{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T00:37:54Z","timestamp":1726015074227},"reference-count":38,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2022,2,4]],"date-time":"2022-02-04T00:00:00Z","timestamp":1643932800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,2,4]],"date-time":"2022-02-04T00:00:00Z","timestamp":1643932800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Mobile Netw Appl"],"published-print":{"date-parts":[[2022,8]]},"DOI":"10.1007\/s11036-021-01869-4","type":"journal-article","created":{"date-parts":[[2022,2,4]],"date-time":"2022-02-04T16:59:40Z","timestamp":1643993980000},"page":"1629-1641","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["A General Matrix Factorization Framework for Recommender Systems in Multi-access Edge Computing Network"],"prefix":"10.1007","volume":"27","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1387-4527","authenticated-orcid":false,"given":"Guanzhong","family":"Liang","sequence":"first","affiliation":[]},{"given":"Chuan","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Jianing","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Fengji","family":"Luo","sequence":"additional","affiliation":[]},{"given":"Junhao","family":"Wen","sequence":"additional","affiliation":[]},{"given":"Xiuhua","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,2,4]]},"reference":[{"issue":"6","key":"1869_CR1","doi-asserted-by":"publisher","first-page":"734","DOI":"10.1109\/TKDE.2005.99","volume":"17","author":"G Adomavicius","year":"2005","unstructured":"Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng 17(6):734\u2013749","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"1869_CR2","doi-asserted-by":"crossref","unstructured":"Ricci F, Rokach L, Shapira B (2015) Recommender systems: Introduction and challenges. In: recommender systems handbook. Springer, Boston, pp 1\u201334","DOI":"10.1007\/978-1-4899-7637-6_1"},{"key":"1869_CR3","doi-asserted-by":"crossref","unstructured":"Seo Y, Kim Y, Lee E, Kim H (2021) Group recommender system based on genre preference focusing on reducing the clustering cost. Expert Syst Appl:183","DOI":"10.1016\/j.eswa.2021.115396"},{"key":"1869_CR4","doi-asserted-by":"publisher","first-page":"187","DOI":"10.1016\/j.cie.2019.02.028","volume":"130","author":"S Bag","year":"2019","unstructured":"Bag S, Ghadge A, Tiwari MK (2019) An integrated recommender system for improved accuracy and aggregate diversity. Comput Ind Eng 130:187\u2013197","journal-title":"Comput Ind Eng"},{"key":"1869_CR5","doi-asserted-by":"crossref","unstructured":"Liu D, Yang C (2018) A Learning-Based approach to joint content caching and recommendation at base stations. In: Proceedings of IEEE Global Communications Conference, pp 1\u20137","DOI":"10.1109\/GLOCOM.2018.8647827"},{"key":"1869_CR6","doi-asserted-by":"publisher","first-page":"94","DOI":"10.1016\/j.future.2016.06.015","volume":"70","author":"J Yang","year":"2017","unstructured":"Yang J, Wang H, Lv Z, Wei W, Song H, Kantarci ME, Kantarci B, He S (2017) Multimedia recommendation and transmission system based on cloud platform. Futur Gener Comput Syst 70:94\u2013103","journal-title":"Futur Gener Comput Syst"},{"key":"1869_CR7","doi-asserted-by":"crossref","unstructured":"Fu Y, Yang Z, Quek TQS, Yang HH (2021) Towards cost minimization for wireless caching networks with recommendation and uncharted users\u2019 feature information. IEEE transactions on wireless communications (early access)","DOI":"10.1109\/TWC.2021.3076495"},{"key":"1869_CR8","unstructured":"Zhou