{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,31]],"date-time":"2024-08-31T18:28:11Z","timestamp":1725128891473},"reference-count":64,"publisher":"Springer Science and Business Media LLC","issue":"21","license":[{"start":{"date-parts":[[2023,3,6]],"date-time":"2023-03-06T00:00:00Z","timestamp":1678060800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,3,6]],"date-time":"2023-03-06T00:00:00Z","timestamp":1678060800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimed Tools Appl"],"published-print":{"date-parts":[[2023,9]]},"DOI":"10.1007\/s11042-023-14943-8","type":"journal-article","created":{"date-parts":[[2023,3,6]],"date-time":"2023-03-06T08:03:04Z","timestamp":1678089784000},"page":"33379-33400","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Classification of computerized tomography images to diagnose non-small cell lung cancer using a hybrid model"],"prefix":"10.1007","volume":"82","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0000-8411","authenticated-orcid":false,"given":"U\u011fur","family":"Demiro\u011flu","sequence":"first","affiliation":[]},{"given":"Bilal","family":"\u015eenol","sequence":"additional","affiliation":[]},{"given":"Muhammed","family":"Yildirim","sequence":"additional","affiliation":[]},{"given":"Ye\u015fim","family":"Ero\u011flu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,3,6]]},"reference":[{"key":"14943_CR1","doi-asserted-by":"publisher","unstructured":"Bentoumi M, Daoud M, Benaouali M, Taleb Ahmed A (2022) Improvement of emotion recognition from facial images using deep learning and early stopping cross validation. Multimed Tools Appl:1\u201331. https:\/\/doi.org\/10.1007\/s11042-022-12058-0","DOI":"10.1007\/s11042-022-12058-0"},{"key":"14943_CR2","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s00330-019-06630-w","volume":"30","author":"P Blanc-Durand","year":"2020","unstructured":"Blanc-Durand P, Campedel L, Mule S, Jegou S, Luciani A, Pigneur F, Itti E (2020) Prognostic value of anthropometric measures extracted from whole-body CT using deep learning in patients with non-small-cell lung cancer. Eur Radiol 30:1\u201310. https:\/\/doi.org\/10.1007\/s00330-019-06630-w","journal-title":"Eur Radiol"},{"issue":"6","key":"14943_CR3","doi-asserted-by":"publisher","first-page":"394","DOI":"10.3322\/caac.21660","volume":"68","author":"F Bray","year":"2018","unstructured":"Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394\u2013424. https:\/\/doi.org\/10.3322\/caac.21660","journal-title":"CA Cancer J Clin"},{"issue":"3","key":"14943_CR4","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/1961189.1961199","volume":"2","author":"C-C Chang","year":"2011","unstructured":"Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):1\u201327. https:\/\/doi.org\/10.1145\/1961189.1961199","journal-title":"ACM Trans Intell Syst Technol"},{"issue":"1","key":"14943_CR5","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-021-84630-x","volume":"11","author":"TL Chaunzwa","year":"2021","unstructured":"Chaunzwa TL, Hosny A, Xu Y, Shafer A, Diao N, Lanuti M, Christiani DC, Mak RH, Aerts HJWL (2021) Deep learning classification of lung cancer histology using CT images. Sci Rep 11(1):1\u201312. https:\/\/doi.org\/10.1038\/s41598-021-84630-x","journal-title":"Sci Rep"},{"key":"14943_CR6","doi-asserted-by":"publisher","first-page":"997","DOI":"10.1016\/j.bbe.2021.05.010","volume":"41","author":"KH Cheong","year":"2021","unstructured":"Cheong KH, Tang KJW, Zhao X, Koh JEW, Faust O, Gururajan R, Ciaccio EJ, Rajinikanth V, Acharya UR (2021) An automated skin melanoma detection system with melanoma-index based on entropy features. Biocybern Biomed Eng 41:997\u20131012. https:\/\/doi.org\/10.1016\/j.bbe.2021.05.010","journal-title":"Biocybern Biomed