{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2022,4,2]],"date-time":"2022-04-02T23:45:59Z","timestamp":1648943159940},"reference-count":39,"publisher":"Springer Science and Business Media LLC","issue":"7","license":[{"start":{"date-parts":[[2022,2,10]],"date-time":"2022-02-10T00:00:00Z","timestamp":1644451200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,2,10]],"date-time":"2022-02-10T00:00:00Z","timestamp":1644451200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimed Tools Appl"],"published-print":{"date-parts":[[2022,3]]},"DOI":"10.1007\/s11042-022-11964-7","type":"journal-article","created":{"date-parts":[[2022,2,10]],"date-time":"2022-02-10T21:09:16Z","timestamp":1644527356000},"page":"9607-9629","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Hybrid neural network model for reconstruction of occluded regions in multi-gait scenario"],"prefix":"10.1007","volume":"81","author":[{"given":"Jasvinder Pal","family":"Singh","sequence":"first","affiliation":[]},{"given":"Sanjeev","family":"Jain","sequence":"additional","affiliation":[]},{"given":"Uday Pratap","family":"Singh","sequence":"additional","affiliation":[]},{"given":"Sakshi","family":"Arora","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,2,10]]},"reference":[{"key":"11964_CR1","doi-asserted-by":"publisher","unstructured":"Aristidou A, Cameron J, Lasenby J (2008) Real-time estimation of missing markers in human motion capture. 2nd International Conference on Bioinformatics and Biomedical Engineering pp 1343\u20131346. https:\/\/doi.org\/10.1109\/ICBBE.2008.665.","DOI":"10.1109\/ICBBE.2008.665"},{"issue":"2","key":"11964_CR2","doi-asserted-by":"publisher","first-page":"336","DOI":"10.1016\/j.patrec.2015.05.016","volume":"68","author":"P Arora","year":"2015","unstructured":"Arora P, Hanmandlub M, Srivastava S (2015) Gait based authentication using gait information image features. Pattern Recogn Lett 68(2):336\u2013342. https:\/\/doi.org\/10.1016\/j.patrec.2015.05.016","journal-title":"Pattern Recogn Lett"},{"issue":"13","key":"11964_CR3","doi-asserted-by":"publisher","first-page":"2052","DOI":"10.1016\/j.patrec.2010.05.027","volume":"31","author":"K Bashir","year":"2010","unstructured":"Bashir K, Xiang T, Gong S (2010) Gait recognition without subject cooperation. Pattern Recognition Letters 31(13):2052\u20132060. https:\/\/doi.org\/10.1016\/j.patrec.2010.05.027","journal-title":"Pattern Recognition Letters"},{"issue":"2","key":"11964_CR4","doi-asserted-by":"publisher","first-page":"188","DOI":"10.1007\/BF03178892","volume":"29","author":"R Begg","year":"2006","unstructured":"Begg R, Kamruzzaman J (2006) Neural network for detection and classification of walking pattern changes due to ageing. Aust Phys Eng Med 29(2):188\u2013195. https:\/\/doi.org\/10.1007\/BF03178892","journal-title":"Aust Phys Eng Med"},{"key":"11964_CR5","unstructured":"Chen J, Fang J, Liu W, Tang T, Yang C (2018) clMF: A fine-grained and portable alternating least squares algorithm for parallel matrix factorization, Future Generation Computer Systems"},{"issue":"99","key":"11964_CR6","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TPAMI.2017.2726061","volume":"PP","author":"X Chen","year":"2017","unstructured":"Chen X, Weng J, Lu W, Xu J (2017) Multi-gait Recognition based on Attribute Discovery. IEEE Trans Pattern Anal Mach Intell PP(99):1. https:\/\/doi.org\/10.1109\/TPAMI.2017.2726061","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"1\u20132","key":"11964_CR7","doi-asserted-by":"publisher","first-page":"117","DOI":"10.1007\/s00138-016-0810-6","volume":"28","author":"X Chen","year":"2017","unstructured":"Chen X, Xu J, Weng J (2017) Multi-gait recognition using hypergraph partition. Mach Vis Appl 28(1\u20132):117\u2013127. https:\/\/doi.org\/10.1007\/s00138-016-0810-6","journal-title":"Mach Vis Appl"},{"issue":"11","key":"11964_CR8","doi-asserted-by":"publisher","first-page":"6505","DOI":"10.1007\/s11042-015-2585-6","volume":"75","author":"X Chen","year":"2016","unstructured":"Chen X, Yang T, Xu J (2016) Multi-gait identification based on multilinear analysis and multi-target tracking. Multimed Tools Appl 