{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T05:52:55Z","timestamp":1725947575096},"reference-count":53,"publisher":"Springer Science and Business Media LLC","issue":"26","license":[{"start":{"date-parts":[[2022,4,23]],"date-time":"2022-04-23T00:00:00Z","timestamp":1650672000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,4,23]],"date-time":"2022-04-23T00:00:00Z","timestamp":1650672000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["81770584"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimed Tools Appl"],"published-print":{"date-parts":[[2022,11]]},"DOI":"10.1007\/s11042-022-13135-0","type":"journal-article","created":{"date-parts":[[2022,4,23]],"date-time":"2022-04-23T07:02:55Z","timestamp":1650697375000},"page":"38001-38018","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Three feature streams based on a convolutional neural network for early esophageal cancer identification"],"prefix":"10.1007","volume":"81","author":[{"given":"Zheng","family":"Wang","sequence":"first","affiliation":[]},{"given":"Zhaoying","family":"Li","sequence":"additional","affiliation":[]},{"given":"Ying","family":"Xiao","sequence":"additional","affiliation":[]},{"given":"Xiaowei","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6658-2187","authenticated-orcid":false,"given":"Muzhou","family":"Hou","sequence":"additional","affiliation":[]},{"given":"Shuijiao","family":"Chen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,4,23]]},"reference":[{"issue":"10","key":"13135_CR1","doi-asserted-by":"publisher","first-page":"239","DOI":"10.4253\/wjge.v10.i10.239","volume":"10","author":"M Alagappan","year":"2018","unstructured":"Alagappan M, Brown JRG, Mori Y, Berzin TM (2018) Artificial intelligence in gastrointestinal endoscopy : the future is almost here. World J Gastrointestinal Endoscopy 10(10):239\u2013249","journal-title":"World J Gastrointestinal Endoscopy"},{"key":"13135_CR2","doi-asserted-by":"crossref","unstructured":"Balasubramanian M (2002) The isomap algorithm and topological stability. Science 295(5552):7a\u201377a","DOI":"10.1126\/science.295.5552.7a"},{"key":"13135_CR3","doi-asserted-by":"crossref","unstructured":"Bang C, Cho B, Baik G (2020) Automated classification of gastric neoplasms in endoscopic images using a convolutional neural network. c Georg Thieme Verlag KG 52:eP295 1","DOI":"10.1055\/s-0040-1705298"},{"key":"13135_CR4","doi-asserted-by":"crossref","unstructured":"Bo L, Ren X, Fox D (2010) Kernel descriptors for visual recognition[C]\/\/Adv Neural Inf Process Systems. 244\u2013252","DOI":"10.1109\/IROS.2011.6095119"},{"key":"13135_CR5","unstructured":"Bochkovskiy A, Wang CY, Liao HYM (2020) Yolov4: Optimal speed and accuracy of object detection. [J]. arXiv preprint arXiv:2004.10934"},{"issue":"2","key":"13135_CR6","doi-asserted-by":"publisher","first-page":"110","DOI":"10.4253\/wjge.v7.i2.110","volume":"7","author":"A Boeriu","year":"2015","unstructured":"Boeriu A (2015) Narrow-band imaging with magnifying endoscopy for the evaluation of gastrointestinal lesions. World J Gastrointestinal Endoscopy 7(2):110","journal-title":"World J Gastrointestinal Endoscopy"},{"key":"13135_CR7","doi-asserted-by":"crossref","unstructured":"Borgli H, Thambawita V, Smedsrud PH, Hicks SA, Lange TD Hyperkvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci Data 7(1):1\u201314","DOI":"10.1038\/s41597-020-00622-y"},{"issue":"6","key":"13135_CR8","doi-asserted-by":"publisher","first-page":"986","DOI":"10.1002\/for.2663","volume":"39","author":"Y Chen","year":"2020","unstructured":"Chen Y, Xie X, Zhang T, Bai J, Hou M (2020) A deep residual compensation extreme learning machine and applications. J Forecast 39(6):986\u2013999","journal-title":"J