{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T19:06:26Z","timestamp":1735585586592},"reference-count":33,"publisher":"Springer Science and Business Media LLC","issue":"20","license":[{"start":{"date-parts":[[2022,4,2]],"date-time":"2022-04-02T00:00:00Z","timestamp":1648857600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,4,2]],"date-time":"2022-04-02T00:00:00Z","timestamp":1648857600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimed Tools Appl"],"published-print":{"date-parts":[[2022,8]]},"DOI":"10.1007\/s11042-022-12913-0","type":"journal-article","created":{"date-parts":[[2022,4,2]],"date-time":"2022-04-02T11:03:22Z","timestamp":1648897402000},"page":"29207-29227","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["Determining the representative features of polycystic ovary syndrome via Design of Experiments"],"prefix":"10.1007","volume":"81","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-9390-396X","authenticated-orcid":false,"given":"Shivani","family":"Aggarwal","sequence":"first","affiliation":[]},{"given":"Kavita","family":"Pandey","sequence":"additional","affiliation":[]},{"name":"Senior Member, IEEE","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,4,2]]},"reference":[{"key":"12913_CR1","doi-asserted-by":"publisher","first-page":"1","DOI":"10.2174\/1872212115999201224130204","volume":"15","author":"S Aggarwal","year":"2021","unstructured":"Aggarwal S, Pandey K (2021) An Analysis of PCOS Disease Prediction Model Using Machine Learning Classification Algorithms. Recent Patents on Engineering 15:1\u201311. https:\/\/doi.org\/10.2174\/1872212115999201224130204","journal-title":"Recent Patents on Engineering"},{"issue":"3","key":"12913_CR2","doi-asserted-by":"publisher","first-page":"759","DOI":"10.1007\/s13202-016-0293-z","volume":"7","author":"R Ahmadi","year":"2017","unstructured":"Ahmadi R, Shahrabi J, Aminshahidy B (2017) Automatic well-testing model diagnosis and parameter estimation using artificial neural networks and design of experiments. J Pet Explor Prod Technol 7(3):759\u2013783. https:\/\/doi.org\/10.1007\/s13202-016-0293-z","journal-title":"J Pet Explor Prod Technol"},{"key":"12913_CR3","doi-asserted-by":"publisher","unstructured":"Ali A, Zhu Y, Zakarya M 2021 A data aggregation based approach to exploit dynamic spatio-temporal correlations for citywide crowd flows prediction in fog computing, Multimedia Tools and Applications, pp. 1\u201333. https:\/\/doi.org\/10.1007\/s11042-020-10486-4.","DOI":"10.1007\/s11042-020-10486-4"},{"key":"12913_CR4","doi-asserted-by":"publisher","first-page":"852","DOI":"10.1016\/j.ins.2021.08.042","volume":"577","author":"A Ali","year":"2021","unstructured":"Ali A, Zhu Y, Zakarya M (2021) Exploiting dynamic spatio-temporal correlations for citywide traffic flow prediction using attention based neural networks. Inf Sci 577:852\u2013870. https:\/\/doi.org\/10.1016\/j.ins.2021.08.042","journal-title":"Inf Sci"},{"key":"12913_CR5","doi-asserted-by":"publisher","unstructured":"Brynn Hibbert D 2012 Experimental design in chromatography: A tutorial review, J Chromatography B, pp. 2\u201313. https:\/\/doi.org\/10.1016\/j.jchromb.2012.01.020.","DOI":"10.1016\/j.jchromb.2012.01.020"},{"issue":"16","key":"12913_CR6","doi-asserted-by":"publisher","first-page":"6241","DOI":"10.1016\/j.eswa.2013.05.051","volume":"40","author":"JM Cadenas","year":"2013","unstructured":"Cadenas JM, Garrido MC, Mart\u00ednez R (2013) Feature subset selection filter-wrapper based on low-quality data. Expert Syst Appl 40(16):6241\u20136252. https:\/\/doi.org\/10.1016\/j.eswa.2013.05.051","journal-title":"Expert Syst Appl"},{"key":"12913_CR7","doi-asserted-by":"publisher","first-page":"70","DOI":"10.1016\/j.neucom.2017.11.077","volume":"300","author":"J Cai","year":"2018","unstructured":"Cai J, Luo J, Wang