{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,26]],"date-time":"2024-07-26T06:00:43Z","timestamp":1721973643177},"reference-count":39,"publisher":"Springer Science and Business Media LLC","issue":"12","license":[{"start":{"date-parts":[[2022,11,16]],"date-time":"2022-11-16T00:00:00Z","timestamp":1668556800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,11,16]],"date-time":"2022-11-16T00:00:00Z","timestamp":1668556800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["81874242"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimed Tools Appl"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1007\/s11042-022-14101-6","type":"journal-article","created":{"date-parts":[[2022,11,16]],"date-time":"2022-11-16T06:02:52Z","timestamp":1668578572000},"page":"18887-18906","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":10,"title":["Nested segmentation and multi-level classification of diabetic foot ulcer based on mask R-CNN"],"prefix":"10.1007","volume":"82","author":[{"given":"Cong","family":"Cao","sequence":"first","affiliation":[]},{"given":"Yue","family":"Qiu","sequence":"additional","affiliation":[]},{"given":"Zheng","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Jiarui","family":"Ou","sequence":"additional","affiliation":[]},{"given":"Jiaoju","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Alphonse Houssou","family":"Hounye","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6658-2187","authenticated-orcid":false,"given":"Muzhou","family":"Hou","sequence":"additional","affiliation":[]},{"given":"Qiuhong","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Jianglin","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,11,16]]},"reference":[{"key":"14101_CR1","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1155\/2020\/4106383","volume":"2020","author":"D Abdissa","year":"2020","unstructured":"Abdissa D, Adugna T, Gerema U, Dereje D (2020) Prevalence of diabetic foot ulcer and associated factors among adult diabetic patients on follow-up clinic at jimma medical center, southwest ethiopia, 2019: an institutional-based cross-sectional study. J Diabetes Res 2020:1\u20136. https:\/\/doi.org\/10.1155\/2020\/4106383","journal-title":"J Diabetes Res"},{"issue":"11","key":"14101_CR2","doi-asserted-by":"publisher","first-page":"e0188097","DOI":"10.1371\/journal.pone.0188097","volume":"12","author":"K Al-Rubeaan","year":"2017","unstructured":"Al-Rubeaan K, Almashouq MK, Youssef AM, Al- Qumaidi H, Al Derwish M, Ouizi S, Al-Shehri K, Masoodi SN (2017) All-cause mortality among diabetic foot patients and related risk factors in saudi arabia. PLoS ONE 12(11):e0188097. https:\/\/doi.org\/10.1371\/journal.pone.0188097","journal-title":"PLoS ONE"},{"key":"14101_CR3","doi-asserted-by":"publisher","unstructured":"Alsabek MB, Abdul AR, Aziz (2022) Diabetic foot ulcer, the effect of resource-poor environments on healing time and direct cost: a cohort study during syrian crisis. Int Wound J 19(3):531\u2013537. https:\/\/doi.org\/10.1111\/iwj.13651","DOI":"10.1111\/iwj.13651"},{"issue":"1","key":"14101_CR4","doi-asserted-by":"publisher","first-page":"5","DOI":"10.17925\/EE.2021.17.1.5","volume":"17","author":"B Cassidy","year":"2021","unstructured":"Cassidy B, Reeves ND, Pappachan JM, Gillespie D, OShea C, Rajbhandari S, Maiya AG, Frank E, Boulton AJ, Armstrong DG, Najafi B, Wu J, Moi HY (2021) The DFUC 2020 dataset: analysis towards diabetic foot ulcer detection. touchREV Endocrinol 17(1):5\u201311. https:\/\/doi.org\/10.17925\/EE.2021.17.1.5","journal-title":"touchREV Endocrinol"},{"issue":"19","key":"14101_CR5","doi-asserted-by":"publisher","first-page":"e15200","DOI":"10.1097\/MD.0000000000015200","volume":"98","author":"J-Y Chiao","year":"2019","unstructured":"Chiao J-Y, Chen K-Y, Liao KY-K, Hsieh P-H, Zhang G, Huang T-C (2019) Detection and classification the breast tumors using Mask R-CNN on sonograms. Medicine 98(19):e15200. https:\/\/doi.org\/10.1097\/MD.0000000000015200","journal-title":"Medicine"},{"key":"14101_CR6","doi-asserted-by":"publisher","unstructured":"Cui C, Thurnhofer-Hemsi K, Soroushmehr R, Mishra A, Gryak J, Dom\u00ednguez E, Najarian K, L\u00f3pez-Rubio E (2019) Diabetic wound segmentation using convolutional neural networks. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp 1002\u20131005. https:\/\/doi.org\/10.1109\/EMBC.2019.8856665","DOI":"10.1109\/EMBC.2019.8856665"},{"issue":"6","key":"14101_CR7","doi-asserted-by":"publisher","first-page":"4","DOI":"10.2174\/1573399817666210928144706","volume":"18","author":"M Dmitriyeva","year":"2022","unstructured":"Dmitriyeva M, Kozhakhmetova Z, Urazova S, Kozhakhmetov S, Turebayev D, Toleubayev M (2022) Inflammatory biomarkers as predictors of infected diabetic foot ulcer. Curr Diabetes Rev 18(6):4\u201311. https:\/\/doi.org\/10.2174\/1573399817666210928144706","journal-title":"Curr Diabetes Rev"},{"key":"14101_CR8","doi-asserted-by":"publisher","unstructured":"Girshick R (2015) Fast R-CNN. In: Proceedings of the IEEE inter- national conference on computer vision, pp 1440\u20131448. https:\/\/doi.org\/10.1109\/ICCV.2015.169","DOI":"10.1109\/ICCV.2015.169"},{"key":"14101_CR9","doi-asserted-by":"publisher","unstructured":"Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 580\u2013587. https:\/\/doi.org\/10.1109\/CVPR.2014.81","DOI":"10.1109\/CVPR.2014.81"},{"key":"14101_CR10","doi-asserted-by":"publisher","first-page":"9265","DOI":"10.2147\/IJN.S268941","volume":"15","author":"K Gourishetti","year":"2020","unstructured":"Gourishetti K, Keni R, Nayak PG, Jitta SR, Bhaskaran NA, Kumar L, Kumar N, Krishnadas N, Shenoy RR (2020) Sesamol-loaded plga nanosuspension for accelerating wound healing in diabetic foot ulcer in rats. Int J Nanomed 15:9265\u20139282. https:\/\/doi.org\/10.2147\/IJN.S268941","journal-title":"Int J Nanomed"},{"key":"14101_CR11","doi-asserted-by":"publisher","unstructured":"Goyal M, Yap MH, Reeves ND, Rajbhandari S, Spragg J (2017) Fully convolutional networks for diabetic foot ulcer segmentation. In: 2017 IEEE international conference on systems, man, and cybernetics (SMC), pp 618\u2013623. https:\/\/doi.org\/10.1109\/SMC.2017.8122675","DOI":"10.1109\/SMC.2017.8122675"},{"issue":"4","key":"14101_CR12","doi-asserted-by":"publisher","first-page":"1730","DOI":"10.1109\/JBHI.2018.2868656","volume":"23","author":"M Goyal","year":"2018","unstructured":"Goyal M, Reeves ND, Rajbhandari S, Yap MH (2018) Robust methods for real-time diabetic foot ulcer detection and localization on mobile devices. IEEE J Biomed Health Inf 23(4):1730\u20131741. https:\/\/doi.org\/10.1109\/JBHI.2018.2868656","journal-title":"IEEE J Biomed Health Inf"},{"key":"14101_CR13","doi-asserted-by":"publisher","unstructured":"Goyal M, Reeves ND, Davison AK, Rajbhandari S, Spragg J, Yap MH (2018) DFUnet: convolutional neural networks for diabetic foot ulcer classification. IEEE Trans Emerg Topics Comput Intell 4(5):728\u2013739. https:\/\/doi.org\/10.1109\/TETCI.2018.2866254","DOI":"10.1109\/TETCI.2018.2866254"},{"key":"14101_CR14","doi-asserted-by":"publisher","unstructured":"Goyal M, Reeves ND, Rajbhandari S, Ahmad N, Wang C, Yap MH (2020) Recognition of ischaemia and infection in diabetic foot ulcers: dataset and techniques. Comput Biol Med 117:103616. https:\/\/doi.org\/10.1016\/j.compbiomed.2020.103616","DOI":"10.1016\/j.compbiomed.2020.103616"},{"key":"14101_CR15","doi-asserted-by":"publisher","unstructured":"Gribbon KT, Bailey DG (2004) A novel approach to real-time