{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,2,9]],"date-time":"2024-02-09T06:54:45Z","timestamp":1707461685025},"reference-count":55,"publisher":"Springer Science and Business Media LLC","issue":"31-32","license":[{"start":{"date-parts":[[2020,5,16]],"date-time":"2020-05-16T00:00:00Z","timestamp":1589587200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,5,16]],"date-time":"2020-05-16T00:00:00Z","timestamp":1589587200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimed Tools Appl"],"published-print":{"date-parts":[[2020,8]]},"DOI":"10.1007\/s11042-020-08807-8","type":"journal-article","created":{"date-parts":[[2020,5,16]],"date-time":"2020-05-16T21:02:56Z","timestamp":1589662976000},"page":"22083-22105","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Small target detection based on bird\u2019s visual information processing mechanism"],"prefix":"10.1007","volume":"79","author":[{"given":"Zhizhong","family":"Wang","sequence":"first","affiliation":[]},{"given":"Donghaisheng","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Yuehui","family":"Lei","sequence":"additional","affiliation":[]},{"given":"Xiaoke","family":"Niu","sequence":"additional","affiliation":[]},{"given":"Songwei","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Li","family":"Shi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,5,16]]},"reference":[{"key":"8807_CR1","unstructured":"Abadi M, Agarwal A, Barham P et al (2016) TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv:1603.04467"},{"key":"8807_CR2","unstructured":"Alexey AB (2018) How to improve object detection. IOP Publishing PhysicsWeb. https:\/\/github.com\/AlexeyAB\/darknet. Accessed on 21 July 2018"},{"issue":"1","key":"8807_CR3","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1017\/S0952523800004296","volume":"2","author":"B Bessette","year":"1989","unstructured":"Bessette B, Hodos W (1989) Intensity, color, and pattern discrimination deficits after lesions of the core and belt regions of the ectostriatum. Vis Neurosci 2(1):27\u201334","journal-title":"Vis Neurosci"},{"issue":"6","key":"8807_CR4","doi-asserted-by":"crossref","first-page":"544","DOI":"10.1016\/j.conb.2008.11.004","volume":"18","author":"S Boehnke","year":"2008","unstructured":"Boehnke S, Munoz D (2008) On the importance of the transient visual response in the superior colliculus. Curr Opin Neurobiol 18(6):544\u2013551","journal-title":"Curr Opin Neurobiol"},{"issue":"3","key":"8807_CR5","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1023\/B:VISI.0000045324.43199.43","volume":"61","author":"A Bruhn","year":"2005","unstructured":"Bruhn A, Weickert J, Schn\u00f6rr C (2005) Lucas\/Kanade meets horn\/Schunck: combining local and global optic flow methods. Int J Comput Vis 61(3):211\u2013231","journal-title":"Int J Comput Vis"},{"key":"8807_CR6","doi-asserted-by":"crossref","unstructured":"Butler AB, Hodos W (2005) Comparative vertebrate neuroanatomy: evolution and adaptation. Wiley","DOI":"10.1002\/0471733849"},{"issue":"1","key":"8807_CR7","doi-asserted-by":"crossref","first-page":"28","DOI":"10.3390\/rs8010028","volume":"8","author":"Y Cao","year":"2015","unstructured":"Cao Y, Wang G, Yan D, Zhao Z (2015) Two algorithms for the detection and tracking of moving vehicle targets in aerial infrared image sequences. Remote Sens 8(1):28","journal-title":"Remote Sens"},{"key":"8807_CR8","first-page":"214","volume-title":"R-CNN for small object detection. Asian conference on computer vision","author":"C Chen","year":"2016","unstructured":"Chen C, Liu MY, Tuzel O et al (2016) R-CNN for small object detection. Asian conference on computer vision. Springer, Cham, pp 214\u2013230"},{"issue":"3","key":"8807_CR9","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1016\/S1095-6433(00)00333-0","volume":"128","author":"J