{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:56:13Z","timestamp":1732042573223},"reference-count":74,"publisher":"Springer Science and Business Media LLC","issue":"21","license":[{"start":{"date-parts":[[2023,3,4]],"date-time":"2023-03-04T00:00:00Z","timestamp":1677888000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,3,4]],"date-time":"2023-03-04T00:00:00Z","timestamp":1677888000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100019397","name":"University Grants Commission - South Eastern Regional Office","doi-asserted-by":"publisher","award":["Research grant under UGC-NET Scheme","vide reference number 3693\/(NET-JULY 2018)"],"id":[{"id":"10.13039\/501100019397","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimed Tools Appl"],"published-print":{"date-parts":[[2023,9]]},"DOI":"10.1007\/s11042-023-14653-1","type":"journal-article","created":{"date-parts":[[2023,3,4]],"date-time":"2023-03-04T21:13:14Z","timestamp":1677964394000},"page":"32967-32990","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":24,"title":["Modified term frequency-inverse document frequency based deep hybrid framework for sentiment analysis"],"prefix":"10.1007","volume":"82","author":[{"given":"Ranit Kumar","family":"Dey","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9886-1735","authenticated-orcid":false,"given":"Asit Kumar","family":"Das","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,3,4]]},"reference":[{"key":"14653_CR1","unstructured":"Abdulelah Etsy reviews \u2014 kaggle. https:\/\/www.kaggle.com\/csabdulelah\/etsy-seller-reviews. Accessed 24 Nov 2021"},{"key":"14653_CR2","unstructured":"Agrawal D Tweetsentimentanalysis\/twitter.csv at master \u22c5 dakshitagrawal\/tweetsentimentanalysis \u22c5 github. https:\/\/github.com\/dakshitagrawal\/TweetSentimentAnalysis\/blob\/master\/Twitter.csv. Accessed 24 Nov 2021"},{"key":"14653_CR3","doi-asserted-by":"publisher","first-page":"341","DOI":"10.1016\/j.procs.2019.05.008","volume":"152","author":"R Ahuja","year":"2019","unstructured":"Ahuja R, Chug A, Kohli S, Gupta S, Ahuja P (2019) The impact of features extraction on the sentiment analysis. Procedia Comput Sci 152:341\u201348","journal-title":"Procedia Comput Sci"},{"key":"14653_CR4","doi-asserted-by":"crossref","unstructured":"Ansari H, Vijayvergia A, Kumar K (2018) Dcr-hmm: Depression detection based on content rating using hidden markov model. In: 2018 Conference on Information and Communication Technology (CICT), IEEE, pp 1\u20136","DOI":"10.1109\/INFOCOMTECH.2018.8722410"},{"issue":"6","key":"14653_CR5","first-page":"1","volume":"46","author":"O Baclic","year":"2020","unstructured":"Baclic O, Tunis M, Young K, Doan C, Swerdfeger H, Schonfeld J, Data P, Hub I (2020) Natural language processing (NLP) a subfield of artificial intelligence. CCDR 46(6):1\u201310","journal-title":"CCDR"},{"issue":"1","key":"14653_CR6","doi-asserted-by":"publisher","first-page":"125","DOI":"10.18280\/isi.240119","volume":"24","author":"JD Bodapati","year":"2019","unstructured":"Bodapati J D, Veeranjaneyulu N, Shareef SN (2019) Sentiment analysis from movie reviews using LSTMs. Ing\u00e9nierie des Syst\u00e8mes d Inf 24 (1):125\u2013129","journal-title":"Ing\u00e9nierie des Syst\u00e8mes d Inf"},{"issue":"5","key":"14653_CR7","doi-asserted-by":"publisher","first-page":"526","DOI":"10.1007\/s10791-008-9070-z","volume":"12","author":"E Boiy","year":"2009","unstructured":"Boiy E, Moens M F (2009) A machine learning approach to sentiment analysis in multilingual web texts. Inf Retr 12(5):526\u201358","journal-title":"Inf Retr"},{"key":"14653_CR8","unstructured":"Categorizing and tagging words. http:\/\/www.nltk.org\/book\/ch05.html. Accessed 24 Nov 2021"},{"issue":"6","key":"14653_CR9","doi-asserted-by":"publisher","first-page":"74","DOI":"10.1109\/MIS.2017.4531228","volume":"32","author":"E