{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T07:26:33Z","timestamp":1740122793691,"version":"3.37.3"},"reference-count":105,"publisher":"Springer Science and Business Media LLC","issue":"41-42","license":[{"start":{"date-parts":[[2020,8,20]],"date-time":"2020-08-20T00:00:00Z","timestamp":1597881600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,8,20]],"date-time":"2020-08-20T00:00:00Z","timestamp":1597881600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"name":"National High Technology 863 Research and Development Program of China","award":["2007AA01Z334"]},{"DOI":"10.13039\/100014718","name":"Innovative Research Group Project of the National Natural Science Foundation of China","doi-asserted-by":"crossref","award":["61321491"],"id":[{"id":"10.13039\/100014718","id-type":"DOI","asserted-by":"crossref"}]},{"name":"National 616 Natural Science Foundation of China","award":["61272219"]},{"name":"Innovation Fund of State Key Laboratory for Novel Software 620 Technology","award":["ZZKT2018A09"]},{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","award":["2017M621700"],"id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimed Tools Appl"],"published-print":{"date-parts":[[2020,11]]},"DOI":"10.1007\/s11042-020-09458-5","type":"journal-article","created":{"date-parts":[[2020,8,20]],"date-time":"2020-08-20T07:04:22Z","timestamp":1597907062000},"page":"31299-31328","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Saliency based multiple object cosegmentation by ensemble MIML learning"],"prefix":"10.1007","volume":"79","author":[{"given":"Bo","family":"Li","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7137-6169","authenticated-orcid":false,"given":"Zhengxing","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Junfeng","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Shuang","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Peiwen","family":"Yu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,8,20]]},"reference":[{"issue":"11","key":"9458_CR1","doi-asserted-by":"crossref","first-page":"2274","DOI":"10.1109\/TPAMI.2012.120","volume":"34","author":"R Achanta","year":"2012","unstructured":"Achanta R, Shaji A, Smith K, Lucchi A, Fua P, S\u00fcsstrunk S (2012) SLIC Superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274\u20132282","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"9458_CR2","doi-asserted-by":"crossref","unstructured":"Arbel\u00e1ez P A, Pont-Tuset J, Barron J T, Marqu\u00e9s F, Malik J (2014) Multiscale combinatorial grouping. In: CVPR, pp 328\u2013335","DOI":"10.1109\/CVPR.2014.49"},{"key":"9458_CR3","doi-asserted-by":"crossref","unstructured":"Batra D, Kowdle A, Parikh D, Luo J, Chen T (2010) icoseg: interactive co-segmentation with intelligent scribble guidance. In: The twenty-third IEEE conference on computer vision and pattern recognition, CVPR 2010, San Francisco, CA, USA, 13\u201318 June 2010, pp 3169\u20133176","DOI":"10.1109\/CVPR.2010.5540080"},{"issue":"3","key":"9458_CR4","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/s11263-010-0415-x","volume":"93","author":"D Batra","year":"2011","unstructured":"Batra D, Kowdle A, Parikh D, Luo J, Chen T (2011) Interactively co-segmentating topically related images with intelligent scribble guidance. Int J Comput Vis 93(3):273\u2013292","journal-title":"Int J Comput Vis"},{"issue":"6","key":"9458_CR5","doi-asserted-by":"crossref","first-page":"1214","DOI":"10.1109\/TNNLS.2015.2480683","volume":"27","author":"A Borji","year":"2016","unstructured":"Borji A, Tanner J (2016) Reconciling saliency and object center-bias hypotheses in explaining free-viewing fixations. IEEE Trans Neural Netw Learning Syst 27(6):1214\u20131226","journal-title":"IEEE Trans Neural Netw Learning Syst"},{"issue":"12","key":"9458_CR6","doi-asserted-by":"crossref","first-page":"5706","DOI":"10.1109\/TIP.2015.2487833","volume":"24","author":"A Borji","year":"2015","unstructured":"Borji A, Cheng M -M, Jiang H, Li J (2015) Salient object detection: a benchmark. IEEE Trans Image Processing 24(12):5706\u20135722","journal-title":"IEEE Trans Image Processing"},{"issue":"1","key":"9458_CR7","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman L (2001) Random forests. Mach Learn 45(1):5\u201332","journal-title":"Mach Learn"},{"key":"9458_CR8","doi-asserted-by":"crossref","unstructured":"Briggs F, Fern X Z, Raich R (2012) Rank-loss support instance machines for MIML instance annotation. In: The 18th ACM SIGKDD international conference on knowledge discovery and data mining, KDD \u201912, Beijing, China, August 12\u201316, 2012, pp 534\u2013542","DOI":"10.1145\/2339530.2339616"},{"issue":"1","key":"9458_CR9","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1007\/s10115-014-0781-8","volume":"43","author":"F