{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T00:33:09Z","timestamp":1726446789231},"reference-count":109,"publisher":"Springer Science and Business Media LLC","issue":"12","license":[{"start":{"date-parts":[[2022,10,3]],"date-time":"2022-10-03T00:00:00Z","timestamp":1664755200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2022,10,3]],"date-time":"2022-10-03T00:00:00Z","timestamp":1664755200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100007343","name":"Universit\u00e0 degli Studi di Brescia","doi-asserted-by":"crossref","id":[{"id":"10.13039\/501100007343","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimed Tools Appl"],"published-print":{"date-parts":[[2023,5]]},"abstract":"Abstract<\/jats:title>In the last years, due to the availability and easy of use of image editing tools, a large amount of fake and altered images have been produced and spread through the media and the Web. A lot of different approaches have been proposed in order to assess the authenticity of an image and in some cases to localize the altered (forged) areas. In this paper, we conduct a survey of some of the most recent image forgery detection methods that are specifically designed upon Deep Learning (DL) techniques, focusing on commonly found copy-move and splicing attacks. DeepFake generated content is also addressed insofar as its application is aimed at images, achieving the same effect as splicing. This survey is especially timely because deep learning powered techniques appear to be the most relevant right now, since they give the best overall performances on the available benchmark datasets. We discuss the key-aspects of these methods, while also describing the datasets on which they are trained and validated. We also discuss and compare (where possible) their performance. Building upon this analysis, we conclude by addressing possible future research trends and directions, in both deep learning architectural and evaluation approaches, and dataset building for easy methods comparison.<\/jats:p>","DOI":"10.1007\/s11042-022-13797-w","type":"journal-article","created":{"date-parts":[[2022,10,3]],"date-time":"2022-10-03T04:02:36Z","timestamp":1664769756000},"page":"17521-17566","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":38,"title":["Image forgery detection: a survey of recent deep-learning approaches"],"prefix":"10.1007","volume":"82","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-5529-2408","authenticated-orcid":false,"given":"Marcello","family":"Zanardelli","sequence":"first","affiliation":[]},{"given":"Fabrizio","family":"Guerrini","sequence":"additional","affiliation":[]},{"given":"Riccardo","family":"Leonardi","sequence":"additional","affiliation":[]},{"given":"Nicola","family":"Adami","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,10,3]]},"reference":[{"issue":"09","key":"13797_CR1","doi-asserted-by":"publisher","first-page":"286","DOI":"10.3390\/info10090286","volume":"10","author":"Y Abdalla","year":"2019","unstructured":"Abdalla Y, Iqbal T, Shehata M (2019) Copy-move forgery detection and localization using a generative adversarial network and convolutional neural-network. Information 10(09):286. https:\/\/doi.org\/10.3390\/info10090286","journal-title":"Information"},{"key":"13797_CR2","unstructured":"Achanta R, Shaji A, Smith K, Lucchi A, Fua P, S\u00fcsstrunk S (2010) Slic superpixels. Technical report, EPFL"},{"key":"13797_CR3","unstructured":"Adobe Photoshop. https:\/\/www.adobe.com\/it\/products\/photoshop.html. Accessed 16 Mar 2022"},{"key":"13797_CR4","doi-asserted-by":"publisher","unstructured":"Agarwal R, Verma O (2020) An efficient copy move forgery detection using deep learning feature extraction and matching algorithm. Multimed Tools Appl 79. https:\/\/doi.org\/10.1007\/s11042-019-08495-z","DOI":"10.1007\/s11042-019-08495-z"},{"key":"13797_CR5","doi-asserted-by":"publisher","unstructured":"Amerini I, Ballan L, Caldelli R, Del Bimbo A, Serra G (2011) A SIFT-based forensic method for copy-move attack detection and transformation recovery. IEEE Trans Inf Forensics Secur:1099\u20131110. https:\/\/doi.org\/10.1109\/TIFS.2011.2129512","DOI":"10.1109\/TIFS.2011.2129512"},{"key":"13797_CR6","unstructured":"Arnold MK, Schmucker M, Wolthusen SD (2003) Techniques and applications of digital watermarking and content protection. Artech House"},{"key":"13797_CR7","doi-asserted-by":"publisher","first-page":"1825","DOI":"10.1109\/TIFS.2020.3045903","volume":"16","author":"M