Cambria","year":"2017","unstructured":"Cambria E, Poria S, Gelbukh A, Thelwall M (2017) Sentiment analysis is a big suitcase. IEEE Intell Syst 32(6):74\u201380","journal-title":"IEEE Intell Syst"},{"key":"14653_CR10","unstructured":"Chen G (2016) A gentle tutorial of recurrent neural network with error backpropagation. arXiv:161002583"},{"issue":"2","key":"14653_CR11","doi-asserted-by":"publisher","first-page":"313","DOI":"10.1016\/j.joi.2011.01.003","volume":"5","author":"LS Chen","year":"2011","unstructured":"Chen L S, Liu C H, Chiu H J (2011) A neural network based approach for sentiment classification in the blogosphere. J Informetrics 5(2):313\u201322","journal-title":"J Informetrics"},{"key":"14653_CR12","unstructured":"Cohen\u2019s kappa - wikipedia. https:\/\/en.wikipedia.org\/wiki\/Cohen_kappa. Accessed 24 Nov 2021"},{"key":"14653_CR13","unstructured":"Collomb A, Costea C, Joyeux D, Hasan O, Brunie L (2014) A study and comparison of sentiment analysis methods for reputation evaluation. Rapport de recherche RR-LIRIS-2014-002"},{"key":"14653_CR14","unstructured":"Complete list of text abbreviations & acronyms \u2014 webopedia. https:\/\/www.webopedia.com\/reference\/text-message-abbreviations\/. Accessed 24 Nov 2021"},{"key":"14653_CR15","unstructured":"Das B, Chakraborty S (2018) An improved text sentiment classification model using TF-IDF and next word negation. arXiv:180606407"},{"key":"14653_CR16","doi-asserted-by":"publisher","first-page":"465","DOI":"10.1016\/j.neucom.2019.10.109","volume":"459","author":"P Das","year":"2021","unstructured":"Das P, Das A K, Nayak J, Pelusi D, Ding W (2021) Group incremental adaptive clustering based on neural network and rough set theory for crime report categorization. Neurocomputing 459:465\u201380","journal-title":"Neurocomputing"},{"issue":"7","key":"14653_CR17","doi-asserted-by":"publisher","first-page":"3506","DOI":"10.1016\/j.eswa.2013.10.056","volume":"41","author":"ZH Deng","year":"2014","unstructured":"Deng Z H, Luo K H, Yu H L (2014) A study of supervised term weighting scheme for sentiment analysis. Expert Syst Appl 41(7):3506\u201313","journal-title":"Expert Syst Appl"},{"key":"14653_CR18","unstructured":"DiMaggio P, Hargittai E, Neuman W R, Robinson JP (2001)"},{"key":"14653_CR19","unstructured":"Emoji \u22c5 pypi. https:\/\/pypi.org\/project\/emoji\/. Accessed 24 Nov 2021"},{"key":"14653_CR20","doi-asserted-by":"crossref","unstructured":"Enr\u00edquez F, Troyano JA, L\u00f3pez-Solaz T (2016) An approach to the use of word embeddings in an opinion classification task. Expert Syst Appl 66:1\u20136","DOI":"10.1016\/j.eswa.2016.09.005"},{"key":"14653_CR21","doi-asserted-by":"crossref","unstructured":"Ghag K, Shah K (2014) SentiTFIDF\u2013sentiment classification using relative term frequency inverse document frequency. Int J Adv Comput Sci Appl 5(2). Citeseer","DOI":"10.14569\/IJACSA.2014.050206"},{"key":"14653_CR22","unstructured":"Github - mmihaltz\/word2vec-googlenews-vectors: word2vec google news model. https:\/\/github.com\/mmihaltz\/word2vec-GoogleNews-vectors. Accessed 24 Nov 2021"},{"key":"14653_CR23","doi-asserted-by":"crossref","unstructured":"Graves A, Mohamed Ar, Hinton G (2013) Speech recognition with deep recurrent neural networks. In: 2013 IEEE international conference on acoustics, speech and signal processing, IEEE, pp 6645\u20136649","DOI":"10.1109\/ICASSP.2013.6638947"},{"issue":"8","key":"14653_CR24","doi-asserted-by":"publisher","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","volume":"9","author":"S Hochreiter","year":"1997","unstructured":"Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735\u201380","journal-title":"Neural Comput"},{"key":"14653_CR25","unstructured":"Internet slang dictionary & text slang translator. https:\/\/www.noslang.com\/. Accessed 24 Nov 2021"},{"key":"14653_CR26","unstructured":"Introduction to word embedding and word2vec \u2014 by dhruvil karani \u2014 towards data science. https:\/\/towardsdatascience.com\/introduction-to-word-embedding-and-word2vec-652d0c2060fa. Accessed 24 Nov 2021"},{"key":"14653_CR27","doi-asserted-by":"publisher","first-page":"135499","DOI":"10.1109\/ACCESS.2020.3011802","volume":"8","author":"A Ishaq","year":"2020","unstructured":"Ishaq A, Asghar S, Gillani SA (2020) Aspect-based sentiment analysis using a hybridized approach based on CNN and GA. IEEE Access 8:135499\u2013512","journal-title":"IEEE Access"},{"key":"14653_CR28","doi-asserted-by":"publisher","first-page":"23253","DOI":"10.1109\/ACCESS.2017.2776930","volume":"6","author":"Z Jianqiang","year":"2018","unstructured":"Jianqiang Z, Xiaolin G, Xuejun Z (2018) Deep convolution neural networks for twitter sentiment analysis. IEEE Access 6:23253\u201360","journal-title":"IEEE Access"},{"key":"14653_CR29","doi-asserted-by":"crossref","unstructured":"Kalchbrenner N, Grefenstette E, Blunsom P (2014) A convolutional neural network for modelling sentences. arXiv:14042188","DOI":"10.3115\/v1\/P14-1062"},{"issue":"6","key":"14653_CR30","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1145\/3065386","volume":"60","author":"A Krizhevsky","year":"2017","unstructured":"Krizhevsky A, Sutskever I, Hinton G E (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84\u201390. AcM New York, NY, USA","journal-title":"Commun ACM"},{"issue":"6","key":"14653_CR31","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1145\/3065386","volume":"60","author":"A Krizhevsky","year":"2017","unstructured":"Krizhevsky A, Sutskever I, Hinton G E (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84\u201390","journal-title":"Commun ACM"},{"issue":"7","key":"14653_CR32","doi-asserted-by":"publisher","first-page":"11079","DOI":"10.1007\/s11042-020-10157-4","volume":"80","author":"K Kumar","year":"2021","unstructured":"Kumar K (2021) Text query based summarized event searching interface system using deep learning over cloud. Multimed Tools Appl 80(7):11079\u201394","journal-title":"Multimed Tools Appl"},{"key":"14653_CR33","doi-asserted-by":"crossref","unstructured":"Kumar K, Kurhekar M (2017) Sentimentalizer: Docker container utility over cloud 2017 Ninth international conference on advances in pattern recognition. IEEE, ICAPR, pp 1\u20136","DOI":"10.1109\/ICAPR.2017.8593104"},{"issue":"2","key":"14653_CR34","doi-asserted-by":"publisher","first-page":"323","DOI":"10.1109\/TMM.2017.2741423","volume":"20","author":"K Kumar","year":"2017","unstructured":"Kumar K, Shrimankar D D (2017) F-des: Fast and deep event summarization. IEEE Trans Multimedia 20(2):323\u201334","journal-title":"IEEE Trans Multimedia"},{"issue":"20","key":"14653_CR35","doi-asserted-by":"publisher","first-page":"26635","DOI":"10.1007\/s11042-018-5882-z","volume":"77","author":"K Kumar","year":"2018","unstructured":"Kumar K, Shrimankar D D (2018) Deep event learning boost-up approach: Delta. Multimed Tools Appl 77(20):26635\u201355","journal-title":"Multimed Tools Appl"},{"key":"14653_CR36","doi-asserted-by":"crossref","unstructured":"Kumar K, Kumar A, Bahuguna A (2017) D-CAD: Deep and crowded anomaly detection. In: Proceedings of the 7th international conference on computer and communication technology, pp 100\u2013105","DOI":"10.1145\/3154979.3154998"},{"key":"14653_CR37","doi-asserted-by":"crossref","unstructured":"Kumar K, Bamrara R, Gupta P, Singh N (2020) M2P2: movie\u2019s trailer reviews based movie popularity prediction system. In: Soft computing: theories and applications, Springer, pp 671\u2013681","DOI":"10.1007\/978-981-15-0751-9_62"},{"key":"14653_CR38","doi-asserted-by":"crossref","unstructured":"Kumar