Briggs","year":"2015","unstructured":"Briggs F, Fern X Z, Raich R (2015) Context-aware MIML instance annotation: exploiting label correlations with classifier chains. Knowl Inf Syst 43 (1):53\u201379","journal-title":"Knowl Inf Syst"},{"key":"9458_CR10","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.cviu.2015.06.004","volume":"141","author":"H-S Chang","year":"2015","unstructured":"Chang H-S, Wang Y-CF (2015) Optimizing the decomposition for multiple foreground cosegmentation. Comput Vis Image Underst 141:18\u201327","journal-title":"Comput Vis Image Underst"},{"issue":"6","key":"9458_CR11","doi-asserted-by":"crossref","first-page":"1135","DOI":"10.1109\/TNNLS.2015.2506664","volume":"27","author":"T Chen","year":"2016","unstructured":"Chen T, Lin L, Liu L, Luo X, Li X (2016) DISC: deep image saliency computing via progressive representation learning. IEEE Trans Neural Netw Learning Syst 27(6):1135\u20131149","journal-title":"IEEE Trans Neural Netw Learning Syst"},{"key":"9458_CR12","doi-asserted-by":"crossref","first-page":"58791","DOI":"10.1109\/ACCESS.2019.2911892","volume":"7","author":"Y Chen","year":"2019","unstructured":"Chen Y, Wang J, Chen X, Zhu M, Yang K, Wang Z, Xia R (2019) Single-image super-resolution algorithm based on structural self-similarity and deformation block features. IEEE Access 7:58791\u201358801","journal-title":"IEEE Access"},{"key":"9458_CR13","doi-asserted-by":"crossref","unstructured":"Chen Y, Wang J, Liu S, Chen X, Xiong J, Xie J, Yang K (2019) Multiscale fast correlation filtering tracking algorithm based on a feature fusion model. Concurrency and Computation: Practice and Experience 10","DOI":"10.1002\/cpe.5533"},{"key":"9458_CR14","doi-asserted-by":"crossref","unstructured":"Chen Y, Wang J, Liu S, Chen X, Xiong J, Xie J, Yang K (2019) Multiscale fast correlation filtering tracking algorithm based on a feature fusion model. Concurrency and Computation: Practice and Experience e5533","DOI":"10.1002\/cpe.5533"},{"issue":"12","key":"9458_CR15","doi-asserted-by":"crossref","first-page":"4855","DOI":"10.1007\/s12652-018-01171-4","volume":"10","author":"Y Chen","year":"2019","unstructured":"Chen Y, Wang J, Xia R, Zhang Q, Cao Z, Yang K (2019) The visual object tracking algorithm research based on adaptive combination kernel. J Ambient Intell Humaniz Comput 10(12):4855\u20134867","journal-title":"J Ambient Intell Humaniz Comput"},{"issue":"3","key":"9458_CR16","doi-asserted-by":"crossref","first-page":"7435","DOI":"10.1007\/s10586-018-1772-4","volume":"22","author":"Y Chen","year":"2019","unstructured":"Chen Y, Xiong J, Xu W, J Zuo A (2019) Novel online incremental and decremental learning algorithm based on variable support vector machine. Clust Comput 22(3):7435\u20137445","journal-title":"Clust Comput"},{"issue":"3","key":"9458_CR17","doi-asserted-by":"crossref","first-page":"7665","DOI":"10.1007\/s10586-018-2368-8","volume":"22","author":"Y Chen","year":"2019","unstructured":"Chen Y, Xu W, Zuo J, Yang K (2019) The fire recognition algorithm using dynamic feature fusion and iv-svm classifier. Clust Comput 22 (3):7665\u20137675","journal-title":"Clust Comput"},{"key":"9458_CR18","doi-asserted-by":"crossref","unstructured":"Chen Y, Tao J, Liu L, Xiong J, Xia R, Xie J, Zhang Q, Yang K (2020) Research of improving semantic image segmentation based on a feature fusion model. Journal of Ambient Intelligence and Humanized Computing","DOI":"10.1007\/s12652-020-02066-z"},{"key":"9458_CR19","first-page":"8822777:1","volume":"2020","author":"Y Chen","year":"2020","unstructured":"Chen Y, Tao J, Zhang Q, Yang K, Chen X, Xiong J, Xia R, Xie J (2020) Saliency detection via the improved hierarchical principal component analysis method. Wirel Commun Mob Comput 2020:8822777:1\u20138822777:12","journal-title":"Wirel Commun Mob Comput"},{"key":"9458_CR20","first-page":"1","volume":"2020","author":"Y Chen","year":"2020","unstructured":"Chen Y, Tao J, Zhang Q, Yang K, Chen X, Xiong J, Xia R, Xie J (2020) Saliency detection via the improved hierarchical principal component analysis method. Wirel Commun Mob Comput 2020:1\u201312","journal-title":"Wirel Commun Mob Comput"},{"issue":"3","key":"9458_CR21","doi-asserted-by":"crossref","first-page":"569","DOI":"10.1109\/TPAMI.2014.2345401","volume":"37","author":"M-M Cheng","year":"2015","unstructured":"Cheng M-M, Mitra N J, Huang X, Torr PHS, Hu S-M (2015) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3):569\u2013582","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"9458_CR22","doi-asserted-by":"crossref","unstructured":"Cho M, Kwak S, Schmid C, Ponce J (2015) Unsupervised object discovery