Ewert","year":"2001","unstructured":"Ewert J, Buxbaum-Conradi H, Dreisvogt F, Glagow M, Merkel-Harff C, R\u00f6ttgen A, Sch\u00fcrg-Pfeiffer E, Schwippert WW (2001) Neural modulation of visuomotor functions underlying prey-catching behaviour in anurans: perception, attention, motor performance, learning. Comp Biochem Physiol A Mol Integr Physiol 128(3):417\u2013460","journal-title":"Comp Biochem Physiol A Mol Integr Physiol"},{"issue":"8","key":"8807_CR10","doi-asserted-by":"crossref","first-page":"382","DOI":"10.1016\/j.tics.2006.06.011","volume":"10","author":"JH Fecteau","year":"2006","unstructured":"Fecteau JH, Munoz DP (2006) Salience, relevance, and firing: a priority map for target selection. Trends Cogn Sci 10(8):382\u2013390","journal-title":"Trends Cogn Sci"},{"issue":"3","key":"8807_CR11","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1162\/jocn.1993.5.3.373","volume":"5","author":"R Fendrich","year":"1993","unstructured":"Fendrich R (1993) The merging of the senses. J Cogn Neurosci 5(3):373\u2013374","journal-title":"J Cogn Neurosci"},{"key":"8807_CR12","unstructured":"Fu C, Liu W, Ranga A, Tyagi A Berg A (2017) Dssd: Deconvolutional single shot detector. arXiv:1701.06659"},{"key":"8807_CR13","doi-asserted-by":"crossref","unstructured":"Gang L, Qianqian Z, Tao H et al (2012) Detecting for the aerial small target in infrared image based on the correlation coefficients of nonsubsampled contourlet transform. IEEE international conference on automation and logistics. IEEE, pp 363\u2013367","DOI":"10.1109\/ICAL.2012.6308220"},{"key":"8807_CR14","doi-asserted-by":"crossref","unstructured":"Girshick R (2015) Fast r-cnn. Proceedings of the IEEE international conference on computer vision (ICCV), pp 1440\u20131448","DOI":"10.1109\/ICCV.2015.169"},{"key":"8807_CR15","doi-asserted-by":"crossref","unstructured":"Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 580\u2013587","DOI":"10.1109\/CVPR.2014.81"},{"key":"8807_CR16","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S et al (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. Proceedings of the IEEE international conference on computer vision, pp 1026\u20131034","DOI":"10.1109\/ICCV.2015.123"},{"key":"8807_CR17","doi-asserted-by":"crossref","unstructured":"He K, Gkioxari G, Doll\u00e1r P et al (2017) Mask r-cnn. Proceedings of the IEEE international conference on computer vision, pp 2961\u20132969","DOI":"10.1109\/ICCV.2017.322"},{"issue":"4","key":"8807_CR18","doi-asserted-by":"crossref","first-page":"814","DOI":"10.1109\/TPAMI.2015.2465908","volume":"38","author":"J Hosang","year":"2015","unstructured":"Hosang J, Benenson R, Doll\u00e1r P, Schiele B (2015) What makes for effective detection proposals? IEEE Trans Pattern Anal Mach Intell 38(4):814\u2013830","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"8807_CR19","doi-asserted-by":"crossref","unstructured":"Hui Z, Wang X, Gao X (2018) Fast and accurate single image super-resolution via information distillation network. Proceedings of the IEEE conference on computer vision and pattern recognition, pp 723\u2013731","DOI":"10.1109\/CVPR.2018.00082"},{"key":"8807_CR20","doi-asserted-by":"crossref","unstructured":"Jia Y, Shelhamer E, Donahue J et al (2014) Caffe: convolutional architecture for fast feature embedding. Proceedings of the 22nd ACM international conference on multimedia. ACM, pp 675\u2013678","DOI":"10.1145\/2647868.2654889"},{"key":"8807_CR21","doi-asserted-by":"crossref","unstructured":"Ju M, Luo J, Zhang P et al (2019) A simple and efficient network for small target detection. IEEE Access, pp 85771\u201385781","DOI":"10.1109\/ACCESS.2019.2924960"},{"issue":"6","key":"8807_CR22","doi-asserted-by":"crossref","first-page":"334","DOI":"10.1049\/iet-ipr.2012.0428","volume":"8","author":"M