Barni","year":"2021","unstructured":"Barni M, Phan QT, Tondi B (2021) Copy move source-target disambiguation through multi-branch cnns. IEEE Trans Inf Forensics Secur 16:1825\u20131840","journal-title":"IEEE Trans Inf Forensics Secur"},{"key":"13797_CR8","doi-asserted-by":"publisher","unstructured":"Bas P, Filler T, Pevny\u0300 T (2011) Break our steganographic system the ins and outs of organizing BOSS. In: International workshop on information hiding, pp 59\u201370. https:\/\/doi.org\/10.1007\/978-3-642-24178-9_5","DOI":"10.1007\/978-3-642-24178-9_5"},{"issue":"3","key":"13797_CR9","doi-asserted-by":"publisher","first-page":"346","DOI":"10.1016\/j.cviu.2007.09.014","volume":"110","author":"H Bay","year":"2008","unstructured":"Bay H, Ess A, Tuytelaars T, Van Goo L (2008) Speeded-up robust features (surf). Comp Vision Image Underst 110(3):346\u2013359. https:\/\/doi.org\/10.1016\/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia","journal-title":"Comp Vision Image Underst"},{"key":"13797_CR10","unstructured":"Blog post on Elcomsoft, April 2011. https:\/\/blog.elcomsoft.com\/2011\/04\/nikon-image-authentication-system-compromised\/. Accessed 16 Mar 2022"},{"issue":"3","key":"13797_CR11","doi-asserted-by":"publisher","first-page":"226","DOI":"10.1016\/j.diin.2013.04.007","volume":"10","author":"GK Birajdar","year":"2013","unstructured":"Birajdar GK, Mankar VH (2013) Digital image forgery detection using passive techniques: a survey. Digit Investig 10(3):226\u2013245. https:\/\/doi.org\/10.1016\/j.diin.2013.04.007","journal-title":"Digit Investig"},{"key":"13797_CR12","doi-asserted-by":"crossref","unstructured":"Cao Z, Gao H, Mangalam K, Cai Q-Z, Vo M, Malik J (2020) Long-term human motion prediction with scene context. In: Vedaldi A, Bischof H, Brox T, Frahm J-M (eds) Computer vision - ECCV, pp 387\u2013404","DOI":"10.1007\/978-3-030-58452-8_23"},{"key":"13797_CR13","unstructured":"Chen T, Bing X, Zhang C, Guestrin C (2016) Training deep nets with sublinear memory cost"},{"key":"13797_CR14","doi-asserted-by":"publisher","first-page":"116287","DOI":"10.1016\/j.image.2021.116287","volume":"95","author":"J Chen","year":"2021","unstructured":"Chen J, Liao X, Qin Z (2021) Identifying tampering operations in image operator chains based on decision fusion. Sig Process Image Commun 95:116287. https:\/\/doi.org\/10.1016\/j.image.2021.116287","journal-title":"Sig Process Image Commun"},{"key":"13797_CR15","doi-asserted-by":"publisher","unstructured":"Chollet F (2017) Xception: deep learning with depthwise separable convolutions, pp 1800\u20131807. https:\/\/doi.org\/10.1109\/CVPR.2017.195","DOI":"10.1109\/CVPR.2017.195"},{"key":"13797_CR16","doi-asserted-by":"publisher","unstructured":"Christlein V, Riess C, Angelopoulou E (2010) On rotation invariance in copy-move forgery detection. In: 2010 IEEE international workshop on information forensics and security, pp 1\u20136. https:\/\/doi.org\/10.1109\/WIFS.2010.5711472","DOI":"10.1109\/WIFS.2010.5711472"},{"issue":"6","key":"13797_CR17","doi-asserted-by":"publisher","first-page":"1841","DOI":"10.1109\/TIFS.2012.2218597","volume":"7","author":"V Christlein","year":"2012","unstructured":"Christlein V, Riess C, Jordan J, Riess C, Angelopoulou E (2012) An evaluation of popular copy-move forgery detection approaches. IEEE Trans Inf Forensics Secur 7(6):1841\u20131854. https:\/\/doi.org\/10.1109\/TIFS.2012.2218597","journal-title":"IEEE Trans Inf Forensics Secur"},{"key":"13797_CR18","doi-asserted-by":"publisher","first-page":"144","DOI":"10.1109\/TIFS.2019.2916364","volume":"15","author":"D Cozzolino","year":"2020","unstructured":"Cozzolino D, Verdoliva L (2020) Noiseprint: a cnn-based camera model fingerprint. IEEE Trans Inf Forensics Secur 15:144\u2013159. https:\/\/doi.org\/10.1109\/TIFS.2019.2916364","journal-title":"IEEE Trans Inf Forensics Secur"},{"issue":"7","key":"13797_CR19","doi-asserted-by":"publisher","first-page":"1182","DOI":"10.1109\/TIFS.2013.2265677","volume":"8","author":"TJ de Carvalho","year":"2013","unstructured":"de Carvalho TJ, Riess C, Angelopoulou E, Pedrini H, de Rezende Rocha A (2013) Exposing digital image forgeries by illumination color classification. IEEE Trans Inf Forensics Secur 8(7):1182\u20131194. https:\/\/doi.org\/10.1109\/TIFS.2013.2265677","journal-title":"IEEE Trans Inf Forensics Secur"},{"key":"13797_CR20","doi-asserted-by":"publisher","unstructured":"Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical image database. In: CVPR. https:\/\/doi.org\/10.1109\/WIFS.2010.5711472","DOI":"10.1109\/WIFS.2010.5711472"},{"key":"13797_CR21","doi-asserted-by":"publisher","unstructured":"Dittmann J (2001) Content-fragile watermarking for image authentication. In: Security and watermarking of multimedia contents III, vol 4314, pp 175\u2013184. International Society for Optics and Photonics. https:\/\/doi.org\/10.1117\/12.435398","DOI":"10.1117\/12.435398"},{"key":"13797_CR22","unstructured":"Doegar A, Dutta M, Gaurav K (2019) Cnn based image forgery detection using pre-trained alexnet model. Electronic"},{"key":"13797_CR23","unstructured":"Dolhansky B, Howes R, Pflaum, Baram N, Ferrer C (2019) The deepfake detection challenge dfdc preview dataset"},{"key":"13797_CR24","doi-asserted-by":"publisher","unstructured":"Dong J, Wang W, Tan T (2013) Casia image tampering detection evaluation database. In: 2013 IEEE China summit and international conference on signal and information processing, pp 422\u2013426. https:\/\/doi.org\/10.1109\/ChinaSIP.2013.6625374","DOI":"10.1109\/ChinaSIP.2013.6625374"},{"key":"13797_CR25","doi-asserted-by":"publisher","unstructured":"Elaskily M, Elnemr H, Sedik A, Dessouky M, El Banby G, Elaskily O, Khalaf AAM, Aslan H, Faragallah O, El-Samie FA (2020) A novel deep learning framework for copy-move forgery detection in images. Multimed Tools Appl 79. https:\/\/doi.org\/10.1007\/s11042-020-08751-7","DOI":"10.1007\/s11042-020-08751-7"},{"key":"13797_CR26","doi-asserted-by":"crossref","unstructured":"Eykholt K, Evtimov I, Fernandes E, Li B, Rahmati A, Xiao C, Prakash A, Kohno T, Song DX (2018) Robust physical-world attacks on deep learning visual classification. In: 2018 IEEE\/CVF conference on computer vision and pattern recognition, pp 1625\u20131634","DOI":"10.1109\/CVPR.2018.00175"},{"key":"13797_CR27","unstructured":"Faceswap. https:\/\/github.com\/deepfakes\/faceswap. Accessed 16 Mar 2022"},{"key":"13797_CR28","unstructured":"Farid H (1999) Detecting digital forgeries using bispectral analysis. AI Lab, Massachusetts Institute of Technology, Tech Rep AIM-1657"},{"issue":"04","key":"13797_CR29","doi-asserted-by":"publisher","first-page":"16","DOI":"10.1109\/MSP.2008.931079","volume":"26","author":"H Farid","year":"2009","unstructured":"Farid H (2009) Image forgery detection: a survey. Signal Proc Mag IEEE 26(04):16\u201325. https:\/\/doi.org\/10.1109\/MSP.2008.931079","journal-title":"Signal Proc Mag IEEE"},{"issue":"6","key":"13797_CR30","doi-asserted-by":"publisher","first-page":"381","DOI":"10.1145\/358669.358692","volume":"24","author":"M Fischler","year":"1981","unstructured":"Fischler M, Bolles R (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381\u2013395. https:\/\/doi.org\/10.1145\/358669.358692","journal-title":"Commun ACM"},{"key":"13797_CR31","unstructured":"Fridrich J, Soukal D, Luk\u00e1s J (2003) Detection of copy move forgery in digital images. Proc. Digital Forensic Research Workshop"},{"key":"13797_CR32","doi-asserted-by":"publisher","unstructured":"Fridrich J, Chen M, Goljan M (2007) Imaging sensor noise as digital x-ray for revealing forgeries. In: Proceedings of the 9th international workshop on information hiding, Sant Malo, France, pp 342\u2013358. https:\/\/doi.org\/10.1007\/978-3-540-77370-2_23","DOI":"10.1007\/978-3-540-77370-2_23"},{"key":"13797_CR33","unstructured":"Gimp. https:\/\/www.gimp.org\/. Accessed 16 Mar 2022"},{"key":"13797_CR34","first-page":"279","volume":"17","author":"E Goldman","year":"2018","unstructured":"Goldman E (2018) The complicated story of FOSTA and Section 230. First Amend L Rev 17:279","journal-title":"First Amend L Rev"},{"key":"13797_CR35","unstructured":"Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial networks. Adv Neural Inf Process Syst 3"},{"key":"13797_CR36","unstructured":"Goodfellow I, Shlens J, Szegedy C (2014) Explaining and harnessing adversarial examples, vol 12. arXiv:1412.6572"},{"key":"13797_CR37","doi-asserted-by":"crossref","unstructured":"Hinton GE, Krizhevsky A, Wang SD (2011) Transforming auto-encoders. In: Honkela T, Duch W, Girolami M, Kaski S (eds) Artificial Neural Networks and Machine Learning \u2013 ICANN 2011. Springer, Berlin, pp 44\u201351","DOI":"10.1007\/978-3-642-21735-7_6"},{"key":"13797_CR38","doi-asserted-by":"publisher","unstructured":"Huynh TK, Huynh KV, Le-Tien T, Nguyen SC (2015) A survey on image forgery detection techniques. In: The 2015 IEEE RIVF international conference on computing & communication technologies-research, innovation, and vision for future (RIVF). IEEE, pp 71\u201376. https:\/\/doi.org\/10.1109\/RIVF.2015.7049877https:\/\/doi.org\/10.1109\/RIVF.2015.7049877","DOI":"10.1109\/RIVF.2015.7049877 10.1109\/RIVF.2015.7049877"},{"key":"13797_CR39","unstructured":"Interactive Web demo: Whichfaceisreal. https:\/\/www.whichfaceisreal.com\/index.php. Accessed 16 Mar 2022"},{"key":"13797_CR40","doi-asserted-by":"publisher","unstructured":"Johnson MK, Farid H (2005) Exposing digital forgeries by detecting inconsistencies in lighting. In: Proceedings of the ACM multimedia and security workshop, New York, NY, pp 1\u201310. https:\/\/doi.org\/10.1145\/0731701073171","DOI":"10.1145\/0731701073171"},{"key":"13797_CR41","doi-asserted-by":"publisher","unstructured":"Johnson MK, Farid H (2006) Exposing digital forgeries through chromatic aberration. In: Proceedings of the ACM multimedia and security workshop, Geneva, pp 48\u201355. https:\/\/doi.org\/10.1145\/1161366.1161376","DOI":"10.1145\/1161366.1161376"},{"key":"13797_CR42","unstructured":"Johnson MK, Farid H (2006) Metric measurements on a plane from a single image. Tech Rep TR2006- 579"},{"key":"13797_CR43","doi-asserted-by":"publisher","unstructured":"Johnson MK, Farid H (2007) Detecting photographic composites of people. In: Proceedings of the 6th international workshop on digital watermarking, Guangzhou. https:\/\/doi.org\/10.1007\/978-3-540-92238-4_3","DOI":"10.1007\/978-3-540-92238-4_3"},{"key":"13797_CR44","doi-asserted-by":"publisher","unstructured":"Johnson MK, Farid H (2007) Exposing digital forgeries through specular highlights on the eye. In: Proceedings of the 9th international workshop on information hiding, Saint Malo, France, pp 311\u2013325. https:\/\/doi.org\/10.1007\/978-3-540-77370-2_21","DOI":"10.1007\/978-3-540-77370-2_21"},{"key":"13797_CR45","doi-asserted-by":"publisher","unstructured":"Karras T, Laine S, Aila T (2019) A style-based generator architecture for generative adversarial networks, pp 4396\u20134405. https:\/\/doi.org\/10.1109\/CVPR.2019.00453","DOI":"10.1109\/CVPR.2019.00453"},{"key":"13797_CR46","unstructured":"Keek. https:\/\/keeex.me\/products\/. Accessed 16 Mar 2022"},{"issue":"1","key":"13797_CR47","doi-asserted-by":"publisher","first-page":"82","DOI":"10.3390\/s21010082","volume":"21","author":"K Koptyra","year":"2021","unstructured":"Koptyra K, Ogiela MR (2021) Imagechain\u2014application of blockchain technology for images. Sensors 21(1):82. https:\/\/doi.org\/10.3390\/s21010082","journal-title":"Sensors"},{"key":"13797_CR48","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.dsp.2017.08.009","volume":"71","author":"P Korus","year":"2017","unstructured":"Korus P (2017) Digital image integrity\u2013a survey of protection and verification techniques. Digit Signal Process 71:1\u201326. https:\/\/doi.org\/10.1016\/j.dsp.2017.08.009","journal-title":"Digit Signal Process"},{"key":"13797_CR49","doi-asserted-by":"publisher","unstructured":"Korus P, Huang J (2016) Evaluation of random field models in multi-modal unsupervised tampering localization. In: 2016 IEEE international workshop on information forensics and security (WIFS), pp 1\u20136. https:\/\/doi.org\/10.1109\/WIFS.2016.7823898","DOI":"10.1109\/WIFS.2016.7823898"},{"key":"13797_CR50","doi-asserted-by":"crossref","unstructured":"Korus P, Huang J (2017) Multi-scale analysis strategies in prnu-based tampering localization. IEEE Trans Inf Forensic Secur","DOI":"10.1109\/TIFS.2016.2636089"},{"key":"13797_CR51","unstructured":"Kowalski M (2016) https:\/\/github.com\/MarekKowalski\/FaceSwap\/. Accessed 16 Mar 2022"},{"key":"13797_CR52","unstructured":"Krizhevsky A, Nair V, Hinton G (2009) Cifar-10 (Canadian Institute for Advanced Research)"},{"key":"13797_CR53","doi-asserted-by":"publisher","unstructured":"Krizhevsky A, Sutskever I, Geoffrey H (2012) Imagenet classification with deep convolutional neural networks. Neural Inf Process Syst 25. https:\/\/doi.org\/10.1145\/3065386","DOI":"10.1145\/3065386"},{"key":"13797_CR54","unstructured":"Kurakin A, Goodfellow I, Bengio S (2016) Adversarial examples in the physical world"},{"key":"13797_CR55","unstructured":"LeCun Y, Cortes C (2010) MNIST handwritten digit database. http:\/\/yann.lecun.com\/exdb\/mnist\/. Accessed 16 Mar 2022 [cited 2016-01-14 14:24:11]"},{"issue":"7553","key":"13797_CR56","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y LeCun","year":"2015","unstructured":"LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521 (7553):436\u2013444. https:\/\/doi.org\/10.1038\/nature14539","journal-title":"Nature"},{"key":"13797_CR57","unstructured":"Li Y, Lyu S (2018) Exposing deepfake videos by detecting face warping artifacts"},{"key":"13797_CR58","doi-asserted-by":"publisher","unstructured":"Li Y, Chang MC, Lyu S (2018) In ictu oculi: exposing ai created fake videos by detecting eye blinking, pp 1\u20137. https:\/\/doi.org\/10.1109\/WIFS.2018.8630787","DOI":"10.1109\/WIFS.2018.8630787"},{"key":"13797_CR59","doi-asserted-by":"publisher","unstructured":"Li Y, Yang X, Qi H, Lyu S (2016) Celeb-df: a large-scale challenging dataset for deepfake forensics, pp 3204\u20133213. https:\/\/doi.org\/10.1109\/CVPR42600.2020.00327","DOI":"10.1109\/CVPR42600.2020.00327"},{"issue":"5","key":"13797_CR60","doi-asserted-by":"publisher","first-page":"955","DOI":"10.1109\/JSTSP.2020.3002391","volume":"14","author":"X Liao","year":"2020","unstructured":"Liao X, Li K, Zhu X, Liu KJR (2020) Robust detection of image operator chain with two-stream convolutional neural network. IEEE J Sel Top Signal Process 14(5):955\u2013968. https:\/\/doi.org\/10.1109\/JSTSP.2020.3002391","journal-title":"IEEE J Sel Top Signal Process"},{"key":"13797_CR61","doi-asserted-by":"publisher","unstructured":"Liao X, Huang Z, Peng L, Qiao T (2021) First step towards parameters estimation of image operator chain. Inf Sci 575. https:\/\/doi.org\/10.1016\/j.ins.2021.06.045","DOI":"10.1016\/j.ins.2021.06.045"},{"key":"13797_CR62","doi-asserted-by":"publisher","first-page":"60","DOI":"10.1016\/j.media.2017.07.005","volume":"42","author":"G Litjens","year":"2017","unstructured":"Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Ginneken BV, S\u00e1nchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60\u201388. https:\/\/doi.org\/10.1016\/j.media.2017.07.005","journal-title":"Med Image Anal"},{"key":"13797_CR63","doi-asserted-by":"crossref","unstructured":"Liu G, Reda F, Shih K, Wang TC, Tao A, Catanzaro B (2018) Image inpainting for irregular holes using partial convolutions","DOI":"10.1007\/978-3-030-01252-6_6"},{"key":"13797_CR64","doi-asserted-by":"publisher","unstructured":"L\u00f3pez-Garc\u00eda X, Silva-Rodr\u00edguez A, Vizoso-Garc\u00eda AA, Oscar W, Westlund J (2019) Mobile journalism: systematic literature review. Comunicar Media Educ Res J 27(1). https:\/\/doi.org\/10.3916\/C59-2019-01","DOI":"10.3916\/C59-2019-01"},{"key":"13797_CR65","doi-asserted-by":"publisher","unstructured":"Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision 60:91\u2013. https:\/\/doi.org\/10.1023\/B:VISI.0000029664.99615.94","DOI":"10.1023\/B:VISI.0000029664.99615.94"},{"issue":"10","key":"13797_CR66","doi-asserted-by":"publisher","first-page":"1579","DOI":"10.1109\/83.951542","volume":"10","author":"C-S Lu","year":"2001","unstructured":"Lu C-S, Liao H-YM (2001) Multipurpose watermarking for image authentication and protection. IEEE Trans Image Process 10(10):1579\u20131592. https:\/\/doi.org\/10.1109\/83.951542","journal-title":"IEEE Trans Image Process"},{"key":"13797_CR67","doi-asserted-by":"publisher","unstructured":"Luk\u00e1s J, Fridrich J (2003) Estimation of primary quantization matrix in double compressed jpeg images. Proc Digital Forensic Research Workshop. https:\/\/doi.org\/10.1117\/12.759155","DOI":"10.1117\/12.759155"},{"key":"13797_CR68","doi-asserted-by":"publisher","unstructured":"Majumder MTH, Alim Al Islam ABM (2018) A tale of a deep learning approach to image forgery detection. In: 2018 5th international conference on networking, systems and security (NSysS), pp 1\u20139. https:\/\/doi.org\/10.1109\/NSysS.2018.8631389","DOI":"10.1109\/NSysS.2018.8631389"},{"key":"13797_CR69","doi-asserted-by":"crossref","unstructured":"Marra F, Gragnaniello D, Verdoliva L, Poggi G (2020) A full-image full-resolution end-to-end-trainable cnn framework for image forgery detection. IEEE Access:1\u20131.","DOI":"10.1109\/ACCESS.2020.3009877"},{"issue":"12","key":"13797_CR70","doi-asserted-by":"publisher","first-page":"6109","DOI":"10.1109\/TIP.2018.2865674","volume":"27","author":"D Moreira","year":"2018","unstructured":"Moreira D, Bharati A, Brogan J, Pinto A, Parowski M, Bowyer KW, Flynn PJ, Rocha A, Scheirer WJ (2018) Image provenance analysis at scale. IEEE Trans Image Process 27(12):6109\u20136123","journal-title":"IEEE Trans Image Process"},{"key":"13797_CR71","doi-asserted-by":"publisher","unstructured":"Muzaffer G, Ulutas G (2019) A new deep learning-based method to detection of copy-move forgery