and localization in the wild: Part-based matching with bottom-up region proposals. In: IEEE conference on computer vision and pattern recognition, CVPR 2015, Boston, MA, USA, June 7\u201312, 2015, pp 1201\u20131210","DOI":"10.1109\/CVPR.2015.7298724"},{"key":"9458_CR23","doi-asserted-by":"crossref","unstructured":"Cinbis RG, Verbeek JJ, Schmid C (2014) Multi-fold MIL training for weakly supervised object localization. In: 2014 IEEE conference on computer vision and pattern recognition, CVPR 2014, columbus, OH, USA, June 23\u201328, 2014, pp 2409\u20132416","DOI":"10.1109\/CVPR.2014.309"},{"key":"9458_CR24","doi-asserted-by":"crossref","unstructured":"Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR 2005), 20\u201326 June 2005, San Diego, CA, USA, pp 886\u2013893","DOI":"10.1109\/CVPR.2005.177"},{"key":"9458_CR25","doi-asserted-by":"crossref","unstructured":"Endres I, Hoiem D (2010) Category independent object proposals. In: Computer vision - ECCV 2010 - 11th European conference on computer vision, Heraklion, Crete, Greece, September 5\u201311, 2010, proceedings, Part V, pp 575\u2013588","DOI":"10.1007\/978-3-642-15555-0_42"},{"key":"9458_CR26","doi-asserted-by":"crossref","unstructured":"Faktor A, Irani M (2013) Co-segmentation by composition. In: IEEE international conference on computer vision, ICCV 2013, Sydney, Australia, December 1\u20138, 2013, pp 1297\u20131304","DOI":"10.1109\/ICCV.2013.164"},{"key":"9458_CR27","doi-asserted-by":"crossref","unstructured":"Fan D-P, Cheng M-M, Liu Y, Li T, Borji A (2017) Structure-measure: a new way to evaluate foreground maps. In: ICCV, pp 4558\u20134567","DOI":"10.1109\/ICCV.2017.487"},{"key":"9458_CR28","doi-asserted-by":"crossref","unstructured":"Fan D-P, Cheng M-M, Liu J, Gao S, Hou Q, Borji A (2018) Salient objects in clutter: bringing salient object detection to the foreground. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y (eds) Computer vision - ECCV 2018 - 15th European conference, Munich, Germany, September 8\u201314, 2018, proceedings, Part XV, volume 11219 of Lecture Notes in Computer Science, pp 196\u2013212. Springer","DOI":"10.1007\/978-3-030-01267-0_12"},{"key":"9458_CR29","doi-asserted-by":"crossref","unstructured":"Fan D-P, Gong C, Cao Y, Ren B, Cheng M-M, Borji A (2018) Enhanced-alignment measure for binary foreground map evaluation. In: IJCAI. ijcai.org, pp 698\u2013704","DOI":"10.24963\/ijcai.2018\/97"},{"key":"9458_CR30","doi-asserted-by":"crossref","unstructured":"Fan D-P, Wang W, Cheng M-M, Shen J (2019) Shifting more attention to video salient object detection. In: IEEE conference on computer vision and pattern recognition, CVPR 2019, Long Beach, CA, USA, June 16\u201320, 2019. Computer Vision Foundation \/ IEEE, pp 8554\u20138564","DOI":"10.1109\/CVPR.2019.00875"},{"key":"9458_CR31","doi-asserted-by":"crossref","unstructured":"Fan D-P, Lin Z, Ji G-P, Zhang D, Fu H, Cheng M -M (2020) Taking a deeper look at co-salient object detection. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 2919\u20132929","DOI":"10.1109\/CVPR42600.2020.00299"},{"key":"9458_CR32","unstructured":"Fan J, Song H, Zhang K, Yang K, Liu Q (2020) Feature alignment and aggregation siamese networks for fast visual tracking. IEEE Transactions on Circuits and Systems for Video Technology 1\u20131"},{"key":"9458_CR33","unstructured":"Fern XZ, Brodley CE (2003) Random projection for high dimensional data clustering: a cluster ensemble approach. In: Machine Learning, Proceedings of the Twentieth International Conference (ICML 2003), August 21\u201324, 2003, Washington, DC, USA, pp 186\u2013193"},{"issue":"6","key":"9458_CR34","doi-asserted-by":"crossref","first-page":"835","DOI":"10.1109\/TPAMI.2005.113","volume":"27","author":"ALN Fred","year":"2005","unstructured":"Fred ALN, Jain AK (2005) Combining multiple clusterings using evidence accumulation. IEEE Trans Pattern Anal Mach Intell 27(6):835\u2013850","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"5814","key":"9458_CR35","doi-asserted-by":"crossref","first-page":"972","DOI":"10.1126\/science.1136800","volume":"315","author":"BJ Frey","year":"2007","unstructured":"Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315(5814):972\u2013976","journal-title":"Science"},{"issue":"2","key":"9458_CR36","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1214\/aos\/1016218223","volume":"28","author":"J Friedman","year":"2000","unstructured":"Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). Ann Statist 28(2):337\u2013407","journal-title":"Ann Statist"},{"key":"9458_CR37","doi-asserted-by":"crossref","unstructured":"Girshick RB (2015) Fast r-CNN. In: 2015 IEEE International conference on computer vision, ICCV 