Khare","year":"2014","unstructured":"Khare M, Srivastava RK, Khare A (2014) Single change detection-based moving object segmentation by using Daubechies complex wavelet transform. IET Image Process 8(6):334\u2013344","journal-title":"IET Image Process"},{"key":"8807_CR23","doi-asserted-by":"crossref","unstructured":"Kong T, Yao A, Chen Y et al (2016) Hypernet: towards accurate region proposal generation and joint object detection. Proceedings of IEEE conference on computer vision and pattern recognition, pp 845\u2013853","DOI":"10.1109\/CVPR.2016.98"},{"issue":"1","key":"8807_CR24","doi-asserted-by":"publisher","first-page":"012138","DOI":"10.1088\/1742-6596\/1069\/1\/012138","volume":"1069","author":"L Kong","year":"2018","unstructured":"Kong L, Zhu X, Wang G (2018) Context semantics for small target detection in large-field images with two cascaded faster R-CNNs. J. Phys Conf Ser, IOP publishing 1069(1):012138. https:\/\/doi.org\/10.1088\/1742-6596\/1069\/1\/012138","journal-title":"J. Phys Conf Ser"},{"key":"8807_CR25","doi-asserted-by":"crossref","unstructured":"Ku J, Mozifian M, Lee J et al (2018) Joint 3d proposal generation and object detection from view aggregation. 2018 IEEE\/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 1\u20138","DOI":"10.1109\/IROS.2018.8594049"},{"key":"8807_CR26","doi-asserted-by":"crossref","unstructured":"Lai W S, Huang J B, Ahuja N et al (2017) Deep laplacian pyramid networks for fast and accurate super-resolution. Proceedings of the IEEE conference on computer vision and pattern recognition, pp 624\u2013632","DOI":"10.1109\/CVPR.2017.618"},{"key":"8807_CR27","doi-asserted-by":"crossref","unstructured":"Li D, Li M, Zheng J et al (2017) Joint rotation invariant feature for vehicle detection in aerial images. Ninth international conference on digital image processing (ICDIP), International Society for Optics and Photonics, 10420: 104200W","DOI":"10.1117\/12.2281589"},{"key":"8807_CR28","doi-asserted-by":"crossref","unstructured":"Li J, Liang X, Wei Y et al (2017) Perceptual generative adversarial networks for small object detection. Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1222\u20131230","DOI":"10.1109\/CVPR.2017.211"},{"key":"8807_CR29","doi-asserted-by":"crossref","unstructured":"Lin TY, Doll\u00e1r P, Girshick R et al (2017) Feature pyramid networks for object detection. IEEE Conference on Computer Vision and Pattern Recognition, pp 2117\u20132125","DOI":"10.1109\/CVPR.2017.106"},{"issue":"9","key":"8807_CR30","doi-asserted-by":"crossref","first-page":"1938","DOI":"10.1109\/LGRS.2015.2439517","volume":"12","author":"K Liu","year":"2015","unstructured":"Liu K, Mattyus G (2015) Fast multiclass vehicle detection on aerial images. Geoscience and Remote Sensing Letters 12(9):1938\u20131942","journal-title":"Geoscience and Remote Sensing Letters"},{"key":"8807_CR31","first-page":"21","volume-title":"Ssd: single shot multibox detector. European conference on computer vision","author":"W Liu","year":"2016","unstructured":"Liu W, Anguelov D, Erhan D et al (2016) Ssd: single shot multibox detector. European conference on computer vision. Springer, Cham, pp 21\u201337"},{"issue":"13","key":"8807_CR32","doi-asserted-by":"crossref","first-page":"14781","DOI":"10.1007\/s11042-016-4025-7","volume":"76","author":"J Lou","year":"2016","unstructured":"Lou J, Zhu W, Wang H, Ren M (2016) Small target detection combining regional stability and saliency in a color image. Multimed Tools Appl 76(13):14781\u201314798","journal-title":"Multimed Tools Appl"},{"key":"8807_CR33","doi-asserted-by":"crossref","unstructured":"Mandal M, Shah M, Meena P et al (2019) SSSDET: simple short and shallow