Forecast"},{"issue":"3","key":"13135_CR9","doi-asserted-by":"publisher","first-page":"250","DOI":"10.1590\/s0004-2803.201700000-19","volume":"54","author":"P CMPS","year":"2017","unstructured":"CMPS P, DTHD M, RBP A, Guedes HG, Kumbhari V, EGHd M (2017) Lugol\u2019s iodine chromoendoscopy versus narrow band image enhanced endoscopy for the detection of esophageal cancer in patients with stenosis secondary to caustic\/corrosive agent ingestion. Arquivos de gastroenterologia 54(3):250\u2013254","journal-title":"Arquivos de gastroenterologia"},{"issue":"1","key":"13135_CR10","first-page":"154","volume":"15","author":"P Dayan","year":"2001","unstructured":"Dayan P, Abbott L (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. Philos Psychol 15(1):154\u2013155","journal-title":"Philos Psychol"},{"key":"13135_CR11","doi-asserted-by":"crossref","unstructured":"Ding Z, Shi H, Zhang H, Meng L, Hou X (2019) Gastroenterologist-level identifcation of small-bowel diseases and normal variants by capsule endoscopy using a deep-learning model. Gastroenterology 157(4)","DOI":"10.1053\/j.gastro.2019.06.025"},{"key":"13135_CR12","doi-asserted-by":"crossref","unstructured":"Du X, Li Y, Yao J, Chen B, Yang X (2018) Loid-eec: Localizing and identifying early esophageal cancer based on deep learning in screening chromoendoscopy. in: the 2018 the 2nd International Conference, pp.17\u201322","DOI":"10.1145\/3301506.3301540"},{"key":"13135_CR13","unstructured":"Duchi J, Hazan E, Singer Y (n.d.) Adaptive subgradient methods for online learning and stochastic optimization. Vol. 12"},{"key":"13135_CR14","doi-asserted-by":"publisher","first-page":"130","DOI":"10.1007\/BFb0056195","volume":"1496","author":"RF Frangi","year":"1998","unstructured":"Frangi RF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. Lect Notes Comput Sci 1496:130\u2013137","journal-title":"Lect Notes Comput Sci"},{"key":"13135_CR15","doi-asserted-by":"crossref","unstructured":"Godbole S, Sarawagi S (2004) Discriminative methods for multi-labeled classification :22\u201330","DOI":"10.1007\/978-3-540-24775-3_5"},{"issue":"1","key":"13135_CR16","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1016\/j.gie.2019.08.018","volume":"91","author":"LJ Guo","year":"2020","unstructured":"Guo LJ, Xiao X, Wu CC, Zeng X, Zhang Y, Du NPJ, Shuai Bai NP, Jia Xie NP, Zhiwei Zhang MS, Li BS a Y (2020) Real- time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos). Gastrointest Endosc 91(1):41\u201351","journal-title":"Gastrointest Endosc"},{"key":"13135_CR17","doi-asserted-by":"publisher","first-page":"477","DOI":"10.1016\/j.neunet.2020.09.005","volume":"132","author":"X Hai","year":"2020","unstructured":"Hai X, Haijun L, Xianlu Z, Yejun H, Guozhen C, Ahmed E, Guanghui Y, Jiantao W, Guoming Z, Baiying L, Amd-gan (2020) Attention encoder and multi-branch structure based generative adversarial networks for fundus disease detection from scanning laser ophthalmoscopy images. Neural Netw 132:477\u2013490","journal-title":"Neural Netw"},{"key":"13135_CR18","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. in: IEEE Conference on Computer Vision & Pattern Recognition, pp.770\u2013778","DOI":"10.1109\/CVPR.2016.90"},{"issue":"4","key":"13135_CR19","first-page":"833","volume":"15","author":"G Hinton","year":"2003","unstructured":"Hinton G, Roweis S (2003) Stochastic neighbor embedding. Adv Neural Inf Proces Syst 15(4):833\u2013840","journal-title":"Adv Neural Inf Proces Syst"},{"issue":"Suppl 1","key":"13135_CR20","first-page":"1","volume":"87","author":"T Hirasawa","year":"2018","unstructured":"Hirasawa T, Aoyama K, Tanimoto T, Ishihara S, Tada T (2018) Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer Official J Int Gastric Cancer Assoc Japanese Gastric Cancer Assoc 87(Suppl 1):1\u20138","journal-title":"Gastric