bilinear interpolation. In: Proceedings. DELTA 2004. Second IEEE international workshop on electronic design, test and applications, pp 126\u2013131. https:\/\/doi.org\/10.1109\/DELTA.2004.10055","DOI":"10.1109\/DELTA.2004.10055"},{"key":"14101_CR16","doi-asserted-by":"publisher","unstructured":"He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770\u2013778. https:\/\/doi.org\/10.1109\/CVPR.2016.90","DOI":"10.1109\/CVPR.2016.90"},{"key":"14101_CR17","doi-asserted-by":"publisher","unstructured":"He K, Gkioxari G, Doll\u00e1r P, Girshick R (2017) Mask R-CNN. In: Proceedings of the IEEE international conference on computer vision, pp 2961\u20132969. https:\/\/doi.org\/10.1109\/ICCV.2017.322","DOI":"10.1109\/ICCV.2017.322"},{"key":"14101_CR18","doi-asserted-by":"publisher","unstructured":"Joulin A, Ciss\u00e9\u00a0M, Grangier D, J\u00e9gou H et al (2017) Efficient softmax approximation for GPUs. In: Proceedings of international conference on machine learning, pp 1302\u20131310. https:\/\/doi.org\/10.48550\/arXiv.1609.04309","DOI":"10.48550\/arXiv.1609.04309"},{"key":"14101_CR19","doi-asserted-by":"publisher","unstructured":"Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. Proceedings of international conference for learning representations, pp 1\u201315.\u00a0https:\/\/doi.org\/10.48550\/arXiv.1412.6980","DOI":"10.48550\/arXiv.1412.6980"},{"issue":"1","key":"14101_CR20","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-020-69208-3","volume":"10","author":"LB Kouitcheu Mabeku","year":"2020","unstructured":"Kouitcheu Mabeku LB, Noundjeu Ngamga ML, Leundji H (2020) Helicobacter pylori infection, a risk factor for type 2 diabetes mellitus: a hospital-based cross-sectional study among dyspeptic patients in doualacameroon. Sci Rep 10(1):1\u201311. https:\/\/doi.org\/10.1038\/s41598-020-69208-3","journal-title":"Sci Rep"},{"issue":"6","key":"14101_CR21","doi-asserted-by":"publisher","first-page":"528","DOI":"10.1016\/s1067-2516(96)80125-6","volume":"35","author":"LA Lavery","year":"1996","unstructured":"Lavery LA, Armstrong DG, Harkless LB (1996) Classification of diabetic foot wounds. J Foot Ankle Surg 35(6):528\u2013531. https:\/\/doi.org\/10.1016\/s1067-2516(96)80125-6","journal-title":"J Foot Ankle Surg"},{"key":"14101_CR22","doi-asserted-by":"publisher","first-page":"396","DOI":"10.5555\/2969830.2969879","volume":"2","author":"Y LeCun","year":"1989","unstructured":"LeCun Y, Boser B, Denker J, Henderson D, Howard R, Hubbard W, Jackel L (1989) Handwritten digit recognition with a back-propagation network. Adv Neural Inf Process Syst 2:396\u2013404. https:\/\/doi.org\/10.5555\/2969830.2969879","journal-title":"Adv Neural Inf Process Syst"},{"key":"14101_CR23","doi-asserted-by":"publisher","unstructured":"Lin T-Y, Doll\u00e1r P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2117\u20132125. https:\/\/doi.org\/10.1109\/CVPR.2017.106","DOI":"10.1109\/CVPR.2017.106"},{"issue":"1","key":"14101_CR24","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-020-71831-z","volume":"10","author":"C Lu","year":"2020","unstructured":"Lu C, Kong Y, Guan Z (2020) A Mask R-CNN model for reidentifying extratropical cyclones based on quasi-supervised thought. Sci Rep 10(1):1\u20139. https:\/\/doi.org\/10.1038\/s41598-020-71831-z","journal-title":"Sci Rep"},{"issue":"1","key":"14101_CR25","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10916-021-01795-8","volume":"46","author":"FK Malerbi","year":"2022","unstructured":"Malerbi FK, Mendes G, Barboza N, Morales PH, Montargil R, Andrade RE (2022) Diabetic macular edema screened by handheld smartphone-based retinal camera and artificial intelligence. J Med Syst 46(1):1\u20136. https:\/\/doi.org\/10.1007\/s10916-021-01795-8","journal-title":"J