Eng"},{"key":"14943_CR7","doi-asserted-by":"publisher","first-page":"109684","DOI":"10.1016\/j.mehy.2020.109684","volume":"139","author":"A \u00c7inar","year":"2020","unstructured":"\u00c7inar A, Yildirim M (2020) Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture. Med Hypotheses 139:109684. https:\/\/doi.org\/10.1016\/j.mehy.2020.109684","journal-title":"Med Hypotheses"},{"issue":"1","key":"14943_CR8","doi-asserted-by":"publisher","first-page":"165","DOI":"10.18280\/ts.380117","volume":"38","author":"A \u00c7\u0131nar","year":"2021","unstructured":"\u00c7\u0131nar A, Y\u0131ld\u0131r\u0131m M, Ero\u011flu Y (2021) Classification of pneumonia cell images using improved ResNet50 model. Trait Signal 38(1):165\u2013173. https:\/\/doi.org\/10.18280\/ts.380117","journal-title":"Trait Signal"},{"key":"14943_CR9","unstructured":"Clark SB, Alsubait S (2020) Non small cell lung cancer. StatPearls [Internet]"},{"issue":"1","key":"14943_CR10","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1109\/TIT.1967.1053964","volume":"13","author":"T Cover","year":"1967","unstructured":"Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21\u201327. https:\/\/doi.org\/10.1109\/TIT.1967.1053964","journal-title":"IEEE Trans Inf Theory"},{"issue":"6","key":"14943_CR11","doi-asserted-by":"publisher","first-page":"2670","DOI":"10.1109\/JBHI.2022.3156984","volume":"26","author":"E D\u2019Arnese","year":"2022","unstructured":"D\u2019Arnese E et al (2022) On the automation of radiomics-based identification and characterization of nsclc. IEEE J Biomed Health Inform 26(6):2670\u20132679. https:\/\/doi.org\/10.1109\/JBHI.2022.3156984","journal-title":"IEEE J Biomed Health Inform"},{"issue":"43","key":"14943_CR12","doi-asserted-by":"publisher","first-page":"32897","DOI":"10.1007\/s11042-020-09509-x","volume":"79","author":"C Dewi","year":"2020","unstructured":"Dewi C, Chen R-C, Yu H (2020) Weight analysis for various prohibitory sign detection and recognition using deep learning. Multimed Tools Appl 79(43):32897\u201332915. https:\/\/doi.org\/10.1007\/s11042-020-09509-x","journal-title":"Multimed Tools Appl"},{"key":"14943_CR13","doi-asserted-by":"publisher","unstructured":"Duma N, Santana-Davila R, Molina JR (2019) Non\u2013small cell lung cancer: epidemiology, screening, diagnosis, and treatment. In: Mayo Clinic proceedings. Elsevier. https:\/\/doi.org\/10.1016\/j.mayocp.2019.01.013","DOI":"10.1016\/j.mayocp.2019.01.013"},{"key":"14943_CR14","doi-asserted-by":"publisher","first-page":"104407","DOI":"10.1016\/j.compbiomed.2021.104407","volume":"133","author":"Y Ero\u011flu","year":"2021","unstructured":"Ero\u011flu Y, Yildirim M, \u00c7inar A (2021) Convolutional neural networks based classification of breast ultrasonography images by hybrid method with respect to benign, malignant, and normal using mRMR. Comput Biol Med 133:104407. https:\/\/doi.org\/10.1016\/j.compbiomed.2021.104407","journal-title":"Comput Biol Med"},{"key":"14943_CR15","first-page":"451","volume":"18","author":"A Globerson","year":"2005","unstructured":"Globerson A, Roweis S (2005) Metric learning by collapsing classes. Adv Neural Inf Proces Syst 18:451\u2013458","journal-title":"Adv Neural Inf Proces Syst"},{"key":"14943_CR16","doi-asserted-by":"publisher","first-page":"103624","DOI":"10.1016\/j.bspc.2022.103624","volume":"75","author":"N Goel","year":"2022","unstructured":"Goel N, Kaur S, Gunjan D, Mahapatra SJ (2022) Investigating the significance of color space for abnormality detection in wireless capsule endoscopy images. Biomed Signal Process Control 75:103624. https:\/\/doi.org\/10.1016\/j.bspc.2022.103624","journal-title":"Biomed Signal Process Control"},{"issue":"3","key":"14943_CR17","doi-asserted-by":"publisher","first-page":"1231","DOI":"10.1007\/s00500-021-06546-y","volume":"26","author":"N