S, Kumar K (2018) Irsc: integrated automated review mining system using virtual machines in cloud environment. In: 2018 Conference on Information and Communication Technology (CICT), IEEE, pp 1\u20136","DOI":"10.1109\/INFOCOMTECH.2018.8722387"},{"issue":"10","key":"14653_CR39","doi-asserted-by":"publisher","first-page":"3934","DOI":"10.1016\/j.eswa.2012.12.084","volume":"40","author":"MT Mart\u00edN-Valdivia","year":"2013","unstructured":"Mart\u00edN-Valdivia M T, Mart\u00edNez-C\u00e1Mara E, Perea-Ortega J M, Ure\u00f1A-L\u00f3Pez L A (2013) Sentiment polarity detection in spanish reviews combining supervised and unsupervised approaches. Expert Syst Appl 40(10):3934\u201342","journal-title":"Expert Syst Appl"},{"issue":"4","key":"14653_CR40","doi-asserted-by":"publisher","first-page":"1093","DOI":"10.1016\/j.asej.2014.04.011","volume":"5","author":"W Medhat","year":"2014","unstructured":"Medhat W, Hassan A, Korashy H (2014) Sentiment analysis algorithms and applications: a survey. Ain Shams Eng J 5(4):1093\u2013113","journal-title":"Ain Shams Eng J"},{"key":"14653_CR41","unstructured":"Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. arXiv:13013781"},{"key":"14653_CR42","doi-asserted-by":"publisher","first-page":"728","DOI":"10.1016\/j.procs.2021.01.061","volume":"179","author":"PF Muhammad","year":"2021","unstructured":"Muhammad P F, Kusumaningrum R, Wibowo A (2021) Sentiment analysis using word2vec and long short-term memory (LSTM) for indonesian hotel reviews. Procedia Computer Science 179:728\u201335","journal-title":"Procedia Computer Science"},{"key":"14653_CR43","unstructured":"Natural language toolkit \u2014 nltk 3.5 documentation. https:\/\/www.nltk.org\/. Accessed 24 Nov 2021"},{"key":"14653_CR44","doi-asserted-by":"crossref","unstructured":"Negi A, Kumar K, Chauhan P (2021) Deep neural network-based multi-class image classification for plant diseases. Agric Inform: Autom IoT Mach Learn 117\u2013129. Wiley Online Library","DOI":"10.1002\/9781119769231.ch6"},{"key":"14653_CR45","unstructured":"NLP - replace apostrophe\/short words in python - stack overflow. https:\/\/stackoverflow.com\/questions\/43018030\/replace-apostrophe-short-words-in-python. Accessed 24 Nov 2021"},{"key":"14653_CR46","unstructured":"nltk.tokenize.punkt \u2014 nltk 3.5 documentation. https:\/\/www.nltk.org\/_modules\/nltk\/tokenize\/punkt.html. Accessed 24 Nov 2021"},{"key":"14653_CR47","unstructured":"nltk.tokenize.treebank \u2014 nltk 3.5 documentation. http:\/\/www.nltk.org\/_modules\/nltk\/tokenize\/treebank.html#TreebankWordTokenizer. Accessed 24 Nov 2021"},{"issue":"2","key":"14653_CR48","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1162\/coli.2009.35.2.311","volume":"35","author":"B Pang","year":"2009","unstructured":"Pang B, Lee L (2009) Opinion mining and sentiment analysis. Comput Linguist 35(2):311\u20132","journal-title":"Comput Linguist"},{"issue":"2","key":"14653_CR49","doi-asserted-by":"publisher","first-page":"143","DOI":"10.1016\/j.joi.2009.01.003","volume":"3","author":"R Prabowo","year":"2009","unstructured":"Prabowo R, Thelwall M (2009) Sentiment analysis: a combined approach. J Informetrics 3(2):143\u201357","journal-title":"J Informetrics"},{"key":"14653_CR50","doi-asserted-by":"crossref","unstructured":"Qu S, Wang S, Zou Y (2008) Improvement of text feature selection method based on TFIDF. In: 2008 International Seminar on Future Information Technology and Management Engineering, IEEE, pp 79\u201381","DOI":"10.1109\/FITME.2008.25"},{"key":"14653_CR51","unstructured":"Rai R Wine reviews \u2014 kaggle. https:\/\/www.kaggle.com\/krrai77\/wine-reviews. Accessed 24 Nov 2021"},{"key":"14653_CR52","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1016\/j.eswa.2018.08.044","volume":"117","author":"SM