{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T18:39:15Z","timestamp":1725907155478},"reference-count":30,"publisher":"Springer Science and Business Media LLC","issue":"12","license":[{"start":{"date-parts":[[2022,11,24]],"date-time":"2022-11-24T00:00:00Z","timestamp":1669248000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,11,24]],"date-time":"2022-11-24T00:00:00Z","timestamp":1669248000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimed Tools Appl"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1007\/s11042-022-14196-x","type":"journal-article","created":{"date-parts":[[2022,11,24]],"date-time":"2022-11-24T17:33:52Z","timestamp":1669311232000},"page":"18709-18725","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Real-Time object detector based MobileNetV3 for UAV applications"],"prefix":"10.1007","volume":"82","author":[{"given":"Yonghao","family":"Yang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9330-5019","authenticated-orcid":false,"given":"Jin","family":"Han","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,11,24]]},"reference":[{"key":"14196_CR1","unstructured":"Bochkovskiy A, Wang CY, Liao HYM (2020) Yolov4: optimal speed and accuracy of object detection[J]. arXiv preprint arXiv:2004.10934"},{"issue":"10","key":"14196_CR2","doi-asserted-by":"publisher","first-page":"3123","DOI":"10.1109\/TCAD.2019.2957724","volume":"39","author":"UAV Energy-Efficient Real-Time","year":"2020","unstructured":"Energy-Efficient Real-Time UAV (2020) Object detection on embedded platforms[J]. IEEE Trans Comput-Aided Des Integr Circuits Syst 39(10):3123\u20133127","journal-title":"IEEE Trans Comput-Aided Des Integr Circuits Syst"},{"key":"14196_CR3","doi-asserted-by":"crossref","unstructured":"Feng XY, Mei W, Hu D (2018) Aerial target detection based on improved faster R-CNN[J]. Acta Optica Sinica\u00a038(6):0615004","DOI":"10.3788\/AOS201838.0615004"},{"key":"14196_CR4","doi-asserted-by":"crossref","unstructured":"Girshick R, Donahue J, Darrell T, et al. (2014) Rich feature hierarchies for accurate object detection and semantic segmentation[C]\/\/Proceedings of the IEEE conference on computer vision and pattern recognition.: 580\u2013587","DOI":"10.1109\/CVPR.2014.81"},{"key":"14196_CR5","unstructured":"Howard AG, Zhu M, Chen B et al (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861"},{"key":"14196_CR6","doi-asserted-by":"crossref","unstructured":"Howard A, Sandler M, Chu G et al (2019) Searching for mobilenetv3[C]. In: Proceedings of the IEEE\/CVF international conference on computer vision, pp\u00a01314\u20131324","DOI":"10.1109\/ICCV.2019.00140"},{"key":"14196_CR7","unstructured":"Tan XC, Wang ZH (2018) Faster R-CNN deep learning network based object recognition of remote sensing image[J].\u00a0J Geo-Inf Sci 20(10):1500\u20131508"},{"key":"14196_CR8","doi-asserted-by":"crossref","unstructured":"Kyrkou C, Plastiras G, Theocharides T et al (2018) DroNet: Efficient convolutional neural network detector for real-time UAV applications[C]. In:\u00a02018 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, pp 967\u2013972","DOI":"10.23919\/DATE.2018.8342149"},{"key":"14196_CR9","doi-asserted-by":"crossref","unstructured":"Li J, Dai Y, Li C et al (2018) Visual detail augmented mapping for small aerial target detection[J]. Remote Sens 11(1):14","DOI":"10.3390\/rs11010014"},{"key":"14196_CR10","unstructured":"Li Y, Li J, Lin W et al (2018) Tiny-DSOD: Lightweight object detection for resource-restricted usages[J]. arXiv preprint arXiv:1807.11013"},{"key":"14196_CR11","doi-asserted-by":"crossref","unstructured":"Lin TY, Doll\u00e1r P, Girshick R et al (2017) Feature pyramid networks for object detection[C]. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp\u00a02117\u20132125","DOI":"10.1109\/CVPR.2017.106"},{"key":"14196_CR12","doi-asserted-by":"crossref","unstructured":"Lin TY, Goyal P, Girshick R et al (2017) Focal loss for dense object detection[C]. In: Proceedings of the IEEE international conference on computer vision, pp\u00a02980\u20132988","DOI":"10.1109\/ICCV.2017.324"},{"issue":"11","key":"14196_CR13","first-page":"21","volume":"2","author":"W Liu","year":"2016","unstructured":"Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Cheng-Yang F, Berg AC (2016) SSD: Single shot multibox detector. Proceed European Conf Comput Vis (ECCV) 2(11):21\u201337","journal-title":"Proceed European Conf Comput Vis (ECCV)"},{"key":"14196_CR14","doi-asserted-by":"crossref","unstructured":"Ma N, Zhang X, Zheng HT et al (2018) Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]. In: Proceedings of the European conference on computer vision (ECCV), pp\u00a0116\u2013131","DOI":"10.1007\/978-3-030-01264-9_8"},{"key":"14196_CR15","doi-asserted-by":"crossref","unstructured":"Peng C, Zhang X, Yu G et al (2017) Large kernel matters--improve semantic segmentation by global convolutional network[C]. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4353\u20134361","DOI":"10.1109\/CVPR.2017.189"},{"key":"14196_CR16","doi-asserted-by":"crossref","unstructured":"Redmon J, Farhadi A (2017) YOLO9000: better, faster, stronger[C]. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp\u00a07263\u20137271","DOI":"10.1109\/CVPR.2017.690"},{"key":"14196_CR17","unstructured":"Redmon J, Farhadi A (2018) YOLOv3: An Incremental Improvement[J]. arXiv e-prints"},{"key":"14196_CR18","doi-asserted-by":"crossref","unstructured":"Redmon J, Divvala S, Girshick R, et al. (2015) You only look once: unified, Real-Time object detection[J]","DOI":"10.1109\/CVPR.2016.91"},{"key":"14196_CR19","unstructured":"Ren, S, He, K, Girshick, R, Sun, J (2015) Faster r-cnn: towards real-time object detection with region proposal networks. arXiv preprint arXiv:1506.01497"},{"key":"14196_CR20","unstructured":"Ren S, He K, Girshick R et al (2015) Faster r-cnn: Towards real-time object detection with region proposal networks[J].\u00a0Adv Neural Inf Process Syst\u00a02015:28"},{"key":"14196_CR21","doi-asserted-by":"crossref","unstructured":"Sandler M, Howard A, Zhu M et al (2018) Mobilenetv2: Inverted residuals and linear bottlenecks[C]. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp\u00a04510\u20134520","DOI":"10.1109\/CVPR.2018.00474"},{"key":"14196_CR22","unstructured":"Sermanet P, Eigen D, Zhang X et al (2013) Overfeat: Integrated recognition, localization and detection using convolutional networks[J]. arXiv preprint arXiv:1312.6229"},{"key":"14196_CR23","doi-asserted-by":"crossref","unstructured":"Singh PP, Prasad S, Chaudhary AK et al (2019) Classification of effusion and cartilage erosion affects in osteoarthritis knee MRI images using deep learning model[C]. In: International Conference on Computer Vision and Image Processing. Springer, Singapore, pp\u00a0373\u2013383","DOI":"10.1007\/978-981-15-4018-9_34"},{"key":"14196_CR24","unstructured":"Tan M, Le Q (2019) Efficientnet: Rethinking model scaling for convolutional neural networks[C]. International conference on machine learning. PMLR\u00a02019:6105\u20136114"},{"key":"14196_CR25","doi-asserted-by":"crossref","unstructured":"Tian Z, Shen C, Chen H et al (2019) Fcos: Fully convolutional one-stage object detection[C]. In: Proceedings of the IEEE\/CVF international conference on computer vision, pp\u00a09627\u20139636","DOI":"10.1109\/ICCV.2019.00972"},{"key":"14196_CR26","unstructured":"Vaddi S (2019) Efficient object detection model for real-time UAV applications[D]. Iowa State University"},{"key":"14196_CR27","unstructured":"Wang RJ, Li X, Ling CX (2018) Pelee: A real-time object detection system on mobile devices[J].\u00a0Adv Neural Inf Process Syst\u00a02018:31"},{"key":"14196_CR28","doi-asserted-by":"crossref","unstructured":"Zhang X, Zhou X, Lin M et al (2018) Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp\u00a06848\u20136856","DOI":"10.1109\/CVPR.2018.00716"},{"key":"14196_CR29","doi-asserted-by":"crossref","unstructured":"Zhang P, Zhong Y, Li X (2019) SlimYOLOv3: Narrower, faster and better for real-time UAV applications[C]. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision Workshops","DOI":"10.1109\/ICCVW.2019.00011"},{"key":"14196_CR30","doi-asserted-by":"publisher","unstructured":"Zhu P, Wen L, Du D et al (2020) Vision meets drones: Past, present and future[J].\u00a0https:\/\/doi.org\/10.48550\/arXiv.2001.06303","DOI":"10.48550\/arXiv.2001.06303"}],"container-title":["Multimedia Tools and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-022-14196-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11042-022-14196-x\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-022-14196-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,4,20]],"date-time":"2023-04-20T15:06:46Z","timestamp":1682003206000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11042-022-14196-x"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11,24]]},"references-count":30,"journal-issue":{"issue":"12","published-print":{"date-parts":[[2023,5]]}},"alternative-id":["14196"],"URL":"https:\/\/doi.org\/10.1007\/s11042-022-14196-x","relation":{},"ISSN":["1380-7501","1573-7721"],"issn-type":[{"value":"1380-7501","type":"print"},{"value":"1573-7721","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,11,24]]},"assertion":[{"value":"28 October 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"2 March 2022","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"27 October 2022","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"24 November 2022","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors have no relevant financial or non-financial interests to disclose.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}