75(11):6505\u20136532. https:\/\/doi.org\/10.1007\/s11042-015-2585-6","journal-title":"Multimed Tools Appl"},{"issue":"10","key":"11964_CR9","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1371\/journal.pone.0078689","volume":"8","author":"PA Federolf","year":"2013","unstructured":"Federolf PA (2013) A novel approach to solve the missing marker problem in marker-based motion analysis that exploits the segment coordination patterns in multi-limb motion data. PLoS One 8(10):1\u201313. https:\/\/doi.org\/10.1371\/journal.pone.0078689","journal-title":"PLoS One"},{"issue":"3","key":"11964_CR10","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1371\/journal.pone.0152616","volume":"11","author":"O Gloersen","year":"2016","unstructured":"Gloersen O, Federolf P (2016) Predicting missing marker trajectories in human motion data using marker interconnections. Plos one 11(3):1\u201314. https:\/\/doi.org\/10.1371\/journal.pone.0152616","journal-title":"Plos one"},{"key":"11964_CR11","unstructured":"Hofman M, Sural S, Rigoll G (2011) Gait recognition in the presence of occlusion: a new dataset and baseline algorithms. In Proceedings of the 19th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision pp 99\u2013104"},{"key":"11964_CR12","doi-asserted-by":"publisher","unstructured":"Hu Q, Yang J, Win KT, Huang X (2019) An alternating least square based algorithm for predicting patient survivability. In: Islam R et al (eds) Data mining. AusDM 2018. Communications in Computer and Information Science, vol 996. Springer, Singapore https:\/\/doi.org\/10.1007\/978-981-13-6661-1_24","DOI":"10.1007\/978-981-13-6661-1_24"},{"key":"11964_CR13","doi-asserted-by":"publisher","first-page":"141","DOI":"10.1007\/978-3-319-23231-713","volume":"2015","author":"Y Iwashita","year":"2015","unstructured":"Iwashita Y, Sakano H, Kurazume R (2015) Gait recognition robust to speed transition using mutual subspace method. Int Conf Image Anal Process (ICIAP) 2015:141\u2013149. https:\/\/doi.org\/10.1007\/978-3-319-23231-713","journal-title":"Int Conf Image Anal Process (ICIAP)"},{"issue":"2","key":"11964_CR14","doi-asserted-by":"publisher","first-page":"226","DOI":"10.1109\/JAS.2015.7081662","volume":"2","author":"S Jia","year":"2015","unstructured":"Jia S, Wang L, Li X (2015) View-invariant gait authentication based on Silhouette contours analysis and view estimation. IEEE\/CAA J Autom Sin 2(2):226\u2013232. https:\/\/doi.org\/10.1109\/JAS.2015.7081662","journal-title":"IEEE\/CAA J Autom Sin"},{"issue":"9","key":"11964_CR15","doi-asserted-by":"publisher","first-page":"1163","DOI":"10.1109\/TIP.2004.832865","volume":"13","author":"A Kale","year":"2004","unstructured":"Kale A, Sundaresan A, Rajagopalan AN (2004) Identification of humans using gait. IEEE Trans Image Process 13(9):1163\u20131173. https:\/\/doi.org\/10.1109\/TIP.2004.832865","journal-title":"IEEE Trans Image Process"},{"key":"11964_CR16","doi-asserted-by":"publisher","first-page":"1942","DOI":"10.1109\/ICNN.1995.488968","volume":"4","author":"J Kennedy","year":"1995","unstructured":"Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Netw 4:1942\u20131948","journal-title":"Proc IEEE Int Conf Neural Netw"},{"key":"11964_CR17","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s11042-017-5469-0","volume":"78","author":"J Kovac","year":"2017","unstructured":"Kovac J, Struc V, Peer P (2017) Frame\u2013based classification for cross-speed gait recognition. Multimed Tools Appl 78:1\u201323. https:\/\/doi.org\/10.1007\/s11042-017-5469-0","journal-title":"Multimed Tools Appl"},{"issue":"9","key":"11964_CR18","doi-asserted-by":"publisher","first-page":"1120","DOI":"10.1109\/TIP.2003.815251","volume":"12","author":"W Liang","year":"2003","unstructured":"Liang W, Tan T, Hu W, Ning H (2003) Automatic gait recognition based on statistical shape analysis. IEEE Trans Image Process 12(9):1120\u20131131. https:\/\/doi.org\/10.1109\/TIP.2003.815251","journal-title":"IEEE Trans Image Process"},{"issue":"6","key":"11964_CR19","doi-asserted-by":"publisher","first-page":"1123","DOI":"10.1007\/s11760-017-1066-y","volume":"11","author":"AO Lishani","year":"2017","unstructured":"Lishani AO, Boubchir