in digital images. In: 2019 Scientific meeting on electrical-electronics biomedical engineering and computer science (EBBT), pp 1\u20134. https:\/\/doi.org\/10.1109\/EBBT.2019.8741657","DOI":"10.1109\/EBBT.2019.8741657"},{"key":"13797_CR72","doi-asserted-by":"crossref","unstructured":"Nguyen H, Yamagishi J, Echizen I (2019) Use of a capsule network to detect fake images and videos","DOI":"10.1109\/ICASSP.2019.8682602"},{"issue":"1","key":"13797_CR73","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s41235-017-0067-2","volume":"2","author":"SJ Nightingale","year":"2017","unstructured":"Nightingale SJ, Wade KA, Watson DG (2017) Can people identify original and manipulated photos of real-world scenes?. Cognitive Research: Principles and Implications 2(1):1\u201321. https:\/\/doi.org\/10.1186\/s41235-017-0067-2","journal-title":"Cognitive Research: Principles and Implications"},{"key":"13797_CR74","doi-asserted-by":"publisher","unstructured":"Nikolaidis N, Pitas I (1996) Copyright protection of images using robust digital signatures. In: 1996 IEEE international conference on acoustics, speech, and signal processing conference proceedings, vol 4. IEEE, pp 2168\u20132171. https:\/\/doi.org\/10.1109\/ICASSP.1996.545849","DOI":"10.1109\/ICASSP.1996.545849"},{"key":"13797_CR75","doi-asserted-by":"publisher","unstructured":"Nilsback M, Zisserman A (2008) Automated flower classification over a large number of classes. In: 2008 Sixth Indian conference on computer vision, simage processing, pp 722\u2013729. https:\/\/doi.org\/10.1109\/ICVGIP.2008.47","DOI":"10.1109\/ICVGIP.2008.47"},{"key":"13797_CR76","unstructured":"Numbersprotocol.io. https:\/\/numbersprotocol.io\/. Accessed 16 Mar 2022"},{"key":"13797_CR77","unstructured":"Online article on Arstechnica, May 2007 https:\/\/arstechnica.com\/uncategorized\/2007\/05\/latest-aacs-revision-defeated-a-week-before-release\/. Accessed 16 Mar 2022"},{"key":"13797_CR78","doi-asserted-by":"publisher","unstructured":"Ouyang J, Liu Y, Liao M (2017) Copy-move forgery detection based on deep learning. In: 2017 10th international congress on image and signal processing, BioMedical engineering and informatics (CISP-BMEI), pp 1\u20135. https:\/\/doi.org\/10.1109\/CISP-BMEI.2017.8301940","DOI":"10.1109\/CISP-BMEI.2017.8301940"},{"issue":"1","key":"13797_CR79","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.comcom.2011.10.005","volume":"35","author":"A Passarella","year":"2012","unstructured":"Passarella A (2012) A survey on content-centric technologies for the current internet CDN and P2P solutions. Comput Commun 35(1):1\u201332. https:\/\/doi.org\/10.1016\/j.comcom.2011.10.005","journal-title":"Comput Commun"},{"key":"13797_CR80","unstructured":"Philbin J, randjelovi\u0107 R, Zisserman A (2007) The Oxford Buildings Dataset. https:\/\/www.robots.ox.ac.uk\/vgg\/data\/oxbuildings\/. Accessed 16 Mar 2022"},{"key":"13797_CR81","doi-asserted-by":"publisher","unstructured":"Piva A (2013) An overview on image forensics. International Scholarly Research Notices 2013. https:\/\/doi.org\/10.1155\/2013\/496701","DOI":"10.1155\/2013\/496701"},{"key":"13797_CR82","unstructured":"Popescu AC, Farid H (2004) Exposing digital forgeries by detecting duplicated image regions. Tech. Rep. TR2004-515"},{"issue":"2","key":"13797_CR83","doi-asserted-by":"publisher","first-page":"758","DOI":"10.1109\/TSP.2004.839932","volume":"53","author":"AC Popescu","year":"2005","unstructured":"Popescu AC, Farid H (2005) Exposing digital forgeries by detecting traces of re-sampling. IEEE Trans Signal Process 53(2):758\u2013767. https:\/\/doi.org\/10.1109\/TSP.2004.839932","journal-title":"IEEE Trans Signal Process"},{"key":"13797_CR84","doi-asserted-by":"publisher","first-page":"46","DOI":"10.1016\/j.image.2015.08.008","volume":"39","author":"MA Qureshi","year":"2015","unstructured":"Qureshi MA, Deriche M (2015) A bibliography of pixel-based blind image forgery detection techniques. Signal Process Image Commun 39:46\u201374. https:\/\/doi.org\/10.1016\/j.image.2015.08.008","journal-title":"Signal Process Image Commun"},{"key":"13797_CR85","unstructured":"Rajini NH (2019) Image forgery identification using convolution neural network. Int J Recent Technol Eng 8"},{"key":"13797_CR86","doi-asserted-by":"publisher","unstructured":"Rao Y, Ni J (2016) A deep learning approach to detection of splicing and copy-move forgeries in images. In: 2016 IEEE international workshop on information forensics and security (WIFS), pp 