2015, Santiago, Chile, December 7\u201313, 2015, pp 1440\u20131448","DOI":"10.1109\/ICCV.2015.169"},{"issue":"8","key":"9458_CR38","doi-asserted-by":"crossref","first-page":"1309","DOI":"10.1109\/TCSVT.2014.2381471","volume":"25","author":"J Han","year":"2015","unstructured":"Han J, Zhang D, Hu X, Guo L, Ren J, Wu F (2015) Background prior-based salient object detection via deep reconstruction residual. IEEE Trans Circuits Syst Video Techn 25(8):1309\u20131321","journal-title":"IEEE Trans Circuits Syst Video Techn"},{"issue":"2","key":"9458_CR39","doi-asserted-by":"crossref","first-page":"487","DOI":"10.1109\/TCYB.2015.2404432","volume":"46","author":"J Han","year":"2016","unstructured":"Han J, Zhang D, Wen S, Guo L, Liu T, Li X (2016) Two-stage learning to predict human eye fixations via sdaes. IEEE Trans Cybernetics 46 (2):487\u2013498","journal-title":"IEEE Trans Cybernetics"},{"issue":"1","key":"9458_CR40","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1109\/MSP.2017.2749125","volume":"35","author":"J Han","year":"2018","unstructured":"Han J, Zhang D, Cheng G, Liu N, Xu D (2018) Advanced deep-learning techniques for salient and category-specific object detection: a survey. IEEE Signal Process Mag 35(1):84\u2013100","journal-title":"IEEE Signal Process Mag"},{"issue":"9","key":"9458_CR41","doi-asserted-by":"crossref","first-page":"1904","DOI":"10.1109\/TPAMI.2015.2389824","volume":"37","author":"K He","year":"2015","unstructured":"He K, Zhang X, Ren S, Sun J (2015) Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell 37(9):1904\u20131916","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"9458_CR42","doi-asserted-by":"crossref","unstructured":"Hochbaum DS, Singh V (2009) An efficient algorithm for co-segmentation. In: IEEE 12th international conference on computer vision, ICCV 2009, Kyoto, Japan, September 27\u2013October 4, 2009, pp 269\u2013276","DOI":"10.1109\/ICCV.2009.5459261"},{"key":"9458_CR43","doi-asserted-by":"crossref","unstructured":"Huang X, Shen C, Boix X, Zhao Q (2015) SALICON: reducing the semantic gap in saliency prediction by adapting deep neural networks. In: 2015 IEEE international conference on computer vision, ICCV 2015, Santiago, Chile, December 7\u201313, 2015, pp 262\u2013270","DOI":"10.1109\/ICCV.2015.38"},{"issue":"10","key":"9458_CR44","doi-asserted-by":"crossref","first-page":"12941","DOI":"10.1007\/s11042-016-3709-3","volume":"76","author":"G Huang","year":"2017","unstructured":"Huang G, Pun C-M, Lin C (2017) Unsupervised video co-segmentation based on superpixel co-saliency and region merging. Multimedia Tools Appl 76 (10):12941\u201312964","journal-title":"Multimedia Tools Appl"},{"key":"9458_CR45","doi-asserted-by":"crossref","unstructured":"Joulin A, Bach FR, Ponce J (2010) Discriminative clustering for image co-segmentation. In: The twenty-third IEEE conference on computer vision and pattern recognition, CVPR 2010, San Francisco, CA, USA, 13\u201318 June 2010, pp 1943\u20131950","DOI":"10.1109\/CVPR.2010.5539868"},{"key":"9458_CR46","doi-asserted-by":"crossref","unstructured":"Joulin A, Bach FR, Ponce J (2012) Multi-class cosegmentation. In: 2012 IEEE conference on computer vision and pattern recognition, providence, RI, USA, June 16\u201321, 2012, pp 542\u2013549","DOI":"10.1109\/CVPR.2012.6247719"},{"key":"9458_CR47","unstructured":"Kim G, Xing EP (2012) On multiple foreground cosegmentation. In: 2012 IEEE conference on computer vision and pattern recognition, Providence, RI, USA, June 16\u201321, 2012, pp 837\u2013844"},{"key":"9458_CR48","unstructured":"Kim G, Xing EP, Li F-F, Kanade T (2011) Distributed cosegmentation via submodular optimization on anisotropic diffusion. In: IEEE international conference on computer vision, ICCV 2011, Barcelona, Spain, November 6\u201313, 2011, pp 169\u2013176"},{"issue":"6","key":"9458_CR49","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1145\/3065386","volume":"60","author":"A Krizhevsky","year":"2017","unstructured":"Krizhevsky A, Sutskever I, Hinton G E (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84\u201390","journal-title":"Commun ACM"},{"key":"9458_CR50","unstructured":"Li H, Yang J (2005) An improved algorithm for searching connected area in binary image. Computer and Modernization 4"},{"key":"9458_CR51","doi-asserted-by":"crossref","unstructured":"Li G, Yu Y (2016) Deep contrast learning for salient object detection. In: 2016 IEEE conference on computer vision and pattern recognition, CVPR 2016, Las Vegas, NV, USA, June 27\u201330, 2016, pp 478\u2013487","DOI":"10.1109\/CVPR.2016.58"},{"issue":"5","key":"9458_CR52","doi-asserted-by":"crossref","first-page":"789","DOI":"10.1109\/TCSVT.2013.2280851","volume":"24","author":"H