{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T16:59:10Z","timestamp":1726851550799},"reference-count":36,"publisher":"Springer Science and Business Media LLC","issue":"18","license":[{"start":{"date-parts":[[2023,2,20]],"date-time":"2023-02-20T00:00:00Z","timestamp":1676851200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,2,20]],"date-time":"2023-02-20T00:00:00Z","timestamp":1676851200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimed Tools Appl"],"published-print":{"date-parts":[[2023,7]]},"DOI":"10.1007\/s11042-023-14625-5","type":"journal-article","created":{"date-parts":[[2023,2,23]],"date-time":"2023-02-23T17:13:30Z","timestamp":1677172410000},"page":"28187-28211","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":17,"title":["Efficient feature selection using BoWs and SURF method for leaf disease identification"],"prefix":"10.1007","volume":"82","author":[{"given":"Monu","family":"Bhagat","sequence":"first","affiliation":[]},{"given":"Dilip","family":"Kumar","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,2,20]]},"reference":[{"issue":"6","key":"14625_CR1","doi-asserted-by":"publisher","first-page":"4409","DOI":"10.1109\/JIOT.2018.2809669","volume":"5","author":"MEEE Alahi","year":"2018","unstructured":"Alahi MEEE, Pereira-Ishak N, Mukhopadhyay SC, Burkitt L (2018) An internet-of-things enabled smart sensing system for nitrate monitoring. IEEE Internet Things J 5(6):4409\u20134417","journal-title":"IEEE Internet Things J"},{"key":"14625_CR2","doi-asserted-by":"publisher","unstructured":"Bay H, Tuytelaars T, Van Gool, L. (2006) SURF: Speeded up robust features. Computer Vision-ECCV 2006. 3951. 404\u2013417. https:\/\/doi.org\/10.1007\/11744023_32","DOI":"10.1007\/11744023_32"},{"key":"14625_CR3","doi-asserted-by":"publisher","first-page":"33897","DOI":"10.1007\/s11042-022-12984-z","volume":"81","author":"M Bhagat","year":"2022","unstructured":"Bhagat M, Kumar D (2022) A comprehensive survey on leaf disease identification & classification. Multimed Tools Appl 81:33897\u201333925. https:\/\/doi.org\/10.1007\/s11042-022-12984-z","journal-title":"Multimed Tools Appl"},{"key":"14625_CR4","doi-asserted-by":"publisher","unstructured":"Bhagat M, Kumar D, Kumar D (2019) Role of internet of things (IoT) in smart farming: A brief survey. 2019 Devices for Integrated Circuit (DevIC), pp 141\u2013145. https:\/\/doi.org\/10.1109\/DEVIC.2019.8783800","DOI":"10.1109\/DEVIC.2019.8783800"},{"key":"14625_CR5","doi-asserted-by":"publisher","unstructured":"Bhagat M, Kumar D, Haque I, Munda HS, Bhagat R (2020) Plant leaf disease classification using grid search based SVM. 2nd International Conference on Data, Engineering and Applications (IDEA), pp 1\u20136, https:\/\/doi.org\/10.1109\/IDEA49133.2020.9170725.","DOI":"10.1109\/IDEA49133.2020.9170725"},{"key":"14625_CR6","doi-asserted-by":"publisher","unstructured":"Bhagat M, Kumar D, Mahmood R, Pati B, Kumar M (2020) Bell pepper leaf disease classification using CNN,\" 2nd International Conference on Data, Engineering and Applications (IDEA), pp 1\u20135, https:\/\/doi.org\/10.1109\/IDEA49133.2020.9170728.","DOI":"10.1109\/IDEA49133.2020.9170728"},{"issue":"2","key":"14625_CR7","doi-asserted-by":"publisher","first-page":"59","DOI":"10.1080\/07352681003617285","volume":"29","author":"CH Bock","year":"2010","unstructured":"Bock CH, Poole GH, Parker PE, Gottwald TR (2010) Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Crit Rev Plant Sci 29(2):59\u2013107","journal-title":"Crit Rev Plant Sci"},{"key":"14625_CR8","doi-asserted-by":"publisher","first-page":"764","DOI":"10.1016\/j.procs.2015.06.090","volume":"54","author":"N Dhanachandra","year":"2015","unstructured":"Dhanachandra N, Manglem K, Chanu YJ (2015) Image segmentation using K-means clustering algorithm and subtractive clustering algorithm. Procedia Comput Sci 54:764\u2013771","journal-title":"Procedia Comput Sci"},{"key":"14625_CR9","doi-asserted-by":"publisher","unstructured":"Durmus H, Gunes EO, Kirci M (2017) Disease detection on the leaves of the tomato plants by using deep learning. In: 2017 6th Int Conf agro-Geoinformatics, Agro-Geoinformatics 2017. https:\/\/doi.org\/10.1109\/Agro-Geoinformatics.2017.8047016.","DOI":"10.1109\/Agro-Geoinformatics.2017.8047016"},{"key":"14625_CR10","doi-asserted-by":"publisher","first-page":"45","DOI":"10.1016\/j.postharvbio.2013.04.003","volume":"85","author":"M Dutot","year":"2013","unstructured":"Dutot M, Nelson LM, Tyson RC (2013) Predicting the spread of postharvest disease in stored fruit, with application to apples. Postharvest Biol Technol 85:45\u201356","journal-title":"Postharvest Biol Technol"},{"key":"14625_CR11","doi-asserted-by":"publisher","first-page":"52","DOI":"10.1016\/j.compag.2017.03.016","volume":"137","author":"MA Ebrahimi","year":"2017","unstructured":"Ebrahimi MA, Khoshtaghaza MH, Minaei S, Jamshidi B (2017) Vision-based pest detection based on SVM classification method. Comput Electron Agric 137:52\u201358","journal-title":"Comput Electron Agric"},{"key":"14625_CR12","doi-asserted-by":"publisher","unstructured":"Elhassouny A, Smarandache F (2019) Smart mobile application to recognize tomato leaf diseases using convolutional neural networks. In: proc 2019 Int Conf Comput Sci renew energies, ICCSRE 2019 2019:1\u20134. https:\/\/doi.org\/10.1109\/ICCSRE.2019.8807737.","DOI":"10.1109\/ICCSRE.2019.8807737"},{"issue":"2","key":"14625_CR13","first-page":"189","volume":"4","author":"F Fina","year":"2013","unstructured":"Fina F, Birch P, Young R, Obu J, Faithpraise B, Chatwin C (2013) Automatic plant pest detection and recognition using k-means clustering algorithm and correspondence filters. Int J Adv Biotechnol Res 4(2):189\u2013199","journal-title":"Int J Adv Biotechnol Res"},{"issue":"9","key":"14625_CR14","doi-asserted-by":"publisher","first-page":"2022","DOI":"10.3390\/s17092022","volume":"17","author":"A Fuentes","year":"2017","unstructured":"Fuentes A, Yoon S, Kim S, Park D (2017) A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors 17(9):2022","journal-title":"Sensors"},{"key":"14625_CR15","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3389\/fpls.2018.01162","volume":"9","author":"AF Fuentes","year":"2018","unstructured":"Fuentes AF, Yoon S, Lee J, Park DS (2018) High-performance deep neural network-based tomato plant diseases and pests\u2019 diagnosis system with refinement filter bank. Front Plant Sci 9:1\u201315. https:\/\/doi.org\/10.3389\/fpls.2018.01162","journal-title":"Front Plant Sci"},{"key":"14625_CR16","doi-asserted-by":"publisher","first-page":"3815","DOI":"10.1007\/s41870-022-00860-w","volume":"14","author":"SS Gaikwad","year":"2022","unstructured":"Gaikwad SS, Rumma SS, Hangarge M (2022) Fungi affected fruit leaf disease classification using deep CNN architecture. Int J Inf Technol 14:3815\u20133824. https:\/\/doi.org\/10.1007\/s41870-022-00860-w","journal-title":"Int J Inf Technol"},{"key":"14625_CR17","first-page":"387","volume":"20","author":"A Gupta","year":"2019","unstructured":"Gupta A (2019) Current research opportunities for image processing and computer vision. Comput Therm Sci 20:387\u2013410","journal-title":"Comput Therm Sci"},{"key":"14625_CR18","doi-asserted-by":"publisher","unstructured":"Hlaing CS, Maung Zaw SM (2018) Tomato plant diseases classification using statistical texture feature and color feature. In: Proc - 17th IEEE\/ACIS Int Conf Comput Inf Sci ICIS 2018 