X, Canady R, Bao S, Gokhale A (2020) Cost-effective Hardware Accelerator Recommendation for Edge Computing. In: Proceedings of 3rd USENIX Workshop on Hot Topics in Edge Computing"},{"issue":"7","key":"1869_CR9","doi-asserted-by":"publisher","first-page":"4266","DOI":"10.1109\/TII.2019.2908056","volume":"15","author":"X Su","year":"2019","unstructured":"Su X, Sperl\u00ec G, Moscato V, Picariello A, Esposito C, Choi C (2019) An edge intelligence empowered recommender system enabling cultural heritage applications. IEEE Trans Ind Inf 15(7):4266\u20134275","journal-title":"IEEE Trans Ind Inf"},{"key":"1869_CR10","doi-asserted-by":"crossref","unstructured":"Gong Y, Jiang Z, Feng Y, Hu B, Zhao K, Liu Q, Ou W (2020) Edgerec: Recommender System on Edge in Mobile Taobao. In: Proceedings of 29th ACM International Conference on Information and Knowledge Management, pp 2477\u20132484","DOI":"10.1145\/3340531.3412700"},{"key":"1869_CR11","doi-asserted-by":"crossref","unstructured":"Gao J, Wang X, Wang Y, Xie X (2019) Explainable recommendation through attentive Multi-View learning. In: Proceedings of 33rd AAAI Conference on Artificial Intelligence, pp 3622\u2013 3629","DOI":"10.1609\/aaai.v33i01.33013622"},{"key":"1869_CR12","doi-asserted-by":"crossref","unstructured":"Baltrunas L, Ludwig B, Ricci F (2011) Matrix factorization techniques for context aware recommendation. In: Proceedings of 5th ACM Conference on Recommender System, pp 301\u2013304","DOI":"10.1145\/2043932.2043988"},{"issue":"5","key":"1869_CR13","doi-asserted-by":"publisher","first-page":"1147","DOI":"10.1109\/TKDE.2015.2508816","volume":"28","author":"WX Zhao","year":"2016","unstructured":"Zhao WX, Li S, He Y, Chang EY, Wen J, Li X (2016) Connecting social media to E-Commerce: Cold-start product recommendation using microblogging information. IEEE Trans Knowl Data Eng 28 (5):1147\u20131159","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"1869_CR14","doi-asserted-by":"crossref","unstructured":"Casino F, Domingo-Ferrer J, Patsakis C, Puig D, Solanas A (2005) A k-anonymous approach to privacy preserving collaborative filtering. J Comput Syst Sci 81(6):1000\u20131011","DOI":"10.1016\/j.jcss.2014.12.013"},{"key":"1869_CR15","unstructured":"Zhu J, He P, Zheng Z, Lyu MR (2005) A Privacy-Preserving QoS Prediction Framework for Web Service Recommendation. In: Proceedings of IEEE International Conference on Web Services, pp 241\u2013248"},{"key":"1869_CR16","doi-asserted-by":"crossref","unstructured":"Kuang L, Tu S, Zhang Y (2020) X, Yang Providing privacy preserving in next POI recommendation for Mobile edge computing. J Cloud Comput 9(10","DOI":"10.1186\/s13677-020-0158-3"},{"key":"1869_CR17","doi-asserted-by":"publisher","first-page":"354","DOI":"10.1016\/j.ins.2018.11.030","volume":"480","author":"L Qi","year":"2019","unstructured":"Qi L, Wang R, Hu C, Li S, He Q, Xu X (2019) Time-aware distributed service recommendation with privacy-preservation. Inf Sci 480:354\u2013364","journal-title":"Inf Sci"},{"key":"1869_CR18","doi-asserted-by":"publisher","first-page":"116","DOI":"10.1016\/j.comcom.2020.04.018","volume":"157","author":"W Zhong","year":"2020","unstructured":"Zhong W, Yin X, Zhang X, Li S, Dou W, Wang R, Qi L (2020) Multi-dimensional quality-driven service recommendation with privacy-preservation in mobile edge environment. Comput Commun 157:116\u2013123","journal-title":"Comput Commun"},{"key":"1869_CR19","doi-asserted-by":"crossref","unstructured":"Sun C, Hui L, Li X, Wen J, Xiong Q, Wang X, