{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T07:28:48Z","timestamp":1740122928170,"version":"3.37.3"},"reference-count":36,"publisher":"Springer Science and Business Media LLC","issue":"24","license":[{"start":{"date-parts":[[2023,4,5]],"date-time":"2023-04-05T00:00:00Z","timestamp":1680652800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,4,5]],"date-time":"2023-04-05T00:00:00Z","timestamp":1680652800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimed Tools Appl"],"published-print":{"date-parts":[[2023,10]]},"DOI":"10.1007\/s11042-023-15212-4","type":"journal-article","created":{"date-parts":[[2023,4,5]],"date-time":"2023-04-05T15:08:21Z","timestamp":1680707301000},"page":"36951-36972","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Deep neural network model with Bayesian optimization for tuberculosis detection from X-Ray images"],"prefix":"10.1007","volume":"82","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-9997-4267","authenticated-orcid":false,"given":"Murat","family":"U\u00e7ar","sequence":"first","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,4,5]]},"reference":[{"key":"15212_CR1","doi-asserted-by":"crossref","unstructured":"Ahsan M, Gomes R, Denton A (2019) Application of a convolutional neural network using transfer learning for tuberculosis detection. In: 2019 IEEE International Conference on Electro Information Technology (EIT), pp 427\u2013433","DOI":"10.1109\/EIT.2019.8833768"},{"key":"15212_CR2","doi-asserted-by":"publisher","first-page":"183","DOI":"10.1007\/s13246-020-00966-0","volume":"44","author":"M Ayaz","year":"2021","unstructured":"Ayaz M, Shaukat F, Raja G (2021) Ensemble learning based automatic detection of tuberculosis in chest X-ray images using hybrid feature descriptors. Phys Eng Sci Med 44:183\u2013194","journal-title":"Phys Eng Sci Med"},{"key":"15212_CR3","unstructured":"Bayesian Optimization library. https:\/\/scikit-optimize.github.io\/stable\/. Accessed 10 July 2021"},{"key":"15212_CR4","doi-asserted-by":"crossref","unstructured":"Bengio Y (2012) Practical recommendations for gradient-based training of deep architectures. In: Neural networks: tricks of the trade. Springer, pp 437\u2013478","DOI":"10.1007\/978-3-642-35289-8_26"},{"key":"15212_CR5","unstructured":"Brochu E, Cora VM, De Freitas N (2010) A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv Prepr arXiv10122599"},{"key":"15212_CR6","doi-asserted-by":"publisher","first-page":"713","DOI":"10.21037\/atm.2020.02.44","volume":"8","author":"L Cai","year":"2020","unstructured":"Cai L, Gao J, Zhao D (2020) A review of the application of deep learning in medical image classification and segmentation. Ann Transl Med 8:713","journal-title":"Ann Transl Med"},{"key":"15212_CR7","doi-asserted-by":"publisher","first-page":"113514","DOI":"10.1016\/j.eswa.2020.113514","volume":"158","author":"TB Chandra","year":"2020","unstructured":"Chandra TB, Verma K, Singh BK et al (2020) Automatic detection of tuberculosis related abnormalities in chest X-ray images using hierarchical feature extraction scheme. Expert Syst Appl 158:113514","journal-title":"Expert Syst Appl"},{"key":"15212_CR8","doi-asserted-by":"publisher","first-page":"e112980","DOI":"10.1371\/journal.pone.0112980","volume":"9","author":"A Chauhan","year":"2014","unstructured":"Chauhan A, Chauhan D, Rout C (2014) Role of gist and PHOG features in computer-aided diagnosis of tuberculosis without segmentation. PLoS ONE 9:e112980","journal-title":"PLoS ONE"},{"key":"15212_CR9","unstructured":"Chollet F, others (2018) Keras: The python deep learning library. Astrophys Source Code Libr ascl\u20131806"},{"key":"15212_CR10","doi-asserted-by":"publisher","first-page":"7092","DOI":"10.3390\/app12147092","volume":"12","author":"SM Fati","year":"2022","unstructured":"Fati SM, Senan EM, ElHakim N (2022) Deep and hybrid learning technique for early detection of tuberculosis based on X-ray images using feature fusion. Appl Sci 12:7092","journal-title":"Appl Sci"},{"key":"15212_CR11","doi-asserted-by":"publisher","first-page":"1642","DOI":"10.1016\/S0140-6736(19)30308-3","volume":"393","author":"J Furin","year":"2019","unstructured":"Furin J, Cox H, Pai M (2019) Tuberculosis. Lancet 393:1642\u20131656. https:\/\/doi.org\/10.1016\/S0140-6736(19)30308-3","journal-title":"Lancet"},{"key":"15212_CR12","unstructured":"Global Tuberculosis Report (2020) https:\/\/www.who.int\/publications\/i\/item\/9789240013131. Accessed 12 June 2021"},{"key":"15212_CR13","doi-asserted-by":"publisher","unstructured":"He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2016\u2013Decem, pp 770\u2013778. https:\/\/doi.org\/10.1109\/CVPR.2016.90","DOI":"10.1109\/CVPR.2016.90"},{"key":"15212_CR14","first-page":"341","volume":"127","author":"JD Howell","year":"2016","unstructured":"Howell JD (2016) Early clinical use of the X-ray. Trans Am Clin Climatol Assoc 127:341","journal-title":"Trans Am Clin Climatol Assoc"},{"key":"15212_CR15","doi-asserted-by":"publisher","unstructured":"Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. Proc \u2013 30th IEEE Conf Comput Vis Pattern Recognition, CVPR 2017 2017\u2013Janua, pp 2261\u20132269. https:\/\/doi.org\/10.1109\/CVPR.2017.243","DOI":"10.1109\/CVPR.2017.243"},{"key":"15212_CR16","doi-asserted-by":"crossref","unstructured":"Hwang S, Kim H-E, Jeong J, Kim H-J (2016) A novel approach for tuberculosis screening based on deep convolutional neural networks. In: Medical imaging 2016: computer-aided diagnosis, pp 97852W","DOI":"10.1117\/12.2216198"},{"key":"15212_CR17","doi-asserted-by":"publisher","first-page":"574","DOI":"10.1148\/radiol.2017162326","volume":"284","author":"P Lakhani","year":"2017","unstructured":"Lakhani P, Sundaram B (2017) Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284:574\u2013582","journal-title":"Radiology"},{"key":"15212_CR18","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y LeCun","year":"2015","unstructured":"LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436\u2013444. https:\/\/doi.org\/10.1038\/nature14539","journal-title":"Nature"},{"key":"15212_CR19","doi-asserted-by":"publisher","first-page":"135","DOI":"10.1016\/j.compbiomed.2017.08.001","volume":"89","author":"UK Lopes","year":"2017","unstructured":"Lopes UK, Valiati JF (2017) Pre-trained convolutional neural networks as feature extractors for tuberculosis detection. Comput Biol Med 89:135\u2013143","journal-title":"Comput Biol Med"},{"key":"15212_CR20","doi-asserted-by":"publisher","first-page":"217897","DOI":"10.1109\/ACCESS.2020.3041867","volume":"8","author":"K Munadi","year":"2020","unstructured":"Munadi K, Muchtar K, Maulina N, Pradhan B (2020) Image enhancement for tuberculosis detection using deep learning. IEEE Access 8:217897\u2013217907","journal-title":"IEEE Access"},{"key":"15212_CR21","doi-asserted-by":"publisher","first-page":"830515","DOI":"10.3389\/fmed.2022.830515","volume":"9","author":"M Oloko-Oba","year":"2022","unstructured":"Oloko-Oba M, Viriri S (2022) A systematic review of deep learning techniques for tuberculosis detection from chest radiograph. Front Med 9:830515","journal-title":"Front Med"},{"key":"15212_CR22","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-019-42557-4","volume":"9","author":"F Pasa","year":"2019","unstructured":"Pasa F, Golkov V, Pfeiffer F et al (2019) Efficient deep network architectures for fast chest X-ray tuberculosis screening and visualization. Sci Rep 9:1\u20139","journal-title":"Sci Rep"},{"key":"15212_CR23","doi-asserted-by":"publisher","first-page":"191586","DOI":"10.1109\/ACCESS.2020.3031384","volume":"8","author":"T Rahman","year":"2020","unstructured":"Rahman T, Khandakar A, Kadir MA et al (2020) Reliable tuberculosis detection using chest X-ray with deep learning, segmentation and visualization. IEEE Access 8:191586\u2013191601","journal-title":"IEEE Access"},{"key":"15212_CR24","doi-asserted-by":"publisher","first-page":"148","DOI":"10.1109\/JPROC.2015.2494218","volume":"104","author":"B Shahriari","year":"2015","unstructured":"Shahriari B, Swersky K, Wang Z et al (2015) Taking the human out of the loop: a review of bayesian optimization. Proc IEEE 104:148\u2013175","journal-title":"Proc IEEE"},{"key":"15212_CR25","first-page":"466","volume":"60","author":"C Silverman","year":"1949","unstructured":"Silverman C (1949) An appraisal of the contribution of mass radiography in the discovery of pulmonary tuberculosis. Am Rev Tuberc 60:466\u2013482","journal-title":"Am Rev Tuberc"},{"key":"15212_CR26","unstructured":"Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv Prepr