S, Yang S (2018) Feature selection in machine learning: a new perspective. Neurocomputing 300:70\u201379. https:\/\/doi.org\/10.1016\/j.neucom.2017.11.077","journal-title":"Neurocomputing"},{"key":"12913_CR8","doi-asserted-by":"publisher","first-page":"7434","DOI":"10.1021\/acsnano.8b04726","volume":"12","author":"B Cao","year":"2018","unstructured":"Cao B, Adutwum LA, Oliynyk AO, Luber EJ, Olsen BC, Mar A, Buriak JM (2018) How to optimize materials and devices via design of experiments and machine learning: demonstration using organic photovoltaics. ACS Nano 12:7434\u20137444. https:\/\/doi.org\/10.1021\/acsnano.8b04726","journal-title":"ACS Nano"},{"key":"12913_CR9","doi-asserted-by":"publisher","unstructured":"Chandrashekar G, Sahin F 2014 A survey on feature selection methods.\" Computers & Electrical Engineering, pp: 16\u201328. https:\/\/doi.org\/10.1016\/j.compeleceng.2013.11.024.","DOI":"10.1016\/j.compeleceng.2013.11.024"},{"issue":"3","key":"12913_CR10","doi-asserted-by":"publisher","first-page":"421","DOI":"10.21533\/pen.v5i3.145","volume":"5","author":"B Durakovic","year":"2017","unstructured":"Durakovic B (2017) Design of experiments application, concepts, examples: State of the art. Period Eng Nat Sci 5(3):421\u2013439. https:\/\/doi.org\/10.21533\/pen.v5i3.145","journal-title":"Period Eng Nat Sci"},{"issue":"5","key":"12913_CR11","doi-asserted-by":"publisher","first-page":"1204","DOI":"10.1016\/j.apt.2018.02.012","volume":"29","author":"MS Elazazy","year":"2018","unstructured":"Elazazy MS, Issa AA, Al-Mashreky M, Al-Sulaiti M, Al-Saad K (2018) Application of fractional factorial design for green synthesis of cyano-modified silica nanoparticles: Chemometrics and multifarious response optimization. Adv Powder Technol 29(5):1204\u20131215. https:\/\/doi.org\/10.1016\/j.apt.2018.02.012","journal-title":"Adv Powder Technol"},{"key":"12913_CR12","doi-asserted-by":"publisher","unstructured":"El-Azazy M, El-Shafie AS, Issa AA, Al-Sulaiti M, Al-Yafie J, Shomar B, Al-Saad K 2019 Potato Peels as an Adsorbent for Heavy Metals from Aqueous Solutions: Eco-Structuring of a Green Adsorbent Operating Plackett\u2013Burman Design, J Chem, pp. 1\u201315. https:\/\/doi.org\/10.1016\/j.apt.2018.02.012.","DOI":"10.1016\/j.apt.2018.02.012"},{"key":"12913_CR13","doi-asserted-by":"publisher","unstructured":"Fukuda IM, Pinto CFF, dos Santos Moreira C, Saviano AM, Louren\u00e7o FR 2018 Design of Experiments (DoE) applied to Pharmaceutical and Analytical Quality by Design (QbD), Brazil J Pharm Sci, pp. 1\u201316. https:\/\/doi.org\/10.1590\/s2175-97902018000001006.","DOI":"10.1590\/s2175-97902018000001006"},{"key":"12913_CR14","doi-asserted-by":"publisher","first-page":"71","DOI":"10.1016\/j.compchemeng.2017.05.010","volume":"106","author":"SS Garud","year":"2017","unstructured":"Garud SS, Karimi IA, Kraft M (2017) Design of computer experiments: a review. Comput Chem Eng 106:71\u201395. https:\/\/doi.org\/10.1016\/j.compchemeng.2017.05.010","journal-title":"Comput Chem Eng"},{"key":"12913_CR15","doi-asserted-by":"publisher","unstructured":"Gr\u00f6mping U 2018 R Package DoE.base for Factorial Experiments, J Statistical Softw, pp.1\u201341. https:\/\/doi.org\/10.18637\/jss.v085.i05.","DOI":"10.18637\/jss.v085.i05"},{"key":"12913_CR16","doi-asserted-by":"publisher","unstructured":"Ivashchenko O, Khudolii O, Iermakov S, Chernenko S, Honcharenko O (2018) Full factorial experiment and discriminant analysis in determining peculiarities of motor skills development in boys aged 9. Journal of Physical Education and Sport:1958\u20131965. https:\/\/doi.org\/10.7752\/jpes.2018.s4289","DOI":"10.7752\/jpes.2018.s4289"},{"key":"12913_CR17","unstructured":"Jain R (1992) Art of computer systems performance analysis techniques for experimental design measurements simulation and modeling. Wiley