Rezaeinia","year":"2019","unstructured":"Rezaeinia S M, Rahmani R, Ghodsi A, Veisi H (2019) Sentiment analysis based on improved pre-trained word embeddings. Expert Syst Appl 117:139\u201347","journal-title":"Expert Syst Appl"},{"key":"14653_CR53","doi-asserted-by":"crossref","unstructured":"Robertson S (2004) Understanding inverse document frequency: on theoretical arguments for IDF. J Doc. Emerald Group Publishing Limited","DOI":"10.1108\/00220410410560582"},{"key":"14653_CR54","doi-asserted-by":"crossref","unstructured":"Sharma S, Kumar K, Singh N (2017a) D-fes: Deep facial expression recognition system. In: 2017 Conference on Information and Communication Technology (CICT), IEEE, pp 1\u20136","DOI":"10.1109\/INFOCOMTECH.2017.8340635"},{"key":"14653_CR55","doi-asserted-by":"crossref","unstructured":"Sharma S, Kumar P, Kumar K (2017b) Lexer: Lexicon based emotion analyzer. In: International Conference on Pattern Recognition and Machine Intelligence, Springer, pp 373\u2013379","DOI":"10.1007\/978-3-319-69900-4_47"},{"key":"14653_CR56","unstructured":"Siddhartha M Amazon alexa reviews \u2014 kaggle. https:\/\/www.kaggle.com\/sid321axn\/amazon-alexa-reviews. Accessed 24 Nov 2021"},{"key":"14653_CR57","doi-asserted-by":"crossref","unstructured":"Singh H, Dhanak N, Ansari H, Kumar K (2017) HDML: Habit detection with machine learning. In: Proceedings of the 7th International Conference on Computer and Communication Technology, pp 29\u201333","DOI":"10.1145\/3154979.3154996"},{"key":"14653_CR58","unstructured":"Sinha A Sentiment analysis for financial news \u2014 kaggle. https:\/\/www.kaggle.com\/ankurzing\/sentiment-analysis-for-finanancial-news. Accessed 24 Nov 2021"},{"key":"14653_CR59","doi-asserted-by":"crossref","unstructured":"Solanki A, Bamrara R, Kumar K, Singh N (2020) Vedl: a novel video event searching technique using deep learning. In: Soft Computing: Theories and Applications, Springer, pp 905\u2013914","DOI":"10.1007\/978-981-15-0751-9_83"},{"issue":"1","key":"14653_CR60","first-page":"1929","volume":"15","author":"N Srivastava","year":"2014","unstructured":"Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929\u201358","journal-title":"J Mach Learn Res"},{"issue":"3","key":"14653_CR61","doi-asserted-by":"publisher","first-page":"517","DOI":"10.1109\/TASLP.2015.2400218","volume":"23","author":"M Sundermeyer","year":"2015","unstructured":"Sundermeyer M, Ney H, Schl\u00fcter R (2015) From feedforward to recurrent LSTM neural networks for language modeling. IEEE\/ACM Trans Audio Speech Lang Process 23(3):517\u201329","journal-title":"IEEE\/ACM Trans Audio Speech Lang Process"},{"key":"14653_CR62","unstructured":"Tokunaga T, Makoto I (1994) Text categorization based on weighted inverse document frequency. In: Special Interest Groups and Information Process Society of Japan SIG-IPSJ, Citeseer"},{"issue":"03","key":"14653_CR63","first-page":"151","volume":"3","author":"M Tripathi","year":"2021","unstructured":"Tripathi M (2021) Sentiment analysis of nepali covid19 tweets using nb SVM and LSTM. J Artif Intell 3(03):151\u201368","journal-title":"J Artif Intell"},{"key":"14653_CR64","doi-asserted-by":"crossref","unstructured":"Turney PD (2002) Thumbs up or thumbs down? semantic orientation applied to unsupervised classification of reviews. arXiv preprint cs\/0212032","DOI":"10.3115\/1073083.1073153"},{"key":"14653_CR65","unstructured":"Varshney A \u201cbig basket\u201d google play app reviews for basic NLP \u2014 Kaggle. https:\/\/www.kaggle.com\/apurvavarshney\/big-basket-google-play-app-reviews-for-basic-NLP. Accessed 24 Nov 2021"},{"key":"14653_CR66","doi-asserted-by":"crossref","unstructured":"Vijayvergia A, Kumar K (2018) STAR: rating of reviews by exploiting variation in emotions using transfer learning framework. In: 2018 Conference on information and communication