L, Khalifa E, Bouridane A (2017) Human gait recognition based on Haralick features. Signal Image Video Process 11(6):1123\u20131130. https:\/\/doi.org\/10.1007\/s11760-017-1066-y","journal-title":"Signal Image Video Process"},{"issue":"9\u201311","key":"11964_CR20","doi-asserted-by":"publisher","first-page":"721","DOI":"10.1007\/s00371-006-0080-9","volume":"22","author":"G Liu","year":"2006","unstructured":"Liu G, McMillan L (2006) Estimation of missing markers in human motion capture. Vis Comput 22(9\u201311):721\u2013728","journal-title":"Vis Comput"},{"key":"11964_CR21","doi-asserted-by":"publisher","first-page":"53","DOI":"10.2197\/ipsjtcva.4.53","volume":"4","author":"Y Makihara","year":"2012","unstructured":"Makihara Y, Mannami H, Tsuji A, Hossain MA, Sugiura K, Mori A, Yagi Y (2012) The OU-ISIR gait database comprising the treadmill dataset. IPSJ Trans Comput Vis Appl 4:53\u201362","journal-title":"IPSJ Trans Comput Vis Appl"},{"issue":"2","key":"11964_CR22","doi-asserted-by":"publisher","first-page":"316","DOI":"10.1109\/TPAMI.2006.38","volume":"28","author":"J Man","year":"2006","unstructured":"Man J, Bhanu B (2006) Individual recognition using gait energy image. IEEE Trans Pattern Anal Mach Intell 28(2):316\u2013322. https:\/\/doi.org\/10.1109\/TPAMI.2006.38","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"11964_CR23","doi-asserted-by":"publisher","unstructured":"Masood H, Farooq H (2017) \u201cA proposed framework for vision based gait biometric system against spoofing attacks\u201d, international conference on communication. Comput Digit Syst (C-CODE):357\u2013362. https:\/\/doi.org\/10.1109\/C-CODE.2017.7918957","DOI":"10.1109\/C-CODE.2017.7918957"},{"key":"11964_CR24","doi-asserted-by":"publisher","first-page":"117","DOI":"10.1016\/j.neucom.2016.01.002","volume":"191","author":"A Nandy","year":"2016","unstructured":"Nandy A, Chakraborty R, Chakraborty P (2016) Cloth invariant gait recognition using pooled segmented statistical features. Neurocomputing 191:117\u2013140. https:\/\/doi.org\/10.1016\/j.neucom.2016.01.002","journal-title":"Neurocomputing"},{"key":"11964_CR25","unstructured":"Rajasekaran S, Pai GAV (2017) Introduction to artificial intelligence system. In Neural Networks, Fuzzy Systems and Evolutionary Algorithms: Synthesis and Applications, PHI India, Ed.2nd, ch.1, pp 1\u20137"},{"issue":"3","key":"11964_CR26","doi-asserted-by":"publisher","first-page":"463","DOI":"10.1007\/s11760-015-0766-4","volume":"10","author":"I Rida","year":"2016","unstructured":"Rida I, Almaadeed S, Bouridane A (2016) Gait recognition based on modified phase-only correlation. SIViP 10(3):463\u2013470. https:\/\/doi.org\/10.1007\/s11760-015-0766-4","journal-title":"SIViP"},{"key":"11964_CR27","doi-asserted-by":"crossref","unstructured":"Riedmiller M, Braun H (1993) A direct adaptive method for faster backpropagation learning: The RPROP algorithm. Proceedings of the IEEE International Conference on Neural Networks pp 586\u2013591","DOI":"10.1109\/ICNN.1993.298623"},{"key":"11964_CR28","doi-asserted-by":"publisher","first-page":"415","DOI":"10.1007\/s11760-011-0245-5","volume":"5","author":"A Roy","year":"2011","unstructured":"Roy A, Sural S, Mukherjee J, Rigoll G (2011) Occlusion detection and gait silhouette reconstruction from degraded scenes. Signal Image Video Process 5:415\u2013430. https:\/\/doi.org\/10.1007\/s11760-011-0245-5","journal-title":"Signal Image Video Process"},{"issue":"2","key":"11964_CR29","doi-asserted-by":"publisher","first-page":"162","DOI":"10.1109\/TPAMI.2005.39","volume":"27","author":"S Sarkar","year":"2005","unstructured":"Sarkar S, Phillips PJ, Liu Z, Vega IR, Grother P, Bowyer KW (2005) The HumanID gait challenge problem: data sets, performance, and analysis. IEEE Trans Pattern Anal Mach Intell 27(2):162\u2013177. https:\/\/doi.org\/10.1109\/TPAMI.2005.39","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"11964_CR30","doi-asserted-by":"crossref","unstructured":"Shi Y, Eberhart R (1998) Parameter selection in particle swarm optimization. In: The proceedings of the international conference on evolutionary programming pp 591\u2013601","DOI":"10.1007\/BFb0040810"},{"key":"11964_CR31","doi-asserted-by":"crossref","unstructured":"Singh JP, Arora S, Jain S, Singh UP (2019) A multi-gait dataset for human recognition under occlusion scenario. 