Goel","year":"2022","unstructured":"Goel N, Kaur S, Gunjan D, Mahapatra SJ (2022) Dilated CNN for abnormality detection in wireless capsule endoscopy images. Soft Comput 26(3):1231\u20131247. https:\/\/doi.org\/10.1007\/s00500-021-06546-y","journal-title":"Soft Comput"},{"key":"14943_CR18","first-page":"513","volume":"17","author":"J Goldberger","year":"2004","unstructured":"Goldberger J et al (2004) Neighbourhood components analysis. Adv Neural Inf Proces Syst 17:513\u2013520","journal-title":"Adv Neural Inf Proces Syst"},{"key":"14943_CR19","doi-asserted-by":"publisher","first-page":"102733","DOI":"10.1016\/j.bspc.2021.102733","volume":"68","author":"A Gudigar","year":"2021","unstructured":"Gudigar A, U R, Samanth J, Gangavarapu MR, Kudva A, Paramasivam G, Nayak K, Tan RS, Molinari F, Ciaccio EJ, Rajendra Acharya U (2021) Automated detection of chronic kidney disease using image fusion and graph embedding techniques with ultrasound images. Biomed Signal Process Control 68:102733. https:\/\/doi.org\/10.1016\/j.bspc.2021.102733","journal-title":"Biomed Signal Process Control"},{"issue":"13","key":"14943_CR20","doi-asserted-by":"publisher","first-page":"14581","DOI":"10.1007\/s11042-016-3802-7","volume":"76","author":"G Haifeng","year":"2017","unstructured":"Haifeng G, Shoubao S, Zhoubao S (2017) Image tag recommendation based on friendships. Multimed Tools Appl 76(13):14581\u201314597. https:\/\/doi.org\/10.1007\/s11042-016-3802-7","journal-title":"Multimed Tools Appl"},{"issue":"2","key":"14943_CR21","doi-asserted-by":"publisher","first-page":"350","DOI":"10.1007\/s00259-020-04771-5","volume":"48","author":"Y Han","year":"2021","unstructured":"Han Y, Ma Y, Wu Z, Zhang F, Zheng D, Liu X, Tao L, Liang Z, Yang Z, Li X, Huang J, Guo X (2021) Histologic subtype classification of non-small cell lung cancer using PET\/CT images. Eur J Nucl Med Mol Imaging 48(2):350\u2013360. https:\/\/doi.org\/10.1007\/s00259-020-04771-5","journal-title":"Eur J Nucl Med Mol Imaging"},{"key":"14943_CR22","doi-asserted-by":"crossref","unstructured":"He K et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition","DOI":"10.1109\/CVPR.2016.90"},{"issue":"2","key":"14943_CR23","doi-asserted-by":"publisher","first-page":"135","DOI":"10.1007\/s00117-010-2112-8","volume":"51","author":"C Hintze","year":"2011","unstructured":"Hintze C, Dinkel J, Biederer J, Heu\u00dfel CP, Puderbach M (2011) Staging des Lungenkarzinoms. Radiologe 51(2):135\u2013144. https:\/\/doi.org\/10.1007\/s00117-010-2112-8","journal-title":"Radiologe"},{"issue":"8","key":"14943_CR24","doi-asserted-by":"publisher","first-page":"107","DOI":"10.3390\/cancers9080107","volume":"9","author":"P Hofman","year":"2017","unstructured":"Hofman P (2017) ALK in non-small cell lung cancer (NSCLC) pathobiology, epidemiology, detection from tumor tissue and algorithm diagnosis in a daily practice. Cancers 9(8):107. https:\/\/doi.org\/10.3390\/cancers9080107","journal-title":"Cancers"},{"key":"14943_CR25","doi-asserted-by":"publisher","unstructured":"Howard AG et al (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861. https:\/\/doi.org\/10.48550\/arXiv.1704.04861","DOI":"10.48550\/arXiv.1704.04861"},{"key":"14943_CR26","unstructured":"https:\/\/www.kaggle.com\/mohamedhanyyy\/chest-ctscan-images. Last accessed date: 05.06.2021"},{"key":"14943_CR27","doi-asserted-by":"crossref","unstructured":"Huang G et al (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition","DOI":"10.1109\/CVPR.2017.243"},{"key":"14943_CR28","doi-asserted-by":"publisher","first-page":"1504","DOI":"10.3389\/fphar.2022.898529","volume":"13","author":"W Huang","year":"2022","unstructured":"Huang W, Wang J, Wang H, Zhang Y, Zhao F, Li K, Su L, Kang F, Cao X (2022) PET\/CT based EGFR mutation status classification of NSCLC using deep learning features and radiomics features. Front Pharmacol 13:1504. https:\/\/doi.org\/10.3389\/fphar.2022.898529","journal-title":"Front Pharmacol"},{"key":"14943_CR29","doi-asserted-by":"publisher","unstructured":"Imyanitov EN, Iyevleva AG, Levchenko EN (2020) Molecular testing and targeted therapy for non-small cell lung cancer: current status and perspectives. Crit Rev Oncol Hematol:103194. https:\/\/doi.org\/10.1016\/j.critrevonc.2020.103194","DOI":"10.1016\/j.critrevonc.2020.103194"},{"issue":"5","key":"14943_CR30","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s42979-021-00784-5","volume":"2","author":"MK Kar","year":"2021","unstructured":"Kar MK, Nath MK, Neog DR (2021) A review on progress in semantic image segmentation and its application to medical images. SN Comput Sci 2(5):1\u201330. https:\/\/doi.org\/10.1007\/s42979-021-00784-5","journal-title":"SN Comput Sci"},{"key":"14943_CR31","doi-asserted-by":"publisher","DOI":"10.4135\/9781412983938","volume-title":"Discriminant analysis","author":"WR Klecka","year":"1980","unstructured":"Klecka WR, Iversen GR, Klecka WR (1980) Discriminant analysis, vol 19. Sage"},{"key":"14943_CR32","doi-asserted-by":"publisher","first-page":"106010","DOI":"10.1016\/j.cmpb.2021.106010","volume":"203","author":"JEW Koh","year":"2021","unstructured":"Koh JEW, de Michele S, Sudarshan VK, Jahmunah V, Ciaccio EJ, Ooi CP, Gururajan R, Gururajan R, Oh SL, Lewis SK, Green PH, Bhagat G, Acharya UR (2021) Automated interpretation of biopsy images for the detection of celiac disease using a machine learning approach. Comput Methods Prog Biomed 203:106010. https:\/\/doi.org\/10.1016\/j.cmpb.2021.106010","journal-title":"Comput Methods Prog Biomed"},{"key":"14943_CR33","unstructured":"Kohavi R (1996) Scaling up the accuracy of naive-bayes classifiers: a decision-tree hybrid. In: Kdd"},{"key":"14943_CR34","first-page":"1097","volume":"25","author":"A Krizhevsky","year":"2012","unstructured":"Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Proces Syst 25:1097\u20131105","journal-title":"Adv Neural Inf Proces Syst"},{"issue":"1","key":"14943_CR35","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-020-61588-w","volume":"10","author":"Y-H Lai","year":"2020","unstructured":"Lai Y-H, Chen WN, Hsu TC, Lin C, Tsao Y, Wu S (2020) Overall survival prediction of non-small cell lung cancer by integrating microarray and clinical data with deep learning. Sci Rep 10(1):1\u201311. https:\/\/doi.org\/10.1038\/s41598-020-61588-w","journal-title":"Sci Rep"},{"issue":"7","key":"14943_CR36","doi-asserted-by":"publisher","first-page":"10313","DOI":"10.1007\/s11042-022-12200-y","volume":"81","author":"MG Lanjewar","year":"2022","unstructured":"Lanjewar MG, Gurav O (2022) Convolutional neural networks based classifications of soil images. Multimed Tools Appl 81(7):10313\u201310336. https:\/\/doi.org\/10.1007\/s11042-022-12200-y","journal-title":"Multimed Tools Appl"},{"key":"14943_CR37","doi-asserted-by":"publisher","unstructured":"Le T, Gerber DE (2017) ALK alterations and inhibition in lung cancer. In: Seminars in cancer biology. Elsevier. https:\/\/doi.org\/10.1016\/j.semcancer.2016.08.007","DOI":"10.1016\/j.semcancer.2016.08.007"},{"issue":"1","key":"14943_CR38","doi-asserted-by":"publisher","first-page":"1","DOI":"10.15701\/kcgs.2022.28.1.1","volume":"28","author":"S Ma","year":"2022","unstructured":"Ma S, Ahn G, Hong H (2022) Chest CT image patch-based CNN classification and visualization for predicting recurrence of non-small cell lung Cancer patients. J Korea Comput Graph Soc 28(1):1\u20139","journal-title":"J Korea Comput Graph Soc"},{"key":"14943_CR39","doi-asserted-by":"publisher","first-page":"118","DOI":"10.1016\/j.compbiomed.2019.02.009","volume":"107","author":"NS