technology (CICT), IEEE, pp 1\u20136","DOI":"10.1109\/INFOCOMTECH.2018.8722356"},{"issue":"1","key":"14653_CR67","first-page":"5","volume":"31","author":"C Wang","year":"2012","unstructured":"Wang C, Zhang P (2012) The evolution of social commerce: the people, management, technology, and information dimensions. Commun Assoc Inf Syst 31(1):5","journal-title":"Commun Assoc Inf Syst"},{"key":"14653_CR68","unstructured":"Weka 3 - data mining with open source machine learning software in java. https:\/\/www.cs.waikato.ac.nz\/ml\/weka\/. Accessed 24 Nov 2021"},{"key":"14653_CR69","unstructured":"Wolber L Facebook_reviews_trustpilot \u2014 kaggle. https:\/\/www.kaggle.com\/leonwolber\/facebook-reviews-trustpilot. Accessed 24 Nov 2021"},{"key":"14653_CR70","unstructured":"Yang CS, Shih HP (2012) A rule-based approach for effective sentiment analysis"},{"key":"14653_CR71","doi-asserted-by":"crossref","unstructured":"Yasmin G, Das A K, Nayak J, Vimal s, Dutta S (2022) A rough set theory and deep learning based predictive system for gender recognition using audio speech. Soft Computing, 1\u201324. Springer","DOI":"10.1007\/s00500-022-07074-z"},{"issue":"4","key":"14653_CR72","doi-asserted-by":"publisher","first-page":"433","DOI":"10.1080\/17517575.2012.665945","volume":"6","author":"H Zhang","year":"2012","unstructured":"Zhang H, Wang D, Wu W, Hu H (2012) Term frequency\u2013function of document frequency: a new term weighting scheme for enterprise information retrieval. Enterp Inf Syst 6(4):433\u201344","journal-title":"Enterp Inf Syst"},{"issue":"1-4","key":"14653_CR73","doi-asserted-by":"publisher","first-page":"43","DOI":"10.1007\/s13042-010-0001-0","volume":"1","author":"Y Zhang","year":"2010","unstructured":"Zhang Y, Jin R, Zhou Z H (2010) Understanding bag-of-words model: a statistical framework. Int J Mach Learn Cybern 1(1-4):43\u201352","journal-title":"Int J Mach Learn Cybern"},{"key":"14653_CR74","doi-asserted-by":"publisher","first-page":"397","DOI":"10.1016\/j.patrec.2020.07.035","volume":"138","author":"J Zhao","year":"2020","unstructured":"Zhao J, Zeng D, Xiao Y, Che L, Wang M (2020) User personality prediction based on topic preference and sentiment analysis using LSTM model. Pattern Recogn Lett 138:397\u2013402","journal-title":"Pattern Recogn Lett"}],"container-title":["Multimedia Tools and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-14653-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11042-023-14653-1\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-14653-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,31]],"date-time":"2023-08-31T09:37:10Z","timestamp":1693474630000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11042-023-14653-1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3,4]]},"references-count":74,"journal-issue":{"issue":"21","published-print":{"date-parts":[[2023,9]]}},"alternative-id":["14653"],"URL":"https:\/\/doi.org\/10.1007\/s11042-023-14653-1","relation":{},"ISSN":["1380-7501","1573-7721"],"issn-type":[{"value":"1380-7501","type":"print"},{"value":"1573-7721","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,3,4]]},"assertion":[{"value":"31 January 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"12 April 2022","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"3 February 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"4 March 2023","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that the manuscript here has no conflict of interest concerning any other already published source and any resource that has not been previously published partly or in whole. No fabrication or manipulation of the data has been carried out to assist our conclusion.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of Interests"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}