network for resource efficient vehicle detection in aerial scenes. IEEE international conference on image processing (ICIP), pp 3098\u20133102","DOI":"10.1109\/ICIP.2019.8803262"},{"key":"8807_CR34","unstructured":"Mandal M, Shah M, Meena P et al (2019) AVDNet: A Small-Sized Vehicle Detection Network for Aerial Visual Data. IEEE Geoscience and Remote Sensing Letters, pp 1\u20135"},{"issue":"1","key":"8807_CR35","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S0166-2236(99)01486-1","volume":"23","author":"L Medina","year":"2000","unstructured":"Medina L, Reiner A (2000) Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends Neurosci 23(1):1\u201312","journal-title":"Trends Neurosci"},{"issue":"5","key":"8807_CR36","doi-asserted-by":"crossref","first-page":"1727","DOI":"10.1523\/JNEUROSCI.3740-09.2010","volume":"30","author":"P Mysore","year":"2010","unstructured":"Mysore P, Asadollahi A, Knudsen E (2010) Global inhibition and stimulus competition in the owl optic Tectum. J Neurosci 30(5):1727\u20131738","journal-title":"J Neurosci"},{"key":"8807_CR37","doi-asserted-by":"crossref","unstructured":"Northmore D (2011) Optic tectum. Encyclopedia of fish physiology: from genome to environment. Elsevier, pp 131\u2013142","DOI":"10.1016\/B978-0-12-374553-8.00093-9"},{"key":"8807_CR38","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1016\/j.jvcir.2015.11.002","volume":"34","author":"S Razakarivony","year":"2016","unstructured":"Razakarivony S, Jurie F (2016) Vehicle detection in aerial imagery: a small target detection benchmark. J Vis Commun Image Represent 34:187\u2013203","journal-title":"J Vis Commun Image Represent"},{"key":"8807_CR39","doi-asserted-by":"crossref","unstructured":"Redmon J, Farhadi A (2017) YOLO9000: better, faster, stronger. Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7263\u20137271","DOI":"10.1109\/CVPR.2017.690"},{"key":"8807_CR40","unstructured":"Redmon J, Farhadi A (2018) Yolov3: An incremental improvement. arXiv:1804.02767"},{"key":"8807_CR41","doi-asserted-by":"crossref","unstructured":"Redmon J, Divvala S, Girshick R et al (2016) You only look once: unified, real-time object detection. Proceedings of the IEEE conference on computer vision and pattern recognition, pp 779\u2013788","DOI":"10.1109\/CVPR.2016.91"},{"issue":"1","key":"8807_CR42","doi-asserted-by":"crossref","first-page":"1080","DOI":"10.1002\/ar.a.20253","volume":"287","author":"A Reiner","year":"2005","unstructured":"Reiner A, Yamamoto K, Karten H (2005) Organization and evolution of the avian forebrain. Anat Rec 287(1):1080\u20131102","journal-title":"Anat Rec"},{"issue":"6","key":"8807_CR43","doi-asserted-by":"crossref","first-page":"1137","DOI":"10.1109\/TPAMI.2016.2577031","volume":"39","author":"S Ren","year":"2015","unstructured":"Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137\u20131149","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"5","key":"8807_CR44","doi-asserted-by":"crossref","first-page":"813","DOI":"10.3390\/app8050813","volume":"8","author":"Y Ren","year":"2018","unstructured":"Ren Y, Zhu C, Xiao S (2018) Small object detection in optical remote sensing images via modified faster R-CNN. Appl Sci 8(5):813","journal-title":"Appl Sci"},{"key":"8807_CR45","unstructured":"Sermanet P, Eigen D, Zhang X et al (2013) OverFeat: integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229"},{"key":"8807_CR46","doi-asserted-by":"crossref","unstructured":"Shi W, Caballero J, Husz\u00e1r F et al (2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1874\u20131883","DOI":"10.1109\/CVPR.2016.207"},{"key":"8807_CR47","unstructured":"Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556"},{"key":"8807_CR48","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1016\/j.cviu.2013.12.005","volume":"122","author":"A