Malan","year":"2019","unstructured":"Malan NS, Sharma S (2019) Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals. Comput Biol Med 107:118\u2013126. https:\/\/doi.org\/10.1016\/j.compbiomed.2019.02.009","journal-title":"Comput Biol Med"},{"issue":"1","key":"14943_CR40","doi-asserted-by":"publisher","first-page":"215","DOI":"10.1007\/s11517-020-02302-w","volume":"59","author":"P Marentakis","year":"2021","unstructured":"Marentakis P, Karaiskos P, Kouloulias V, Kelekis N, Argentos S, Oikonomopoulos N, Loukas C (2021) Lung cancer histology classification from CT images based on radiomics and deep learning models. Med Biol Eng Comput 59(1):215\u2013226. https:\/\/doi.org\/10.1007\/s11517-020-02302-w","journal-title":"Med Biol Eng Comput"},{"issue":"3","key":"14943_CR41","doi-asserted-by":"publisher","first-page":"135","DOI":"10.1038\/s41571-020-00432-6","volume":"18","author":"M Oudkerk","year":"2021","unstructured":"Oudkerk M, Liu SY, Heuvelmans MA, Walter JE, Field JK (2021) Lung cancer LDCT screening and mortality reduction\u2014evidence, pitfalls and future perspectives. Nat Rev Clin Oncol 18(3):135\u2013151. https:\/\/doi.org\/10.1038\/s41571-020-00432-6","journal-title":"Nat Rev Clin Oncol"},{"issue":"2","key":"14943_CR42","doi-asserted-by":"publisher","first-page":"339","DOI":"10.1109\/21.52545","volume":"20","author":"JR Quinlan","year":"1990","unstructured":"Quinlan JR (1990) Decision trees and decision-making. IEEE Trans Syst Man Cybern 20(2):339\u2013346. https:\/\/doi.org\/10.1109\/21.52545","journal-title":"IEEE Trans Syst Man Cybern"},{"key":"14943_CR43","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1111\/resp.13963","volume":"25","author":"NM Rankin","year":"2020","unstructured":"Rankin NM, McWilliams A, Marshall HM (2020) Lung cancer screening implementation: complexities and priorities. Respirology 25:5\u201323. https:\/\/doi.org\/10.1111\/resp.13963","journal-title":"Respirology"},{"issue":"5","key":"14943_CR44","doi-asserted-by":"publisher","first-page":"315","DOI":"10.1097\/RTI.0b013e318254a198","volume":"27","author":"JG Ravenel","year":"2012","unstructured":"Ravenel JG (2012) Evidence-based imaging in lung cancer: a systematic review. J Thorac Imaging 27(5):315\u2013324. https:\/\/doi.org\/10.1097\/RTI.0b013e318254a198","journal-title":"J Thorac Imaging"},{"key":"14943_CR45","doi-asserted-by":"crossref","unstructured":"Redmon J, Farhadi A (2017) YOLO9000: better, faster, stronger. In: Proceedings of the IEEE conference on computer vision and pattern recognition","DOI":"10.1109\/CVPR.2017.690"},{"key":"14943_CR46","doi-asserted-by":"publisher","unstructured":"Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767. https:\/\/doi.org\/10.48550\/arXiv.1804.02767","DOI":"10.48550\/arXiv.1804.02767"},{"issue":"1","key":"14943_CR47","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10462-009-9124-7","volume":"33","author":"L Rokach","year":"2010","unstructured":"Rokach L (2010) Ensemble-based classifiers. Artif Intell Rev 33(1):1\u201339. https:\/\/doi.org\/10.1007\/s10462-009-9124-7","journal-title":"Artif Intell Rev"},{"issue":"3","key":"14943_CR48","doi-asserted-by":"publisher","first-page":"4073","DOI":"10.1007\/s11042-020-09820-7","volume":"80","author":"DD Shankar","year":"2021","unstructured":"Shankar DD, Azhakath AS (2021) Minor blind feature based Steganalysis for calibrated JPEG images with cross validation and classification using SVM and SVM-PSO. Multimed Tools Appl 80(3):4073\u20134092. https:\/\/doi.org\/10.1007\/s11042-020-09820-7","journal-title":"Multimed Tools Appl"},{"issue":"3","key":"14943_CR49","doi-asserted-by":"publisher","first-page":"145","DOI":"10.3322\/caac.21601","volume":"70","author":"RL Siegel","year":"2020","unstructured":"Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA, Jemal