Li","year":"2014","unstructured":"Li H, Meng F, Wu Q, Luo B (2014) Unsupervised multiclass region cosegmentation via ensemble clustering and energy minimization. IEEE Transactions on Circuits and Systems for Video Technology 24(5):789\u2013801","journal-title":"IEEE Transactions on Circuits and Systems for Video Technology"},{"key":"9458_CR53","doi-asserted-by":"crossref","unstructured":"Li L, Fei X, Dong Z, Zhang D (2015) Unsupervised multi-class co-segmentation via joint object detection and segmentation with energy minimization. vol 9812","DOI":"10.1117\/12.2210737"},{"issue":"4","key":"9458_CR54","first-page":"1898","volume":"25","author":"K Li","year":"2016","unstructured":"Li K, Zhang J, Tao W (2016) Unsupervised co-segmentation for indefinite number of common foreground objects. IEEE Trans Image Processing 25 (4):1898\u20131909","journal-title":"IEEE Trans Image Processing"},{"key":"9458_CR55","doi-asserted-by":"crossref","unstructured":"Li B, Sun Z, Guo Y (2019) Supervae: Superpixelwise variational autoencoder for salient object detection. In: The thirty-third AAAI conference on artificial intelligence, AAAI 2019, the thirty-first innovative applications of artificial intelligence conference, IAAI 2019, the ninth AAAI symposium on educational advances in artificial intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27\u2013February 1, 2019., pp 8569\u20138576","DOI":"10.1609\/aaai.v33i01.33018569"},{"key":"9458_CR56","doi-asserted-by":"crossref","unstructured":"Li B, Sun Z, Li Q, Wu Y, Hu A (2019) Group-wise deep object co-segmentation with co-attention recurrent neural network. In: 2019 IEEE\/CVF international conference on computer vision, ICCV 2019, Seoul, Korea (South), October 27\u2013November 2, 2019. IEEE, pp 8518\u20138527","DOI":"10.1109\/ICCV.2019.00861"},{"key":"9458_CR57","doi-asserted-by":"crossref","unstructured":"Li B, Sun Z, Tang L, Hu A (2019) Two-b-real net: two-branch network for real-time salient object detection. In: IEEE international conference on acoustics, speech and signal processing, ICASSP 2019, Brighton, United Kingdom, May 12\u201317, 2019, pp 1662\u20131666","DOI":"10.1109\/ICASSP.2019.8683022"},{"key":"#cr-split#-9458_CR58.1","doi-asserted-by":"crossref","unstructured":"Li B, Sun Z, Tang L, Sun Y, Shi J (2019) Detecting robust co-saliency with recurrent co-attention neural network. In: Kraus S","DOI":"10.24963\/ijcai.2019\/115"},{"key":"#cr-split#-9458_CR58.2","unstructured":"(ed) Proceedings of the twenty-eighth international joint conference on artificial intelligence, IJCAI 2019, Macao, China, August 10-16, 2019. ijcai.org, pp 818-825"},{"key":"9458_CR59","doi-asserted-by":"crossref","unstructured":"Li B, Sun Z, Wang Q, Li Q (2019) Co-saliency detection based on hierarchical consistency. In: Amsaleg L, Huet B, Larson M A, Gravier G, Hung H, Ngo C-W, Ooi W T (eds) Proceedings of the 27th ACM international conference on multimedia, MM 2019, Nice, France, October 21\u201325, 2019. ACM, pp 1392\u20131400","DOI":"10.1145\/3343031.3351016"},{"issue":"15","key":"9458_CR60","doi-asserted-by":"crossref","first-page":"21309","DOI":"10.1007\/s11042-019-7403-0","volume":"78","author":"T Li","year":"2019","unstructured":"Li T, Song H, Zhang K, Liu Q, Lian W (2019) Low-rank weighted co-saliency detection via efficient manifold ranking. Multim Tools Appl 78(15):21309\u201321324","journal-title":"Multim Tools Appl"},{"key":"9458_CR61","doi-asserted-by":"crossref","first-page":"170","DOI":"10.1016\/j.neucom.2019.12.109","volume":"389","author":"T Li","year":"2020","unstructured":"Li T, Song H, Zhang K, Liu Q (2020) Recurrent reverse attention guided residual learning for saliency object detection. Neurocomputing 389:170\u2013178","journal-title":"Neurocomputing"},{"key":"9458_CR62","doi-asserted-by":"crossref","first-page":"26411","DOI":"10.1109\/ACCESS.2019.2901742","volume":"7","author":"Z Liao","year":"2019","unstructured":"Liao Z, Zhang R, He S, Zeng D, Wang J, Kim H (2019) Deep learning-based data storage for low latency in data center networks. IEEE Access 7:26411\u201326417","journal-title":"IEEE Access"},{"key":"9458_CR63","unstructured":"Liu N, Han J, Zhang D, Wen S, Liu T (2015) Predicting eye fixations using convolutional neural networks. In: IEEE conference on computer vision and pattern recognition, CVPR 2015, Boston, MA, USA, June 7\u201312, 2015, pp 362\u2013370"},{"issue":"19","key":"9458_CR64","doi-asserted-by":"crossref","first-page":"12263","DOI":"10.1007\/s11042-016-3494-z","volume":"75","author":"C Liu","year":"2016","unstructured":"Liu C, Chen T, Ding X, Zou H, Tong Y (2016) A multi-instance multi-label learning algorithm based on instance correlations. Multimedia Tools Appl 