2019 International conference on issues and challenges in intelligent computing techniques (ICICT), GHAZIABAD, India, pp 1\u20136","DOI":"10.1109\/ICICT46931.2019.8977673"},{"key":"11964_CR32","doi-asserted-by":"publisher","unstructured":"Singh JP, Jain S, Arora S, Singh UP A survey of behavioral biometric gait recognition: current success and future perspectives. Arch Comput Methods Eng. https:\/\/doi.org\/10.1007\/s11831-019-09375-3","DOI":"10.1007\/s11831-019-09375-3"},{"key":"11964_CR33","doi-asserted-by":"publisher","unstructured":"Singh JP, Jain S, Arora S, Singh UP Reconstruction of occluded ROI in multi-person gait based on numerical methods. Multimed Syst. https:\/\/doi.org\/10.1007\/s00530-019-00641-9","DOI":"10.1007\/s00530-019-00641-9"},{"issue":"8","key":"11964_CR34","doi-asserted-by":"publisher","first-page":"1237","DOI":"10.1016\/j.engappai.2010.07.004","volume":"23","author":"F Tafazzoli","year":"2010","unstructured":"Tafazzoli F, Safabakhsh R (2010) Model-based human gait recognition using leg and arm movements. Eng Appl Artif Intell 23(8):1237\u20131246","journal-title":"Eng Appl Artif Intell"},{"issue":"4","key":"11964_CR35","first-page":"1","volume":"10","author":"N Takemura","year":"2018","unstructured":"Takemura N, Makihara Y, Muramatsu D, Echigo T, Yagi Y (2018) Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition. IPSJ Trans Comput Vis Appl 10(4):1\u201314","journal-title":"IPSJ Trans Comput Vis Appl"},{"issue":"2","key":"11964_CR36","doi-asserted-by":"publisher","first-page":"259","DOI":"10.4218\/etrij.11.1510.0068","volume":"33","author":"J-H Yoo","year":"2011","unstructured":"Yoo J-H, Nixon MS (2011) Automated Markerless analysis of human gait motion for recognition and classification. ETRI J 33(2):259\u2013266","journal-title":"ETRI J"},{"key":"11964_CR37","unstructured":"Yu S, Tan D, Tan T (2006) A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. 18th International Conference on Pattern Recognition (ICPR), pp 441\u2013444"},{"issue":"2","key":"11964_CR38","doi-asserted-by":"publisher","first-page":"218","DOI":"10.1007\/s12559-013-9221-4","volume":"6","author":"W Zeng","year":"2014","unstructured":"Zeng W, Wang C, Li Y (2014) Model-based human gait recognition via deterministic learning. Cogn Comput 6(2):218\u2013229. https:\/\/doi.org\/10.1007\/s12559-013-9221-4","journal-title":"Cogn Comput"},{"issue":"2","key":"11964_CR39","doi-asserted-by":"publisher","first-page":"1026","DOI":"10.1016\/j.amc.2006.07.025","volume":"185","author":"JR Zhang","year":"2007","unstructured":"Zhang JR, Zhang J, Lok TM, Lyu MR (2007) A hybrid particle swarm optimization\u2013back-propagation algorithm for feedforward neural network training. Appl Math Comput 185(2):1026\u20131037. https:\/\/doi.org\/10.1016\/j.amc.2006.07.025","journal-title":"Appl Math Comput"}],"container-title":["Multimedia Tools and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-022-11964-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11042-022-11964-7\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-022-11964-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,3,23]],"date-time":"2022-03-23T17:26:09Z","timestamp":1648056369000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11042-022-11964-7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,2,10]]},"references-count":39,"journal-issue":{"issue":"7","published-print":{"date-parts":[[2022,3]]}},"alternative-id":["11964"],"URL":"https:\/\/doi.org\/10.1007\/s11042-022-11964-7","relation":{},"ISSN":["1380-7501","1573-7721"],"issn-type":[{"value":"1380-7501","type":"print"},{"value":"1573-7721","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,2,10]]},"assertion":[{"value":"3 July 2020","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"3 March 2021","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"4 January 2022","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"10 February 2022","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}