Cancer Official J Int Gastric Cancer Assoc Japanese Gastric Cancer Assoc"},{"key":"13135_CR21","doi-asserted-by":"crossref","unstructured":"Huang G, Liu Z, Maaten LVD, Weinberger KQ (2017) Densely connected convolutional networks. in: CVPR, pp. 4700\u20134708","DOI":"10.1109\/CVPR.2017.243"},{"issue":"2","key":"13135_CR22","doi-asserted-by":"crossref","first-page":"75","DOI":"10.4103\/1319-3767.203366","volume":"23","author":"K Kandiah","year":"2017","unstructured":"Kandiah K, Chedgy FJQ, Subramaniam S, Thayalasekaran S, Handari PB (2017) Early squamous neoplasia of the esophagus: The endoscopic approach to diagnosis and management. Saudi J Gastroenterology Official J Saudi Gastroenterology Assoc 23(2):75\u201381","journal-title":"Saudi J Gastroenterology Official J Saudi Gastroenterology Assoc"},{"issue":"3","key":"13135_CR23","doi-asserted-by":"publisher","first-page":"568","DOI":"10.1117\/1.1695563","volume":"9","author":"G Kazuhiro","year":"2004","unstructured":"Kazuhiro G, Takashi O, Masahiro Y, Nagaaki O, Hirohisa M (2004) Appearance of enhanced tissue features in narrow- band endoscopic imaging. J Biomed Opt 9(3):568\u2013578","journal-title":"J Biomed Opt"},{"key":"13135_CR24","unstructured":"Kingma DP, Ba J (2022) Adam: A method for stochastic optimization. arXiv"},{"key":"13135_CR25","doi-asserted-by":"crossref","unstructured":"Kruskal JB, Wish M, Uslaner EM (1978) Multidimensional scaling. Book on demand pod","DOI":"10.4135\/9781412985130"},{"issue":"2605","key":"13135_CR26","first-page":"2579","volume":"9","author":"VDM Laurens","year":"2008","unstructured":"Laurens VDM, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9(2605):2579\u20132605","journal-title":"J Mach Learn Res"},{"key":"13135_CR27","doi-asserted-by":"crossref","unstructured":"Lin TY, Dollar P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp.2117\u20132125","DOI":"10.1109\/CVPR.2017.106"},{"key":"13135_CR28","doi-asserted-by":"publisher","first-page":"281","DOI":"10.1016\/j.media.2016.04.007","volume":"32","author":"DY Liu","year":"2016","unstructured":"Liu DY, Gan T, Rao NN, Xing YW, Zheng J, Li S, Luo CS, Zhou ZJ, Wan YL (2016) Identification of lesion images from gastrointestinal endoscope based on feature extraction of combinational methods with and without learning process. Med Image Anal 32:281\u2013294","journal-title":"Med Image Anal"},{"issue":"2","key":"13135_CR29","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1002\/cyto.a.20022","volume":"58","author":"E Meijering","year":"2002","unstructured":"Meijering E, Jacob M, Sarria JXCF, Steiner P, Hirling H, Unser M (2002) Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry Part A 58(2):167\u2013176","journal-title":"Cytometry Part A"},{"key":"13135_CR30","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1111\/nyas.13955","volume":"1434","author":"S Moenig","year":"2018","unstructured":"Moenig S, Chevallay M, Niclauss N, Zilli T, Fang W, Bansal A, Hoeppner J (2018) Early esophageal cancer: the significance of surgery, endoscopy, and chemoradiation. Ann N Y Acad Sci 1434:115\u2013123","journal-title":"Ann N Y Acad Sci"},{"key":"13135_CR31","doi-asserted-by":"crossref","unstructured":"Nelder JA, Mead R (1965) A simplex method for function minimization comput. Comput J, (4):4","DOI":"10.1093\/comjnl\/7.4.308"},{"key":"13135_CR32","doi-asserted-by":"crossref","unstructured":"Ng CC, Yap MH, Costen N, Li B (2014) Automatic wrinkle detection using hybrid hessian filter. in: Asian Conference on Computer Vision, pp.609\u2013622","DOI":"10.1007\/978-3-319-16811-1_40"},{"issue":"6","key":"13135_CR33","doi-asserted-by":"publisher","first-page":"1141","DOI":"10.1111\/jgh.13289","volume":"31","author":"B Njei","year":"2016","unstructured":"Njei B, Mccarty