposition. SIViP 7(1):95\u2013109","journal-title":"SIViP"},{"issue":"3","key":"15237_CR26","doi-asserted-by":"publisher","first-page":"2576","DOI":"10.1109\/LRA.2019.2904733","volume":"4","author":"Y Sun","year":"2019","unstructured":"Sun Y, Zuo W, Liu M (2019) RTFNEt: RGB-thermal fusion network for semantic segmentation of urban scenes. IEEE Robot Autom Lett 4 (3):2576\u20132583","journal-title":"IEEE Robot Autom Lett"},{"key":"15237_CR27","doi-asserted-by":"publisher","first-page":"28","DOI":"10.1016\/j.inffus.2021.12.004","volume":"82","author":"L Tang","year":"2022","unstructured":"Tang L, Yuan J, Ma J (2022) Image fusion in the loop of high-level vision tasks: a semantic-aware real-time infrared and visible image fusion network. Inf Fusion 82:28\u201342","journal-title":"Inf Fusion"},{"key":"15237_CR28","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1016\/j.inffus.2022.03.007","volume":"83-84","author":"L Tang","year":"2022","unstructured":"Tang L, Yuan J, Zhang H, Jiang X, Ma J (2022) Piafusion: a progressive infrared and visible image fusion network based on illumination aware. Inf Fusion 83-84:79\u201392","journal-title":"Inf Fusion"},{"key":"15237_CR29","unstructured":"Toet A (2014) TNO image fusion dataset. Figshare Dataset"},{"issue":"7","key":"15237_CR30","first-page":"828","volume":"9","author":"H Wang","year":"2004","unstructured":"Wang H, Zhong W, Wang J (2004) Research of measurement for digital image definition. J Image Graph 9(7):828\u2013831","journal-title":"J Image Graph"},{"issue":"4","key":"15237_CR31","doi-asserted-by":"publisher","first-page":"600","DOI":"10.1109\/TIP.2003.819861","volume":"13","author":"Z Wang","year":"2004","unstructured":"Wang Z, Bovik A C, Sheikh H R, Simoncelli E P (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600\u2013612","journal-title":"IEEE Trans Image Process"},{"key":"15237_CR32","doi-asserted-by":"publisher","first-page":"824","DOI":"10.1109\/TCI.2021.3100986","volume":"7","author":"H Xu","year":"2021","unstructured":"Xu H, Zhang H, Ma J (2021) Classification saliency-based rule for visible and infrared image fusion. IEEE Trans Comput Imaging 7:824\u2013836","journal-title":"IEEE Trans Comput Imaging"},{"issue":"1","key":"15237_CR33","doi-asserted-by":"publisher","first-page":"502","DOI":"10.1109\/TPAMI.2020.3012548","volume":"44","author":"H Xu","year":"2022","unstructured":"Xu H, Ma J, Jiang J, Guo X, Ling H (2022) U2fusion: a unified unsupervised image fusion network. IEEE Trans Pattern Anal Mach Intell 44(1):502\u2013518","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"4","key":"15237_CR34","doi-asserted-by":"publisher","first-page":"308","DOI":"10.1049\/el:20000267","volume":"36","author":"CS Xydeas","year":"2000","unstructured":"Xydeas C S, Petrovi\u0107 V (2000) Objective image fusion performance measure. Electron Lett 36(4):308\u2013309","journal-title":"Electron Lett"},{"key":"15237_CR35","doi-asserted-by":"crossref","unstructured":"Zhang Z, Liu Y, Tan H, Yi X, Zhang M (2018) No-reference image sharpness assessment using scale and directional models. In: 2018 IEEE International conference on multimedia and expo (ICME), pp 1\u20136","DOI":"10.1109\/ICME.2018.8486529"},{"key":"15237_CR36","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1016\/j.inffus.2019.07.011","volume":"54","author":"Y Zhang","year":"2020","unstructured":"Zhang Y, Liu Y, Sun P, Yan H, Zhao X, Zhang L (2020) Ifcnn: a general image fusion framework based on convolutional neural network. Inf Fusion 54:99\u2013118","journal-title":"Inf Fusion"},{"key":"15237_CR37","doi-asserted-by":"crossref","unstructured":"Zhang X, Ye P, Xiao G (2020) Vifb: a visible and infrared image fusion benchmark. In: CVF Conference on computer vision and pattern recognition workshops, pp 468\u2013478","DOI":"10.1109\/CVPRW50498.2020.00060"},{"key":"15237_CR38","doi-asserted-by":"publisher","first-page":"323","DOI":"10.1016\/j.inffus.2021.06.008","volume":"76","author":"H Zhang","year":"2021","unstructured":"Zhang H, Xu H, Tian X, Jiang J, Ma J (2021) Image fusion meets deep learning: a survey and perspective. Inf Fusion 76:323\u2013336","journal-title":"Inf Fusion"},{"key":"15237_CR39","doi-asserted-by":"crossref","unstructured":"Zhou K, Chen L, Cao X (2020) Improving multispectral pedestrian detection by addressing modality imbalance problems. In: Vedaldi A, Bischof H, Brox T, Frahm J-M (eds) Computer vision\u2014ECCV 2020. Springer, pp 787\u2013803","DOI":"10.1007\/978-3-030-58523-5_46"},{"key":"15237_CR40","unstructured":"Zhou H, Wu W, Zhang Y, Ma J, Ling H (2021) Semantic-supervised infrared and visible image fusion via a dual-discriminator generative adversarial network. IEEE Trans Multimed 1\u20131"}],"container-title":["Multimedia Tools and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-15237-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11042-023-15237-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-15237-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,29]],"date-time":"2023-11-29T09:13:20Z","timestamp":1701249200000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11042-023-15237-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5,3]]},"references-count":40,"journal-issue":{"issue":"30","published-print":{"date-parts":[[2023,12]]}},"alternative-id":["15237"],"URL":"https:\/\/doi.org\/10.1007\/s11042-023-15237-9","relation":{},"ISSN":["1380-7501","1573-7721"],"issn-type":[{"value":"1380-7501","type":"print"},{"value":"1573-7721","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,5,3]]},"assertion":[{"value":"13 September 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"15 December 2022","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"30 March 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"3 May 2023","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.Raw data for the dataset is not publicly available to preserve individuals\u2019 privacy under the Northwestern Polytechnical University Data Protection Regulation.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}