A (2020) Colorectal cancer statistics, 2020. CA Cancer J Clin 70(3):145\u2013164. https:\/\/doi.org\/10.3322\/caac.21601","journal-title":"CA Cancer J Clin"},{"issue":"3","key":"14943_CR50","doi-asserted-by":"publisher","first-page":"659","DOI":"10.21037\/tlcr-19-589","volume":"9","author":"MJ Song","year":"2020","unstructured":"Song MJ et al (2020) Increased number of subclones in lung squamous cell carcinoma elicits overexpression of immune related genes. Transl Lung Cancer Res 9(3):659. https:\/\/doi.org\/10.21037\/tlcr-19-589","journal-title":"Transl Lung Cancer Res"},{"issue":"2","key":"14943_CR51","doi-asserted-by":"publisher","first-page":"361","DOI":"10.1007\/s00259-020-04986-6","volume":"48","author":"Z Song","year":"2021","unstructured":"Song Z, Liu T, Shi L, Yu Z, Shen Q, Xu M, Huang Z, Cai Z, Wang W, Xu C, Sun J, Chen M (2021) The deep learning model combining CT image and clinicopathological information for predicting ALK fusion status and response to ALK-TKI therapy in non-small cell lung cancer patients. Eur J Nucl Med Mol Imaging 48(2):361\u2013371. https:\/\/doi.org\/10.1007\/s00259-020-04986-6","journal-title":"Eur J Nucl Med Mol Imaging"},{"key":"14943_CR52","doi-asserted-by":"crossref","unstructured":"Szegedy C et al (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"14943_CR53","unstructured":"Tan M, Le Q (2019) Efficientnet: rethinking model scaling for convolutional neural networks. In: International conference on machine learning. PMLR"},{"issue":"5","key":"14943_CR54","doi-asserted-by":"publisher","first-page":"2098","DOI":"10.7150\/thno.48027","volume":"11","author":"P Tian","year":"2021","unstructured":"Tian P, He B, Mu W, Liu K, Liu L, Zeng H, Liu Y, Jiang L, Zhou P, Huang Z, Dong D, Li W (2021) Assessing PD-L1 expression in non-small cell lung cancer and predicting responses to immune checkpoint inhibitors using deep learning on computed tomography images. Theranostics 11(5):2098\u20132107. https:\/\/doi.org\/10.7150\/thno.48027","journal-title":"Theranostics"},{"issue":"2s","key":"14943_CR55","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3341095","volume":"16","author":"S-H Wang","year":"2020","unstructured":"Wang S-H, Zhang Y-D (2020) DenseNet-201-based deep neural network with composite learning factor and precomputation for multiple sclerosis classification. ACM Trans Multimed Comput Commun Appl 16(2s):1\u201319. https:\/\/doi.org\/10.1145\/3341095","journal-title":"ACM Trans Multimed Comput Commun Appl"},{"issue":"1","key":"14943_CR56","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s13550-017-0260-9","volume":"7","author":"H Wang","year":"2017","unstructured":"Wang H, Zhou Z, Li Y, Chen Z, Lu P, Wang W, Liu W, Yu L (2017) Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18 F-FDG PET\/CT images. EJNMMI Res 7(1):1\u201311. https:\/\/doi.org\/10.1186\/s13550-017-0260-9","journal-title":"EJNMMI Res"},{"issue":"22","key":"14943_CR57","doi-asserted-by":"publisher","DOI":"10.4108\/eai.11-8-2021.170669","volume":"7","author":"R Wang","year":"2021","unstructured":"Wang R et al (2021) Lip language identification via wavelet entropy and K-nearest neighbor algorithm. EAI Endorsed Trans e Learn 7(22):e4. https:\/\/doi.org\/10.4108\/eai.11-8-2021.170669","journal-title":"EAI Endorsed Trans e Learn"},{"issue":"23","key":"14943_CR58","doi-asserted-by":"publisher","first-page":"10697","DOI":"10.1007\/s11042-014-2199-4","volume":"74","author":"J Wu","year":"2015","unstructured":"Wu J, Zhu J, Liu Q, Zhang Y (2015) Human mouth-state recognition based on learned discriminative dictionary and sparse representation combined with homotopy. Multimed Tools Appl 74(23):10697\u201310711. https:\/\/doi.org\/10.1007\/s11042-014-2199-4","journal-title":"Multimed