TR, Birk JW (2016) Trends in esophageal cancer survival in United States adults from 1973 to 2009: a seer database analysis. J Gastroenterol Hepatol 31(6):1141\u20131146","journal-title":"J Gastroenterol Hepatol"},{"key":"13135_CR34","unstructured":"Redmon J, Farhadi A (n.d.) Yolov3: An incremental improvement,.arXiv e-prints"},{"issue":"6","key":"13135_CR35","doi-asserted-by":"publisher","first-page":"e0177678","DOI":"10.1371\/journal.pone.0177678","volume":"12","author":"B Sabri","year":"2017","unstructured":"Sabri B, Fethi J, Mohammed EA, Quan Z (2017) Optimal classifier for imbalanced data using matthews correlation coefficient metric. PLoS One 12(6):e0177678","journal-title":"PLoS One"},{"issue":"1","key":"13135_CR36","doi-asserted-by":"publisher","first-page":"144","DOI":"10.1016\/j.gie.2020.01.054","volume":"92","author":"H Saito","year":"2020","unstructured":"Saito H, Aoki T, Mmath KA, Bsc YK, Tsuboi A, Yamada A, Fujishiro M, Oka S, Ishihara S, Matsuda T a (2020) Automatic detection and classification of protruding lesions in wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointest Endosc 92(1):144\u2013151","journal-title":"Gastrointest Endosc"},{"key":"13135_CR37","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/505282.505283","volume":"34","author":"F Sebastiani","year":"2001","unstructured":"Sebastiani F (2001) Machine learning in automated text categorization. ACM Comput Surv 34:1\u201347","journal-title":"ACM Comput Surv"},{"issue":"111","key":"13135_CR38","doi-asserted-by":"publisher","first-page":"647","DOI":"10.1090\/S0025-5718-1970-0274029-X","volume":"24","author":"DF Shanno","year":"1970","unstructured":"Shanno DF (1970) Conditioning of quasi-newton methods for function minimization. Math Comput 24(111):647\u2013656","journal-title":"Math Comput"},{"key":"13135_CR39","unstructured":"Simonyan K, Zisserman A. (n.d.) Very deep convolutional networks for large-scale image recognition. Computer Sci"},{"issue":"1","key":"13135_CR40","doi-asserted-by":"publisher","first-page":"133","DOI":"10.1109\/TMI.2006.889977","volume":"26","author":"M Sofka","year":"2007","unstructured":"Sofka M, Stewart, Charles V (2007) Erratum to \u201cretinal vessel centerline extraction using multiscale matched filters, confidence and edge measures\u201d. IEEE Trans Med Imaging 26(1):133\u2013133","journal-title":"IEEE Trans Med Imaging"},{"key":"13135_CR41","doi-asserted-by":"crossref","unstructured":"Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp.2818\u20132826","DOI":"10.1109\/CVPR.2016.308"},{"key":"13135_CR42","unstructured":"Thambawita V, Jha D, Riegler M, Halvorsen P, Hammer HL, Johansen HD, Johansen D (2018) The medico-task 2018: Disease detection in the gastrointestinal tract using global features and deep learning in: MediaEval 2018, 2018"},{"key":"13135_CR43","doi-asserted-by":"publisher","first-page":"92","DOI":"10.1016\/j.neucom.2014.02.066","volume":"144","author":"F Van Der Sommen","year":"2014","unstructured":"Van Der Sommen F, Zinger S, Schoon EJ, De With P (2014) Supportive automatic annotation of early esophageal cancer using local gabor and color features. Neurocomputing 144:92\u2013106","journal-title":"Neurocomputing"},{"key":"13135_CR44","doi-asserted-by":"crossref","unstructured":"Van Riel S, Van Der Sommen F, Zinger S, Schoon EJ, de With PH (2018) Automatic detection of early esophageal cancer with cnns using transfer learning. in: 2018 25th IEEE International Conference on Image Processing (ICIP), IEEE, pp.1383\u20131387","DOI":"10.1109\/ICIP.2018.8451771"},{"key":"13135_CR45","doi-asserted-by":"publisher","first-page":"107613","DOI":"10.1016\/j.patcog.2020.107613","volume":"110","author":"Z Wang","year":"2020","unstructured":"Wang Z, Xiao Y, Li Y, Zhang J, Lu F, Hou