Med Syst"},{"issue":"10","key":"14101_CR26","doi-asserted-by":"publisher","first-page":"13","DOI":"10.12968\/jowc.2019.28.Sup10.S13","volume":"28","author":"N Ohura","year":"2019","unstructured":"Ohura N, Mitsuno R, Sakisaka M, Terabe Y, Morishige Y, Uchiyama A, Okoshi T, Shinji I, Takushima A (2019) Convolutional neural networks for wound detection: the role of artificial intelligence in wound care. J Wound Care 28(10):13\u201324. https:\/\/doi.org\/10.12968\/jowc.2019.28.Sup10.S13","journal-title":"J Wound Care"},{"key":"14101_CR27","doi-asserted-by":"publisher","unstructured":"Rastogi A, Goyal G, Kesavan R, Bal A, Kumar H, Kamath P, Jude EB, Armstrong DG, Bhansali A et al (2020) Long term outcomes after incident diabetic foot ulcer: Multicenter large cohort prospective study (edi-focus investigators) epidemiology of diabetic foot complications study: epidemiology of diabetic foot complications study. Diabetes Res Clin Pract 162:108\u2013113. https:\/\/doi.org\/10.1016\/j.diabres.2020.108113","DOI":"10.1016\/j.diabres.2020.108113"},{"issue":"5","key":"14101_CR28","doi-asserted-by":"publisher","first-page":"250","DOI":"10.31128\/AJGP-11-19-5161","volume":"49","author":"R Rebecca","year":"2020","unstructured":"Rebecca R, Dominic S, Boyoung K, James M, Williams D, Leslie A (2020) The diabetic foot ulcer. Australian J Gen Practitioners 49(5):250\u2013255. https:\/\/doi.org\/10.31128\/AJGP-11-19-5161","journal-title":"Australian J Gen Practitioners"},{"key":"14101_CR29","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1109\/TPAMI.2016.2577031","volume":"28","author":"S Ren","year":"2015","unstructured":"Ren S, He K, Girshick R, Sun J, Faster R-CNN (2015) Towards real-time object detection with region proposal networks. Adv Neural Inf Process Syst 28:91\u201399. https:\/\/doi.org\/10.1109\/TPAMI.2016.2577031","journal-title":"Adv Neural Inf Process Syst"},{"key":"14101_CR30","doi-asserted-by":"publisher","unstructured":"Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Proceedings of International Conference on Medical image computing and computer-assisted intervention, pp 234\u2013241. https:\/\/doi.org\/10.1007\/978-3-319-24574-428","DOI":"10.1007\/978-3-319-24574-428"},{"key":"14101_CR31","doi-asserted-by":"publisher","unstructured":"R\u00fcmenapf G, Morbach S, Rother U, Uhl C, G\u00f6rtz H, B\u00f6ckler D, Behrendt C-A, Hochlenert D, Engels G, Sigl M et al (2021) Diabetisches fu\u00dfsyndrom\u2013teil 1: definition, pathophysiologie, diagnostik und klassifikation, Der Chirurg. Z Fur Alle Gebiete Der Operativen Medizen 92(1):81\u201394. https:\/\/doi.org\/10.1007\/s00104-020-01301-9","DOI":"10.1007\/s00104-020-01301-9"},{"key":"14101_CR32","doi-asserted-by":"publisher","unstructured":"Syed MH, Salata K, Hussain MA, Zamzam A, de Mestral C, Wheatcroft M, Harlock J, Awartani D, Aljabri B, Verma A et al (2020) The economic burden of inpatient diabetic foot ulcers in Toronto, Canada. Vascular 28(5):520\u2013529. https:\/\/doi.org\/10.1177\/1708538120923420","DOI":"10.1177\/1708538120923420"},{"issue":"2","key":"14101_CR33","doi-asserted-by":"publisher","first-page":"64","DOI":"10.1177\/107110078100200202","volume":"2","author":"FW Wagner Jr","year":"1981","unstructured":"Wagner FW Jr (1981) The dysvascular foot: a system for diagnosis and treatment. Foot Ankle 2(2):64\u2013122. https:\/\/doi.org\/10.1177\/107110078100200202","journal-title":"Foot Ankle"},{"issue":"3","key":"14101_CR34","doi-asserted-by":"publisher","first-page":"419","DOI":"10.1007\/s12539-016-0196-1","volume":"9","author":"P Wang","year":"2017","unstructured":"Wang P, Ge R, Xiao X, Cai Y, Wang G, Zhou F (2017) Rectified- linear-unit-based deep learning for biomedical multi-label data. Interdiscip Sci