Tools Appl"},{"issue":"4","key":"14943_CR59","doi-asserted-by":"publisher","first-page":"2693","DOI":"10.1007\/s00330-021-08366-y","volume":"32","author":"X Yang","year":"2022","unstructured":"Yang X, Liu M, Ren Y, Chen H, Yu P, Wang S, Zhang R, Dai H, Wang C (2022) Using contrast-enhanced CT and non-contrast-enhanced CT to predict EGFR mutation status in NSCLC patients\u2014a radiomics nomogram analysis. Eur Radiol 32(4):2693\u20132703","journal-title":"Eur Radiol"},{"issue":"5","key":"14943_CR60","doi-asserted-by":"publisher","first-page":"335","DOI":"10.18280\/ria.330502","volume":"33","author":"M Yildirim","year":"2019","unstructured":"Yildirim M, Cinar AC (2019) Classification of white blood cells by deep learning methods for diagnosing disease. Rev Intell Artif 33(5):335\u2013340. https:\/\/doi.org\/10.18280\/ria.330502","journal-title":"Rev Intell Artif"},{"key":"14943_CR61","doi-asserted-by":"publisher","unstructured":"Yildirim M, \u00c7inar A (2021) A new model for classification of human movements on videos using convolutional neural networks: MA-Net. Comput Methods Biomech Biomed Eng Imaging Vis:1\u20139. https:\/\/doi.org\/10.1080\/21681163.2021.1922315","DOI":"10.1080\/21681163.2021.1922315"},{"issue":"5","key":"14943_CR62","doi-asserted-by":"publisher","first-page":"776","DOI":"10.1016\/j.humpath.2015.02.001","volume":"46","author":"S Zachara-Szczakowski","year":"2015","unstructured":"Zachara-Szczakowski S, Verdun T, Churg A (2015) Accuracy of classifying poorly differentiated non\u2013small cell lung carcinoma biopsies with commonly used lung carcinoma markers. Hum Pathol 46(5):776\u2013782. https:\/\/doi.org\/10.1016\/j.humpath.2015.02.001","journal-title":"Hum Pathol"},{"issue":"1","key":"14943_CR63","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s12935-020-01429-y","volume":"20","author":"J Zhang","year":"2020","unstructured":"Zhang J, Zhang J, Yuan C, Luo Y, Li Y, Dai P, Sun W, Zhang N, Ren J, Zhang J, Gong Y, Xie C (2020) Establishment of the prognostic index of lung squamous cell carcinoma based on immunogenomic landscape analysis. Cancer Cell Int 20(1):1\u201316. https:\/\/doi.org\/10.1186\/s12935-020-01429-y","journal-title":"Cancer Cell Int"},{"key":"14943_CR64","doi-asserted-by":"publisher","unstructured":"Zhang X et al (2022) Prediction of therapy response in patients with NSCLC based on CT images. In: 2022 4th international conference on intelligent medicine and image processing. https:\/\/doi.org\/10.1145\/3524086.3524103","DOI":"10.1145\/3524086.3524103"}],"container-title":["Multimedia Tools and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-14943-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11042-023-14943-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-14943-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,31]],"date-time":"2023-08-31T09:37:57Z","timestamp":1693474677000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11042-023-14943-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3,6]]},"references-count":64,"journal-issue":{"issue":"21","published-print":{"date-parts":[[2023,9]]}},"alternative-id":["14943"],"URL":"https:\/\/doi.org\/10.1007\/s11042-023-14943-8","relation":{},"ISSN":["1380-7501","1573-7721"],"issn-type":[{"value":"1380-7501","type":"print"},{"value":"1573-7721","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,3,6]]},"assertion":[{"value":"3 March 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"12 July 2022","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 February 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"6 March 2023","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"There is no conflict of interest between the authors.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interests"}}]}}