M, Liu X (2020) Automatically discriminating and localizing covid-19 from community-acquired pneumonia on chest x-rays. Pattern Recogn 110:107613","journal-title":"Pattern Recogn"},{"key":"13135_CR46","unstructured":"Wang Z, Xiao Y, Weng F, Li X, Meng Y (n.d.) Rjaunlab: Automatic multi-class recognition of jaundice on photos of subjects with region annotation networks. J Digit Imaging (9)"},{"key":"13135_CR47","doi-asserted-by":"crossref","unstructured":"Wang Z, Meng Y, Weng F, Chen Y, Lu F, Liu X, Hou M, Zhang J (n.d.) An effective cnn method for fully automated segmenting subcutaneous and visceral adipose tissue on ct scans. Annals BiomedEng, 48(5)","DOI":"10.1007\/s10439-019-02349-3"},{"issue":"2","key":"13135_CR48","doi-asserted-by":"publisher","first-page":"224","DOI":"10.1016\/j.gie.2013.08.002","volume":"79","author":"S Wani","year":"2014","unstructured":"Wani S, Drahos J, Cook MB, Rastogi A, Bansal A, Yen R, Sharma P, Das A (2014) Comparison of endoscopic therapies and surgical resection in patients with early esophageal cancer: a population-based study. Gastrointest Endosc 79(2):224\u2013232","journal-title":"Gastrointest Endosc"},{"issue":"3","key":"13135_CR49","doi-asserted-by":"publisher","first-page":"138","DOI":"10.1007\/s40471-014-0015-3","volume":"1","author":"DC Whiteman","year":"2014","unstructured":"Whiteman DC (2014) Esophageal cancer: priorities for prevention. Current Epidemiology Reports 1(3):138\u2013148","journal-title":"Current Epidemiology Reports"},{"key":"13135_CR50","doi-asserted-by":"crossref","unstructured":"Wu X, Chen H, Gan T, Chen J, Ngo CW, Peng Q (2016) Automatic hookworm detection in wireless capsule endoscopy images. IEEE Trans Med Imaging 35(7):1741\u20131752","DOI":"10.1109\/TMI.2016.2527736"},{"key":"13135_CR51","doi-asserted-by":"crossref","unstructured":"Yamaguchi J, Yoneyama A, Minamoto T (2015) Automatic detection of early esophageal cancer from endoscope image using fractal dimension and discrete wavelet transform. in: 2015 12th International Conference on Information Technology-New Generations, IEEE, pp. 317\u2013322","DOI":"10.1109\/ITNG.2015.57"},{"key":"13135_CR52","doi-asserted-by":"crossref","unstructured":"Yuan Y, Meng MQ (2017) Deep learning for polyp recognitionin wireless capsule endoscopy images. Med Phys 44(4):1379\u20131389","DOI":"10.1002\/mp.12147"},{"key":"13135_CR53","unstructured":"Zhang SW, Zheng RS, Zuo TT, Zeng HM, He J (2016) [mortality and survival analysis of esophageal cancer in china]., Zhonghua Zhong Liu Za Zhi, 38(9)709\u2013715"}],"container-title":["Multimedia Tools and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-022-13135-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11042-022-13135-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-022-13135-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,20]],"date-time":"2023-11-20T12:42:27Z","timestamp":1700484147000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11042-022-13135-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,4,23]]},"references-count":53,"journal-issue":{"issue":"26","published-print":{"date-parts":[[2022,11]]}},"alternative-id":["13135"],"URL":"https:\/\/doi.org\/10.1007\/s11042-022-13135-0","relation":{},"ISSN":["1380-7501","1573-7721"],"issn-type":[{"value":"1380-7501","type":"print"},{"value":"1573-7721","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,4,23]]},"assertion":[{"value":"2 January 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"23 March 2021","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"10 April 2022","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"23 April 2022","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare no competing interests.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}