Sobral","year":"2014","unstructured":"Sobral A, Vacavant A (2014) A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput Vis Image Underst 122:4\u201321","journal-title":"Comput Vis Image Underst"},{"key":"8807_CR49","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1016\/j.engappai.2013.09.007","volume":"28","author":"K Suganyadevi","year":"2014","unstructured":"Suganyadevi K, Malmurugan N (2014) OFGM-SMED: an efficient and robust foreground object detection in compressed video sequences. Eng Appl Artif Intell 28:210\u2013217","journal-title":"Eng Appl Artif Intell"},{"issue":"2","key":"8807_CR50","doi-asserted-by":"crossref","first-page":"154","DOI":"10.1007\/s11263-013-0620-5","volume":"104","author":"J Uijlings","year":"2013","unstructured":"Uijlings J, van de Sande KE, Gevers T, Smeulders A (2013) Selective search for object recognition. Int J Comput Vis 104(2):154\u2013171","journal-title":"Int J Comput Vis"},{"key":"8807_CR51","doi-asserted-by":"crossref","unstructured":"Vedaldi A, Lenc K (2015) Matconvnet: convolutional neural networks for matlab. Proceedings of the 23rd ACM international conference on multimedia. ACM, pp 689\u2013692","DOI":"10.1145\/2733373.2807412"},{"issue":"3","key":"8807_CR52","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1049\/el:20092206","volume":"45","author":"P Wang","year":"2009","unstructured":"Wang P, Tian JW, Gao CQ (2009) Infrared small target detection using directional highpass filters based on LS-SVM. Electron Lett 45(3):156\u2013158","journal-title":"Electron Lett"},{"issue":"5","key":"8807_CR53","doi-asserted-by":"crossref","first-page":"595","DOI":"10.1038\/nn.2107","volume":"11","author":"Y Yang","year":"2008","unstructured":"Yang Y, Cao P, Yang Y, Wang S (2008) Corollary discharge circuits for saccadic modulation of the pigeon visual system. Nat Neurosci 11(5):595\u2013602","journal-title":"Nat Neurosci"},{"issue":"4","key":"8807_CR54","doi-asserted-by":"crossref","first-page":"297","DOI":"10.14358\/PERS.85.4.297","volume":"85","author":"MY Yang","year":"2019","unstructured":"Yang MY, Liao W, Li X et al (2019) Vehicle detection in aerial images. Photogramm Eng Remote Sens 85(4):297\u2013304","journal-title":"Photogramm Eng Remote Sens"},{"issue":"12","key":"8807_CR55","doi-asserted-by":"crossref","first-page":"2720","DOI":"10.3390\/s17122720","volume":"17","author":"J Zhong","year":"2017","unstructured":"Zhong J, Lei T, Yao G (2017) Robust vehicle detection in aerial images based on cascaded convolutional neural networks. Sensors 17(12):2720","journal-title":"Sensors"}],"container-title":["Multimedia Tools and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-020-08807-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11042-020-08807-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-020-08807-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,5,15]],"date-time":"2021-05-15T23:23:04Z","timestamp":1621120984000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11042-020-08807-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,5,16]]},"references-count":55,"journal-issue":{"issue":"31-32","published-print":{"date-parts":[[2020,8]]}},"alternative-id":["8807"],"URL":"https:\/\/doi.org\/10.1007\/s11042-020-08807-8","relation":{},"ISSN":["1380-7501","1573-7721"],"issn-type":[{"value":"1380-7501","type":"print"},{"value":"1573-7721","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,5,16]]},"assertion":[{"value":"7 May 2019","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"15 December 2019","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"28 February 2020","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"16 May 2020","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}