75(19):12263\u201312284","journal-title":"Multimedia Tools Appl"},{"issue":"11","key":"9458_CR65","first-page":"4423","volume":"36","author":"L Liu","year":"2017","unstructured":"Liu L, Li K, Liao X (2017) Image co-segmentation by co-diffusion. CSSP 36(11):4423\u20134440","journal-title":"CSSP"},{"issue":"10","key":"9458_CR66","doi-asserted-by":"crossref","first-page":"5161","DOI":"10.1109\/TIP.2019.2917857","volume":"28","author":"G Liu","year":"2019","unstructured":"Liu G, Zhang Z, Liu Q, Xiong H (2019) Robust subspace clustering with compressed data. IEEE Trans Image Process 28(10):5161\u20135170","journal-title":"IEEE Trans Image Process"},{"key":"9458_CR67","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1016\/j.neucom.2020.01.045","volume":"387","author":"Z Liu","year":"2020","unstructured":"Liu Z, Zhang W, Zhao P (2020) A cross-modal adaptive gated fusion generative adversarial network for RGB-d salient object detection. Neurocomputing 387:210\u2013220","journal-title":"Neurocomputing"},{"key":"9458_CR68","doi-asserted-by":"crossref","unstructured":"Lu C-J, Hsu C-F, Yeh M-C (2013) Real-time salient object detection. In: ACM multimedia conference, MM \u201913, Barcelona, Spain, October 21\u201325, 2013, pp 401\u2013402","DOI":"10.1145\/2502081.2502240"},{"key":"9458_CR69","doi-asserted-by":"crossref","unstructured":"Luo Y, Qin J, Xiang X, Tan Y, Liu Q, Xiang L (2019) Coverless real-time image information hiding based on image block matching and dense convolutional network. J Real-Time Image Proc 1\u201311","DOI":"10.1007\/s11554-019-00917-3"},{"key":"9458_CR70","doi-asserted-by":"crossref","unstructured":"Ma T, Latecki LJ (2013) Graph transduction learning with connectivity constraints with application to multiple foreground cosegmentation. In: 2013 IEEE conference on computer vision and pattern recognition, pp 1955\u20131962","DOI":"10.1109\/CVPR.2013.255"},{"key":"9458_CR71","doi-asserted-by":"crossref","unstructured":"Margolin R, Zelnik-Manor L, Tal A (2014) How to evaluate foreground maps. In: CVPR. IEEE Computer Society, pp 248\u2013255","DOI":"10.1109\/CVPR.2014.39"},{"issue":"5","key":"9458_CR72","doi-asserted-by":"crossref","first-page":"1429","DOI":"10.1109\/TMM.2012.2197741","volume":"14","author":"F Meng","year":"2012","unstructured":"Meng F, Li H, Liu G, Ngan KN (2012) Object co-segmentation based on shortest path algorithm and saliency model. IEEE Trans Multimedia 14 (5):1429\u20131441","journal-title":"IEEE Trans Multimedia"},{"issue":"11","key":"9458_CR73","doi-asserted-by":"crossref","first-page":"1735","DOI":"10.1109\/TCSVT.2015.2402891","volume":"25","author":"F Meng","year":"2015","unstructured":"Meng F, Li H, Zhu S, Luo B, Huang C, Zeng B, Gabbouj M (2015) Constrained directed graph clustering and segmentation propagation for multiple foregrounds cosegmentation. IEEE Trans Circuits Syst Video Techn 25 (11):1735\u20131748","journal-title":"IEEE Trans Circuits Syst Video Techn"},{"key":"9458_CR74","doi-asserted-by":"crossref","unstructured":"Mukherjee L, Singh V, Dyer CR (2009) Half-integrality based algorithms for cosegmentation of images. In: 2009 IEEE computer society conference on computer vision and pattern recognition (CVPR 2009), 20\u201325 June 2009, Miami, Florida, USA, pp 2028\u20132035","DOI":"10.1109\/CVPR.2009.5206652"},{"key":"9458_CR75","unstructured":"Piao Y, Rong Z, Zhang M, Lu H Exploit and replace: an asymmetrical two-stream architecture for versatile light field saliency detection"},{"issue":"3","key":"9458_CR76","doi-asserted-by":"crossref","first-page":"309","DOI":"10.1145\/1015706.1015720","volume":"23","author":"C Rother","year":"2004","unstructured":"Rother C, Kolmogorov V, Blake A (2004) \u201cgrabcut\u201d: interactive foreground extraction using iterated graph cuts. ACM Trans Graph 23(3):309\u2013314","journal-title":"ACM Trans Graph"},{"key":"9458_CR77","doi-asserted-by":"crossref","unstructured":"Rother C, Minka TP, Blake A, Kolmogorov V (2006) Cosegmentation of image pairs by histogram matching - incorporating a global constraint into mrfs. In: 2006 IEEE Computer society conference on computer vision and pattern recognition (CVPR 2006), 17\u201322 June 2006, New York, NY, USA, pp 993\u20131000","DOI":"10.1109\/CVPR.2006.91"},{"key":"9458_CR78","doi-asserted-by":"crossref","unstructured":"Rubinstein M, Joulin A, Kopf J, Liu C (2013) Unsupervised joint object discovery and segmentation in internet images. In: 2013 IEEE conference on computer vision and pattern recognition, Portland, OR, USA, June 23\u201328, 2013, pp 1939\u20131946","DOI":"10.1109\/CVPR.2013.253"},{"key":"9458_CR79","unstructured":"Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:http:\/\/arxiv.orb\/abs\/1409.1556"},{"key":"9458_CR80","doi-asserted-by":"crossref","unstructured":"Tang