arXiv14091556"},{"key":"15212_CR27","unstructured":"Snoek J, Larochelle H, Adams RP (2012) Practical bayesian optimization of machine learning algorithms. arXiv Prepr arXiv12062944"},{"key":"15212_CR28","doi-asserted-by":"publisher","first-page":"15541","DOI":"10.1007\/s00521-021-06177-2","volume":"33","author":"E Tasci","year":"2021","unstructured":"Tasci E, Uluturk C, Ugur A (2021) A voting-based ensemble deep learning method focusing on image augmentation and preprocessing variations for tuberculosis detection. Neural Comput Appl 33:15541\u201315555","journal-title":"Neural Comput Appl"},{"key":"15212_CR29","unstructured":"Tan M, Le QV (2019) EfficientNet: rethinking model scaling for convolutional neural networks. 36th Int Conf Mach Learn ICML 2019 2019\u2013June, pp 10691\u201310700"},{"key":"15212_CR30","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10916-018-0991-9","volume":"42","author":"S Vajda","year":"2018","unstructured":"Vajda S, Karargyris A, Jaeger S et al (2018) Feature selection for automatic tuberculosis screening in frontal chest radiographs. J Med Syst 42:1\u201311","journal-title":"J Med Syst"},{"key":"15212_CR31","first-page":"1","volume":"17","author":"Y Wang","year":"2021","unstructured":"Wang Y (2021) Survey on deep multi-modal data analytics: collaboration, rivalry, and fusion. ACM Trans Multimed Comput Commun Appl 17:1\u201325","journal-title":"ACM Trans Multimed Comput Commun Appl"},{"key":"15212_CR32","doi-asserted-by":"publisher","first-page":"1791","DOI":"10.1109\/TCYB.2018.2813971","volume":"49","author":"L Wu","year":"2018","unstructured":"Wu L, Wang Y, Li X, Gao J (2018) Deep attention-based spatially recursive networks for fine-grained visual recognition. IEEE Trans Cybern 49:1791\u20131802","journal-title":"IEEE Trans Cybern"},{"key":"15212_CR33","first-page":"2081","volume":"30","author":"L Wu","year":"2019","unstructured":"Wu L, Hong R, Wang Y, Wang M (2019) Cross-entropy adversarial view adaptation for person re-identification. IEEE Trans Circuits Syst Video Technol 30:2081\u20132092","journal-title":"IEEE Trans Circuits Syst Video Technol"},{"key":"15212_CR34","first-page":"26","volume":"17","author":"J Wu","year":"2019","unstructured":"Wu J, Chen X-Y, Zhang H et al (2019) Hyperparameter optimization for machine learning models based on bayesian optimization. J Electron Sci Technol 17:26\u201340","journal-title":"J Electron Sci Technol"},{"key":"15212_CR35","doi-asserted-by":"crossref","unstructured":"Wong A, Lee JRH, Rahmat-Khah H et al (2021) TB-Net: a tailored, self-attention deep convolutional neural network design for detection of tuberculosis cases from chest X-ray images. arXiv Prepr arXiv210403165","DOI":"10.21203\/rs.3.rs-600363\/v1"},{"key":"15212_CR36","doi-asserted-by":"publisher","first-page":"10","DOI":"10.1016\/j.media.2019.02.010","volume":"54","author":"J Zhang","year":"2019","unstructured":"Zhang J, Xie Y, Wu Q, Xia Y (2019) Medical image classification using synergic deep learning. Med Image Anal 54:10\u201319","journal-title":"Med Image Anal"}],"container-title":["Multimedia Tools and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-15212-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11042-023-15212-4\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-15212-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,3]],"date-time":"2023-10-03T09:33:38Z","timestamp":1696325618000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11042-023-15212-4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4,5]]},"references-count":36,"journal-issue":{"issue":"24","published-print":{"date-parts":[[2023,10]]}},"alternative-id":["15212"],"URL":"https:\/\/doi.org\/10.1007\/s11042-023-15212-4","relation":{},"ISSN":["1380-7501","1573-7721"],"issn-type":[{"type":"print","value":"1380-7501"},{"type":"electronic","value":"1573-7721"}],"subject":[],"published":{"date-parts":[[2023,4,5]]},"assertion":[{"value":"1 September 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"10 March 2023","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"30 March 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"5 April 2023","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The author declares that he has no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}