Computer Publishing, John Wiley & Sons, Inc, pp 1-714"},{"key":"12913_CR18","doi-asserted-by":"publisher","first-page":"255","DOI":"10.1016\/j.cose.2017.06.005","volume":"70","author":"C Khammassi","year":"2017","unstructured":"Khammassi C, Krichen S (2017) A GA-LR wrapper approach for feature selection in network intrusion detection. Comput Secur 70:255\u2013277. https:\/\/doi.org\/10.1016\/j.cose.2017.06.005","journal-title":"Comput Secur"},{"key":"12913_CR19","doi-asserted-by":"publisher","unstructured":"Mass-Sanchez J, Ruiz-Ibarra E, Gonzalez-Sanchez A, Espinoza-Ruiz A, Cortez-Gonzalez J 2018 Factorial design analysis for localization algorithms, Appl Sci vol. 8, no. 12, https:\/\/doi.org\/10.3390\/app8122654.","DOI":"10.3390\/app8122654"},{"key":"12913_CR20","doi-asserted-by":"publisher","first-page":"181","DOI":"10.1016\/j.neucom.2017.02.057","volume":"241","author":"A Mirzaei","year":"2017","unstructured":"Mirzaei A, Mohsenzadeh Y, Sheikhzadeh H (2017) Variational relevant sample-feature machine: a fully Bayesian approach for embedded feature selection. Neurocomputing 241:181\u2013190. https:\/\/doi.org\/10.1016\/j.neucom.2017.02.057","journal-title":"Neurocomputing"},{"key":"12913_CR21","doi-asserted-by":"publisher","unstructured":"Patel S, Sen K, Karmeshu 2017 Performance Analysis of AQM Scheme Using Factorial Design Framework, IEEE Systems Journal, pp. 1\u20139. https:\/\/doi.org\/10.1109\/JSYST.2017.2652120.","DOI":"10.1109\/JSYST.2017.2652120"},{"issue":"5","key":"12913_CR22","doi-asserted-by":"publisher","first-page":"2250","DOI":"10.1016\/j.eswa.2013.09.023","volume":"41","author":"D Rodrigues","year":"2014","unstructured":"Rodrigues D, Pereira LAM, Nakamura RYM, Costa KAP, Yang XS, Souza AN, Papa JP (2014) A wrapper approach for feature selection based on bat algorithm and optimum-path Forest. Expert Syst Appl 41(5):2250\u20132258. https:\/\/doi.org\/10.1016\/j.eswa.2013.09.023","journal-title":"Expert Syst Appl"},{"key":"12913_CR23","doi-asserted-by":"publisher","unstructured":"Rosly MB, Jusoh N, Othman N, Rahman HA, Noah NFM, Sulaiman RNR 2019 Effect and optimization parameters of phenol removal in emulsion liquid membrane process via fractional-factorial design. Chem Eng Res Des, pp: 268\u2013278. https:\/\/doi.org\/10.1016\/j.cherd.2019.03.007.","DOI":"10.1016\/j.cherd.2019.03.007"},{"issue":"10","key":"12913_CR24","doi-asserted-by":"publisher","first-page":"912","DOI":"10.1016\/j.amjmed.2014.04.017","volume":"127","author":"TL Setji","year":"2014","unstructured":"Setji TL, Brown AJ (2014) Polycystic ovary syndrome: update on diagnosis and treatment. Am J Med 127(10):912\u2013919. https:\/\/doi.org\/10.1016\/j.amjmed.2014.04.017","journal-title":"Am J Med"},{"issue":"3","key":"12913_CR25","doi-asserted-by":"publisher","first-page":"151","DOI":"10.1504\/ijedpo.2017.10008506","volume":"5","author":"RT Silvestrini","year":"2017","unstructured":"Silvestrini RT, Jones B, Stone BB, Montgomery DC (2017) No-confounding designs with 24 runs for 7\u201312 factors. Int J Exp Des Process Optim 5(3):151. https:\/\/doi.org\/10.1504\/ijedpo.2017.10008506","journal-title":"Int J Exp Des Process Optim"},{"key":"12913_CR26","doi-asserted-by":"publisher","first-page":"100317","DOI":"10.1016\/j.cdc.2019.100317","volume":"25","author":"A Sreedharan","year":"2020","unstructured":"Sreedharan A, Ong ST (2020) Combination of Plackett Burman and response surface methodology experimental design to optimize malachite green dye removal from aqueous environment. Chem Data Collect 25:100317. https:\/\/doi.org\/10.1016\/j.cdc.2019.100317","journal-title":"Chem Data Collect"},{"key":"12913_CR27","doi-asserted-by":"publisher","unstructured":"Sushant S Garud IA Karimi MK, 2017 Design of Computer Experiments: A Review, Comput Chem Eng, pp. 