1\u20136. https:\/\/doi.org\/10.1109\/WIFS.2016.7823911","DOI":"10.1109\/WIFS.2016.7823911"},{"key":"13797_CR87","doi-asserted-by":"publisher","unstructured":"Roy S, Sun Q (2007) Robust hash for detecting and localizing image tampering. In: 2007 IEEE international conference on image processing, vol 6. IEEE, pp VI\u2013117. https:\/\/doi.org\/10.1109\/ICIP.2007.4379535","DOI":"10.1109\/ICIP.2007.4379535"},{"key":"13797_CR88","doi-asserted-by":"crossref","unstructured":"R\u00f6ssler A, Cozzolino D, Verdoliva L, Riess C, Thies J, Nie\u00dfner M (2019) Faceforensics++: learning to detect manipulated facial images","DOI":"10.1109\/ICCV.2019.00009"},{"key":"13797_CR89","doi-asserted-by":"publisher","unstructured":"Rublee E, Rabaud V, Konolige K, Bradski G (2011) Orb: an efficient alternative to sift or surf. In: 2011 International conference on computer vision, pp 2564\u20132571. https:\/\/doi.org\/10.1109\/ICCV.2011.6126544","DOI":"10.1109\/ICCV.2011.6126544"},{"key":"13797_CR90","doi-asserted-by":"publisher","unstructured":"Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg A, Fei-Fei L (2014) Imagenet large scale visual recognition challenge. Int J Comput Vision 115. https:\/\/doi.org\/10.1007\/s11263-015-0816-y","DOI":"10.1007\/s11263-015-0816-y"},{"key":"13797_CR91","doi-asserted-by":"publisher","unstructured":"Schaefer G, Stich M (2003) UCID: an uncompressed color image database. In: Yeung MM , Lienhart RW, Li CS (eds) Storage and retrieval methods and applications for multimedia 2004, vol 5307. International Society for Optics and Photonics, SPIE, pp 472\u2013480. https:\/\/doi.org\/10.1117\/12.525375","DOI":"10.1117\/12.525375"},{"key":"13797_CR92","doi-asserted-by":"publisher","unstructured":"Schetinger M, Chang S (1996) A robust content based digital signature for image authentication. In: Proceedings of 3rd IEEE international conference on image processing, vol 3. IEEE, pp 227\u2013230. https:\/\/doi.org\/10.1109\/ICIP.1996.560425","DOI":"10.1109\/ICIP.1996.560425"},{"key":"13797_CR93","doi-asserted-by":"publisher","first-page":"142","DOI":"10.1016\/j.cag.2017.08.010","volume":"68","author":"V Schetinger","year":"2017","unstructured":"Schetinger V, Oliveira MM, da Silva R, Carvalho TJ (2017) Humans are easily fooled by digital images. Comput Graph 68:142\u2013151. https:\/\/doi.org\/10.1016\/j.cag.2017.08.010","journal-title":"Comput Graph"},{"issue":"2","key":"13797_CR94","doi-asserted-by":"publisher","first-page":"438","DOI":"10.1177\/1461444818799526","volume":"21","author":"C Shen","year":"2019","unstructured":"Shen C, Kasra M, Pan P, Bassett GA, Malloch Y, F O\u2019Brien J (2019) Fake images: the effects of source, intermediary, and digital media literacy on contextual assessment of image credibility online. New Media & Society 21(2):438\u2013463. https:\/\/doi.org\/10.1177\/1461444818799526","journal-title":"New Media & Society"},{"key":"13797_CR95","unstructured":"Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556"},{"issue":"3","key":"13797_CR96","doi-asserted-by":"publisher","first-page":"150","DOI":"10.1177\/0266382117722446","volume":"34","author":"D Spohr","year":"2017","unstructured":"Spohr D (2017) Fake news and ideological polarization: Filter bubbles and selective exposure on social media. Bus Inf Rev 34(3):150\u2013160. https:\/\/doi.org\/10.1177\/0266382117722446","journal-title":"Bus Inf Rev"},{"key":"13797_CR97","doi-asserted-by":"publisher","unstructured":"Thakur R, Rohilla R (2019) Copy-move forgery detection using residuals and convolutional neural network framework: a novel approach. In: 2019 2nd international conference on power energy, environment and intelligent control PEEIC, pp 561\u2013564. https:\/\/doi.org\/10.1109\/PEEIC47157.2019.8976868","DOI":"10.1109\/PEEIC47157.2019.8976868"},{"key":"13797_CR98","doi-asserted-by":"publisher","first-page":"96","DOI":"10.1145\/3292039","volume":"62","author":"T Thies","year":"2018","unstructured":"Thies T, Zollh\u00f6fer M, Stamminger M, Christian T, Nie\u00dfner M (2018) Face2face: real-time face capture and reenactment of rgb videos. Commun ACM 62:96\u2013104. https:\/\/doi.org\/10.1145\/3292039","journal-title":"Commun ACM"},{"key":"13797_CR99","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3306346.3323035","volume":"38","author":"J Thies","year":"2019","unstructured":"Thies J, Zollh\u00f6fer M, Nie\u00dfner M (2019) Deferred neural rendering: image synthesis using neural textures. ACM Trans Graph 