2018:439\u201344. https:\/\/doi.org\/10.1109\/ICIS.2018.8466483","DOI":"10.1109\/ICIS.2018.8466483"},{"key":"14625_CR19","doi-asserted-by":"publisher","unstructured":"Hlaing CS, Zaw SMM (2017) Model-based statistical features for mobile phone image of tomato plant disease classification. In: Parallel Distrib Comput Appl Technol PDCAT Proc 2018; 2017-Decem: 223\u20139. https:\/\/doi.org\/10.1109\/PDCAT.2017.00044","DOI":"10.1109\/PDCAT.2017.00044"},{"key":"14625_CR20","doi-asserted-by":"publisher","first-page":"59069","DOI":"10.1109\/ACCESS.2019.2914929","volume":"7","author":"P Jiang","year":"2019","unstructured":"Jiang P, Chen Y, Liu B, He D, Liang C (2019) Real-time detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks. IEEE Access 7:59069\u201359080","journal-title":"IEEE Access"},{"key":"14625_CR21","doi-asserted-by":"publisher","first-page":"200","DOI":"10.1016\/j.compag.2017.04.013","volume":"138","author":"A Johannes","year":"2017","unstructured":"Johannes A, Picon A, Alvarez-Gila A, Echazarra J, Rodriguez-Vaamonde S, Navajas AD et al (2017) Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case. Comput Electron Agric 138:200\u2013209. https:\/\/doi.org\/10.1016\/j.compag.2017.04.013","journal-title":"Comput Electron Agric"},{"key":"14625_CR22","doi-asserted-by":"publisher","first-page":"363","DOI":"10.1007\/BF00336961","volume":"50","author":"J Koenderink","year":"1984","unstructured":"Koenderink J (1984) The structure of images. Biol Cybern 50:363\u2013370","journal-title":"Biol Cybern"},{"key":"14625_CR23","doi-asserted-by":"publisher","first-page":"56683","DOI":"10.1109\/ACCESS.2021.3069646","volume":"9","author":"L Li","year":"2021","unstructured":"Li L, Zhang S, Wang B (2021) Plant disease detection and classification by deep learning\u2014a review. IEEE Access 9:56683\u201356698","journal-title":"IEEE Access"},{"key":"14625_CR24","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1023\/B:VISI.0000029664.99615.94","volume":"60","author":"D Lowe","year":"2004","unstructured":"Lowe D (2004) Distinctive image features from scale-invariant keypoints, cascade filtering approach. IJCV 60:91\u2013110","journal-title":"IJCV"},{"key":"14625_CR25","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1016\/j.rse.2012.09.019","volume":"128","author":"A-K Mahlein","year":"2013","unstructured":"Mahlein A-K, Rumpf T, Welke P, Dehne HW, Pl\u00fcmer L, Steiner U, Oerke EC (2013) Development of spectral indices for detecting and identifying plant diseases. Remote Sens Environ 128:21\u201330","journal-title":"Remote Sens Environ"},{"key":"14625_CR26","doi-asserted-by":"crossref","unstructured":"Mikolajczyk K, Schmid C (2001) Indexing based on scale invariant interest points. In: ICCV. Volume 1, 525\u2013531","DOI":"10.1109\/ICCV.2001.937561"},{"key":"14625_CR27","doi-asserted-by":"publisher","first-page":"1615","DOI":"10.1109\/TPAMI.2005.188","volume":"27","author":"K Mikolajczyk","year":"2005","unstructured":"Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. PAMI 27:1615\u20131630","journal-title":"PAMI"},{"key":"14625_CR28","doi-asserted-by":"publisher","first-page":"1040","DOI":"10.1016\/j.procs.2018.07.070","volume":"133","author":"AK Rangarajan","year":"2018","unstructured":"Rangarajan AK, Purushothaman R, Ramesh A (2018) Tomato crop disease classification using pre-trained deep learning algorithm. Procedia Comput Sci 133:1040\u20131047. https:\/\/doi.org\/10.1016\/j.procs.2018.07.070","journal-title":"Procedia Comput Sci"},{"issue":"12","key":"14625_CR29","doi-asserted-by":"publisher","first-page":"2190","DOI":"10.1109\/LGRS.2017.2743715","volume":"14","author":"EC Tetila","year":"2017","unstructured":"Tetila EC, Machado BB, de Souza Belete NA, Guimar\u00e3es DA, Pistori H (2017) Identification of soybean foliar diseases using unmanned aerial vehicle images. IEEE Geosci Remote Sens Lett 14(12):2190\u20132194","journal-title":"IEEE Geosci Remote Sens Lett"},{"issue":"2","key":"14625_CR30","first-page":"1","volume":"18","author":"M Trivedi","year":"2021","unstructured":"Trivedi M, Gupta A (2021) Automatic monitoring of the growth of plants using deep learning-based leaf segmentation. Int J Appl Sci Eng 18(2):1\u20139","journal-title":"Int J Appl Sci Eng"},{"key":"14625_CR31","doi-asserted-by":"crossref","unstructured":"Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: CVPR (1), 511\u2013518","DOI":"10.1109\/CVPR.2001.990517"},{"key":"14625_CR32","doi-asserted-by":"publisher","first-page":"4377","DOI":"10.1038\/s41598-019-40066-y","volume":"9","author":"D Wang","year":"2019","unstructured":"Wang D, Vinson R, Holmes M, Seibel G, Bechar A, Nof S, Tao Y (2019) Early detection of tomato spotted wilt virus by hyperspectral imaging and outlier removal auxiliary classifier generative adversarial nets (OR-AC-GAN). Sci Rep 9:4377","journal-title":"Sci Rep"},{"issue":"11","key":"14625_CR33","doi-asserted-by":"publisher","first-page":"2557","DOI":"10.3390\/s17112557","volume":"17","author":"K Yamamoto","year":"2017","unstructured":"Yamamoto K, Togami T, Yamaguchi N (2017) Super-resolution of plant disease images for the acceleration of image-based phenotyping and vigor diagnosis in agriculture. Sensors 17(11):2557","journal-title":"Sensors"},{"issue":"2","key":"14625_CR34","doi-asserted-by":"publisher","first-page":"199","DOI":"10.1016\/j.fcr.2013.11.012","volume":"156","author":"L Yuan","year":"2014","unstructured":"Yuan L, Huang Y, Loraamm RW, Nie C, Wang J, Zhang J (2014) Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects. Field Crop Res 156(2):199\u2013207","journal-title":"Field Crop Res"},{"issue":"1","key":"14625_CR35","doi-asserted-by":"publisher","first-page":"43","DOI":"10.1007\/s13042-010-0001-0","volume":"1","author":"Y Zhang","year":"2010","unstructured":"Zhang Y, Jin R, Zhou Z-H (2010) Understanding bag-of-words model: a statistical framework. Int J Mach Learn Cybern 1(1):43\u201352","journal-title":"Int J Mach Learn Cybern"},{"key":"14625_CR36","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1016\/j.cogsys.2018.04.006","volume":"53","author":"S Zhang","year":"2019","unstructured":"Zhang S, Huang W, Zhang C (2019) Three-channel convolutional neural networks for vegetable leaf disease recognition. Cogn Syst Res 53:31\u201341. https:\/\/doi.org\/10.1016\/j.cogsys.2018.04.006","journal-title":"Cogn Syst Res"}],"container-title":["Multimedia Tools and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-14625-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11042-023-14625-5\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-023-14625-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,6,27]],"date-time":"2023-06-27T21:09:41Z","timestamp":1687900181000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11042-023-14625-5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,2,20]]},"references-count":36,"journal-issue":{"issue":"18","published-print":{"date-parts":[[2023,7]]}},"alternative-id":["14625"],"URL":"https:\/\/doi.org\/10.1007\/s11042-023-14625-5","relation":{},"ISSN":["1380-7501","1573-7721"],"issn-type":[{"value":"1380-7501","type":"print"},{"value":"1573-7721","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,2,20]]},"assertion":[{"value":"18 May 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"6 September 2022","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"3 February 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"20 February 2023","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}