Comput Life Sci 9(3):419\u2013422. https:\/\/doi.org\/10.1007\/s12539-016-0196-1","journal-title":"Interdiscip Sci Comput Life Sci"},{"issue":"11","key":"14101_CR35","doi-asserted-by":"publisher","first-page":"709","DOI":"10.21037\/atm.2020.03.135","volume":"8","author":"T Wang","year":"2020","unstructured":"Wang T, Zhong L, Yuan J, Wang T, Yin S, Sun Y, Li- u X, Liu X, Ling S (2020) Quantitative analysis of functional filtering bleb size using Mask R-CNN. Ann Transl Med 8(11):709\u2013717. https:\/\/doi.org\/10.21037\/atm.2020.03.135","journal-title":"Ann Transl Med"},{"key":"14101_CR36","doi-asserted-by":"publisher","first-page":"3739","DOI":"10.2147\/DMSO.S265988","volume":"13","author":"GT Woldemariam","year":"2020","unstructured":"Woldemariam GT, Atnafu NT, Radie YT, Wolde GT, Gebreagziabher TT, Gebrehiwot TG, Teka YH, Hagos MG, Hagezom HM, Yigzaw HB et al (2020) Determinants of diabetic foot ulcer among adult patients with diabetes attending the diabetic clinic in tikur anbessa specialized hospital, addis ababa, ethiopia: Unmatched case\u2013control study. Diabetes Metab Syndr Obes: Targets Ther 13:3739\u20133747. https:\/\/doi.org\/10.2147\/DMSO.S265988","journal-title":"Diabetes Metab Syndr Obes: Targets Ther"},{"key":"14101_CR37","doi-asserted-by":"publisher","unstructured":"Xie S, Girshick R, Doll\u00e1r P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1492\u20131500. https:\/\/doi.org\/10.1109\/CVPR.2017.634","DOI":"10.1109\/CVPR.2017.634"},{"key":"14101_CR38","doi-asserted-by":"publisher","first-page":"104596","DOI":"10.1016\/j.compbiomed.2021.104596","volume":"135","author":"MH Yap","year":"2021","unstructured":"Yap MH, Hachiuma R, Alavi A, Br\u00fcngel R, Cassidy B, Goyal M, Zhu H, R\u00fcckert J, Olshansky M, Huang X et al (2021) Deep learning in diabetic foot ulcers detection: a comprehensive evaluation. Comput Biol Med 135:104596. https:\/\/doi.org\/10.1016\/j.compbiomed.2021.104596","journal-title":"Comput Biol Med"},{"key":"14101_CR39","doi-asserted-by":"publisher","unstructured":"Yap MH, Cassidy B, Pappachan JM, O\u2019Shea C, Gillespie D, Reeves N (2021) Analysis towards classification of infection and ischaemia of diabetic foot ulcers. In: 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), pp 1\u20134. https:\/\/doi.org\/10.1109\/BHI50953.2021.9508563","DOI":"10.1109\/BHI50953.2021.9508563"}],"container-title":["Multimedia Tools and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-022-14101-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11042-022-14101-6\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-022-14101-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,4,20]],"date-time":"2023-04-20T15:01:02Z","timestamp":1682002862000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11042-022-14101-6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11,16]]},"references-count":39,"journal-issue":{"issue":"12","published-print":{"date-parts":[[2023,5]]}},"alternative-id":["14101"],"URL":"https:\/\/doi.org\/10.1007\/s11042-022-14101-6","relation":{},"ISSN":["1380-7501","1573-7721"],"issn-type":[{"value":"1380-7501","type":"print"},{"value":"1573-7721","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,11,16]]},"assertion":[{"value":"21 April 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"28 July 2022","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"25 October 2022","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"16 November 2022","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare no competing interests.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}},{"value":"I confirm I have included a data availability statement in my main manuscript file.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}