1\u201387. https:\/\/doi.org\/10.1016\/j.compchemeng.2017.05.010","DOI":"10.1016\/j.compchemeng.2017.05.010"},{"key":"12913_CR28","doi-asserted-by":"publisher","unstructured":"Tanty K, Mukharjee BB, Das SS 2018 A Factorial Design Approach to Analyse the Effect of Coarse Recycled Concrete Aggregates on the Properties of Hot Mix Asphalt, J Inst Eng, pp. 1\u201317. https:\/\/doi.org\/10.1007\/s40030-018-0286-7.","DOI":"10.1007\/s40030-018-0286-7"},{"key":"12913_CR29","doi-asserted-by":"publisher","first-page":"295","DOI":"10.1007\/s11277-010-9989-4","volume":"67","author":"FJMC Toh","year":"2012","unstructured":"Toh FJMC, Manzoni P (2012) Determining the representative factors affecting warning message dissemination in VANETs. Wireless Personal Communications 67:295\u2013314. https:\/\/doi.org\/10.1007\/s11277-010-9989-4","journal-title":"Wireless Personal Communications"},{"issue":"April","key":"12913_CR30","doi-asserted-by":"publisher","first-page":"100202","DOI":"10.1016\/j.imu.2019.100202","volume":"16","author":"AK Verma","year":"2019","unstructured":"Verma AK, Pal S, Kumar S (2019) Comparison of skin disease prediction by feature selection using ensemble data mining techniques. Informatics Med. Unlocked 16(April):100202. https:\/\/doi.org\/10.1016\/j.imu.2019.100202","journal-title":"Informatics Med. Unlocked"},{"issue":"August 2017","key":"12913_CR31","doi-asserted-by":"publisher","first-page":"202","DOI":"10.1016\/j.tifs.2017.11.013","volume":"71","author":"P Yu","year":"2018","unstructured":"Yu P, Low MY, Zhou W (2018) Design of experiments and regression modeling in food flavour and sensory analysis: A review. Trends Food Sci. Technol. 71(August 2017):202\u2013215. https:\/\/doi.org\/10.1016\/j.tifs.2017.11.013","journal-title":"Trends Food Sci. Technol."},{"key":"12913_CR32","doi-asserted-by":"publisher","first-page":"401","DOI":"10.1016\/j.cherd.2019.10.025","volume":"153","author":"T Yurata","year":"2020","unstructured":"Yurata T, Piumsomboon P, Chalermsinsuwan B (2020) Effect of contact force modeling parameters on the system hydrodynamics of spouted bed using CFD-DEM simulation and 2k factorial experimental design. Chem Eng Res Des 153:401\u2013418. https:\/\/doi.org\/10.1016\/j.cherd.2019.10.025","journal-title":"Chem Eng Res Des"},{"issue":"2","key":"12913_CR33","doi-asserted-by":"publisher","first-page":"669","DOI":"10.1016\/j.jfranklin.2014.04.021","volume":"352","author":"X Zhang","year":"2015","unstructured":"Zhang X, Wu G, Dong Z, Crawford C (2015) Embedded feature-selection support vector machine for driving pattern recognition. J Frankl Inst 352(2):669\u2013685. https:\/\/doi.org\/10.1016\/j.jfranklin.2014.04.021","journal-title":"J Frankl Inst"}],"container-title":["Multimedia Tools and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-022-12913-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11042-022-12913-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-022-12913-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,23]],"date-time":"2022-07-23T07:17:02Z","timestamp":1658560622000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11042-022-12913-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,4,2]]},"references-count":33,"journal-issue":{"issue":"20","published-print":{"date-parts":[[2022,8]]}},"alternative-id":["12913"],"URL":"https:\/\/doi.org\/10.1007\/s11042-022-12913-0","relation":{},"ISSN":["1380-7501","1573-7721"],"issn-type":[{"type":"print","value":"1380-7501"},{"type":"electronic","value":"1573-7721"}],"subject":[],"published":{"date-parts":[[2022,4,2]]},"assertion":[{"value":"19 July 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"20 December 2021","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"9 March 2022","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"2 April 2022","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}