KD, Joulin A, Li L-J, Li F-F (2014) Co-localization in real-world images. In: 2014 IEEE conference on computer vision and pattern recognition, CVPR 2014, Columbus, OH, USA, June 23\u201328, 2014, pp 1464\u20131471","DOI":"10.1109\/CVPR.2014.190"},{"key":"9458_CR81","doi-asserted-by":"crossref","unstructured":"Tsai Y-H, Zhong G, Yang M-H (2016) Semantic co-segmentation in videos. In: Computer vision - ECCV 2016 - 14th European conference, Amsterdam, The Netherlands, October 11\u201314, 2016, proceedings, Part IV, pp 760\u2013775","DOI":"10.1007\/978-3-319-46493-0_46"},{"key":"9458_CR82","doi-asserted-by":"crossref","unstructured":"Vicente S, Kolmogorov V, Rother C (2010) Cosegmentation revisited: Models and optimization. In: Computer vision - ECCV 2010, 11th European conference on computer vision, Heraklion, Crete, Greece, September 5\u201311, 2010, proceedings, Part II, pp 465\u2013479","DOI":"10.1007\/978-3-642-15552-9_34"},{"key":"9458_CR83","doi-asserted-by":"crossref","unstructured":"Vicente S, Rother C, Kolmogorov V (2011) Object cosegmentation. In: The 24th IEEE conference on computer vision and pattern recognition, CVPR 2011, Colorado Springs, CO, USA, 20-25 June 2011, pp 2217\u20132224","DOI":"10.1109\/CVPR.2011.5995530"},{"issue":"4","key":"9458_CR84","doi-asserted-by":"crossref","first-page":"395","DOI":"10.1007\/s11222-007-9033-z","volume":"17","author":"U von Luxburg","year":"2007","unstructured":"von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395\u2013416","journal-title":"Stat Comput"},{"issue":"6","key":"9458_CR85","doi-asserted-by":"crossref","first-page":"1011","DOI":"10.1109\/TMM.2016.2545409","volume":"18","author":"W Wang","year":"2016","unstructured":"Wang W, Shen J (2016) Higher-order image co-segmentation. IEEE Trans Multimedia 18(6):1011\u20131021","journal-title":"IEEE Trans Multimedia"},{"key":"9458_CR86","doi-asserted-by":"crossref","unstructured":"Wang F, Huang Q, Ovsjanikov M, Guibas LJ (2014) Unsupervised multi-class joint image segmentation. In: 2014 IEEE Conference on computer vision and pattern recognition, CVPR 2014, Columbus, OH, USA, June 23\u201328, 2014, pp 3142\u20133149","DOI":"10.1109\/CVPR.2014.402"},{"issue":"1","key":"9458_CR87","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1109\/TIP.2017.2754941","volume":"27","author":"W Wang","year":"2018","unstructured":"Wang W, Shen J, Shao L (2018) Video salient object detection via fully convolutional networks. IEEE Trans Image Process 27(1):38\u201349","journal-title":"IEEE Trans Image Process"},{"key":"9458_CR88","unstructured":"Wang W, Lai Q, Fu H, Shen J, Ling H (2019) Salient object detection in the deep learning era: an in-depth survey. arXiv:1904.09146"},{"key":"9458_CR89","doi-asserted-by":"crossref","unstructured":"Winn JM, Criminisi A, Minka TP (2005) Object categorization by learned universal visual dictionary. In: ICCV, pp 1800\u20131807","DOI":"10.1109\/ICCV.2005.171"},{"issue":"8","key":"9458_CR90","doi-asserted-by":"crossref","first-page":"10353","DOI":"10.1007\/s11042-018-6614-0","volume":"78","author":"Y Xie","year":"2019","unstructured":"Xie Y, Liu Z, Zhou X, Liu W, Zou X (2019) Video co-segmentation based on directed graph. Multimedia Tools Appl 78(8):10353\u201310372","journal-title":"Multimedia Tools Appl"},{"key":"9458_CR91","doi-asserted-by":"crossref","unstructured":"Xu X-S, Xue X, Zhou Z-H (2011) Ensemble multi-instance multi-label learning approach for video annotation task. In: Proceedings of the 19th international conference on multimedia 2011, Scottsdale, AZ, USA, November 28\u2013December 1, 2011, pp 1153\u20131156","DOI":"10.1145\/2072298.2071962"},{"key":"9458_CR92","doi-asserted-by":"crossref","unstructured":"Yang W, Sun Z, Li B, Hu J, Yang K (2017) Unsupervised multiple object cosegmentation via ensemble MIML learning. In: Multimedia modeling - 23rd international conference, MMM 2017, Reykjavik, Iceland, January 4\u20136, 2017, proceedings, Part II, pp 393\u2013404","DOI":"10.1007\/978-3-319-51814-5_33"},{"key":"9458_CR93","doi-asserted-by":"crossref","unstructured":"Yuan Z-H, Lu T, Wu Y (2017) Deep-dense conditional random fields for object co-segmentation. In: Proceedings of the twenty-sixth international joint conference on artificial intelligence, IJCAI 2017, Melbourne, Australia, August 19\u201325, 2017, pp 3371\u20133377","DOI":"10.24963\/ijcai.2017\/471"},{"key":"9458_CR94","unstructured":"Zha Z-J, Hua X-S, Mei T, Wang J, Qi G-J, Wang Z (2008) Joint multi-label multi-instance learning for image classification. In: 2008 IEEE computer society conference on computer vision and pattern recognition (CVPR 2008), 