38:1\u201312. https:\/\/doi.org\/10.1145\/3306346.3323035","journal-title":"ACM Trans Graph"},{"key":"13797_CR100","unstructured":"Tralic D, Zupancic I, Grgic S, Grgic M (2013) Comofod \u2014 new database for copy-move forgery detection. In: Proceedings ELMAR-2013, pp 49\u201354"},{"key":"13797_CR101","unstructured":"Various. Columbia image splicing detection evaluation dataset - list of photographers, 2004. https:\/\/www.ee.columbia.edu\/ln\/dvmm\/downloads\/AuthSplicedDataSet\/photographers.htm. Accessed 16 Mar 2022"},{"key":"13797_CR102","doi-asserted-by":"publisher","unstructured":"Verdoliva L (2020) Media forensics and deepfakes: an overview. IEEE J Sel Top Signal Process:1\u20131. https:\/\/doi.org\/10.1109\/JSTSP.2020.3002101","DOI":"10.1109\/JSTSP.2020.3002101"},{"key":"13797_CR103","doi-asserted-by":"publisher","first-page":"259","DOI":"10.1016\/j.jnca.2016.09.008","volume":"75","author":"NBA Warif","year":"2016","unstructured":"Warif NBA, Wahab AWA, dris MYI, Ramli R, Salleh R, Shamshirband S, Choo K-KR (2016) Copy-move forgery detection: Survey, challenges and future directions. J Netw Comput Appl 75:259\u2013278. https:\/\/doi.org\/10.1016\/j.jnca.2016.09.008","journal-title":"J Netw Comput Appl"},{"key":"13797_CR104","doi-asserted-by":"crossref","unstructured":"Wojna Z, Ferrari V, Guadarrama S, Silberman N, Chen LC, Fathi A, Uijlings J (2017) The devil is in the decoder. In: British machine vision conference (BMVC), pp 1\u201313","DOI":"10.5244\/C.31.10"},{"key":"13797_CR105","doi-asserted-by":"publisher","unstructured":"Wu Y, Abd-Almageed W, Natarajan P (2018) Busternet: detecting copy-move image forgery with source\/target localization. In: Proceedings of the European conference on computer vision (ECCV), pp 168\u2013184. https:\/\/doi.org\/10.1007\/978-3-030-01231-1_11","DOI":"10.1007\/978-3-030-01231-1_11"},{"key":"13797_CR106","doi-asserted-by":"publisher","unstructured":"Wu Y, AbdAlmageed W, Natarajan P (2019) Mantra-net: manipulation tracing network for detection and localization of image forgeries with anomalous features. In: 2019 IEEE\/CVF conference on computer vision and pattern recognition (CVPR), pp 9535\u20139544. https:\/\/doi.org\/10.1109\/CVPR.2019.00977","DOI":"10.1109\/CVPR.2019.00977"},{"key":"13797_CR107","doi-asserted-by":"publisher","unstructured":"Zhang Y, Goh J, Win LL, Vrizlynn T (2016) Image region forgery detection: a deep learning approach. In: SG-CRC, pp 1\u201311. https:\/\/doi.org\/10.3233\/978-1-61499-617-0-1","DOI":"10.3233\/978-1-61499-617-0-1"},{"issue":"7","key":"13797_CR108","doi-asserted-by":"publisher","first-page":"3142","DOI":"10.1109\/TIP.2017.2662206","volume":"26","author":"K Zhang","year":"2017","unstructured":"Zhang K, Zuo W, Cheng Y, Meng D, Zhang L (2017) Beyond a gaussian denoiser: residual learning of deep cnn for image denoising. IEEE Trans Image Process 26(7):3142\u20133155. https:\/\/doi.org\/10.1109\/TIP.2017.2662206","journal-title":"IEEE Trans Image Process"},{"key":"13797_CR109","doi-asserted-by":"publisher","first-page":"146","DOI":"10.1016\/j.inffus.2017.10.006","volume":"42","author":"Q Zhang","year":"2018","unstructured":"Zhang Q, Yang LT, Chen Z, Li P (2018) A survey on deep learning for big data. Information Fusion 42:146\u2013157. https:\/\/doi.org\/10.1016\/j.inffus.2017.10.006","journal-title":"Information Fusion"}],"container-title":["Multimedia Tools and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-022-13797-w.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11042-022-13797-w\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-022-13797-w.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,4,20]],"date-time":"2023-04-20T14:51:27Z","timestamp":1682002287000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11042-022-13797-w"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10,3]]},"references-count":109,"journal-issue":{"issue":"12","published-print":{"date-parts":[[2023,5]]}},"alternative-id":["13797"],"URL":"https:\/\/doi.org\/10.1007\/s11042-022-13797-w","relation":{},"ISSN":["1380-7501","1573-7721"],"issn-type":[{"value":"1380-7501","type":"print"},{"value":"1573-7721","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,10,3]]},"assertion":[{"value":"11 August 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"23 March 2022","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"5 September 2022","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"3 October 2022","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of Interests"}}]}}