24\u201326 June, 2008, Anchorage, Alaska, USA"},{"key":"9458_CR95","doi-asserted-by":"crossref","unstructured":"Zhang M-L, Zhou Z-H (2008) M3MIML: a maximum margin method for multi-instance multi-label learning. In: Proceedings of the 8th IEEE international conference on data mining (ICDM 2008), December 15\u201319, 2008, Pisa, Italy, pp 688\u2013697","DOI":"10.1109\/ICDM.2008.27"},{"key":"9458_CR96","doi-asserted-by":"crossref","first-page":"83873","DOI":"10.1109\/ACCESS.2019.2924944","volume":"7","author":"J Zhang","year":"2019","unstructured":"Zhang J, Wu Y, Feng W, Wang J (2019) Spatially attentive visual tracking using multi-model adaptive response fusion. IEEE Access 7:83873\u201383887","journal-title":"IEEE Access"},{"key":"9458_CR97","doi-asserted-by":"crossref","unstructured":"Zhang K, Chen J, Liu B, Liu Q (2019) Deep object co-segmentation via spatial-semantic network modulation. arXiv:1911.12950","DOI":"10.1609\/aaai.v34i07.6977"},{"key":"9458_CR98","doi-asserted-by":"crossref","unstructured":"Zhang K, Li T, Liu B, Liu Q (2019) Co-saliency detection via mask-guided fully convolutional networks with multi-scale label smoothing. In: IEEE conference on computer vision and pattern recognition, CVPR 2019, long beach, CA, USA, June 16\u201320, 2019. Computer Vision Foundation \/ IEEE, pp 3095\u20133104","DOI":"10.1109\/CVPR.2019.00321"},{"key":"9458_CR99","doi-asserted-by":"crossref","unstructured":"Zhang K, Li T, Shen S, Liu B, Chen J, Liu Q (2020) Adaptive graph convolutional network with attention graph clustering for co-saliency detection. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 9050\u20139059","DOI":"10.1109\/CVPR42600.2020.00907"},{"key":"9458_CR100","doi-asserted-by":"crossref","first-page":"531","DOI":"10.1016\/j.neucom.2019.04.097","volume":"398","author":"X Zhang","year":"2020","unstructured":"Zhang X, Song H, Zhang K, Qiao J, Liu Q (2020) Single image super-resolution with enhanced laplacian pyramid network via conditional generative adversarial learning. Neurocomputing 398:531\u2013538","journal-title":"Neurocomputing"},{"key":"9458_CR101","doi-asserted-by":"crossref","unstructured":"Zhao J, Cao Y, Fan D-P, Cheng M-M, Li X-Y, Zhang L (2019) Contrast prior and fluid pyramid integration for RGBD salient object detection. In: IEEE conference on computer vision and pattern recognition, CVPR 2019, Long Beach, CA, USA, June 16\u201320, 2019. Computer Vision Foundation \/ IEEE, pp 3927\u20133936","DOI":"10.1109\/CVPR.2019.00405"},{"key":"9458_CR102","unstructured":"Zhou Z-H, Zhang M-L (2006) Multi-instance multi-label learning with application to scene classification. In: Advances in neural information processing systems 19, proceedings of the twentieth annual conference on neural information processing systems, Vancouver, British Columbia, Canada, December 4\u20137, 2006, pp 1609\u20131616"},{"issue":"1","key":"9458_CR103","doi-asserted-by":"crossref","first-page":"2291","DOI":"10.1016\/j.artint.2011.10.002","volume":"176","author":"Z-H Zhou","year":"2012","unstructured":"Zhou Z-H, Zhang M-L, Huang S-J, Li Y-F (2012) Multi-instance multi-label learning. Artif Intell 176(1):2291\u20132320","journal-title":"Artif Intell"},{"key":"9458_CR104","unstructured":"Zhu H, Lu J, Cai J, Zheng J, Magnenat-Thalmann N (2014) Multiple foreground recognition and cosegmentation: an object-oriented CRF model with robust higher-order potentials. In: IEEE winter conference on applications of computer vision, Steamboat Springs, CO, USA, March 24\u201326, 2014, pp 485\u2013492"}],"container-title":["Multimedia Tools and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-020-09458-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11042-020-09458-5\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-020-09458-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,8,20]],"date-time":"2021-08-20T00:02:11Z","timestamp":1629417731000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11042-020-09458-5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,8,20]]},"references-count":105,"journal-issue":{"issue":"41-42","published-print":{"date-parts":[[2020,11]]}},"alternative-id":["9458"],"URL":"https:\/\/doi.org\/10.1007\/s11042-020-09458-5","relation":{},"ISSN":["1380-7501","1573-7721"],"issn-type":[{"type":"print","value":"1380-7501"},{"type":"electronic","value":"1573-7721"}],"subject":[],"published":{"date-parts":[[2020,8,20]]},"assertion":[{"value":"3 September 2019","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"20 July 2020","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"28 July 2020","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"20 August 2020","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}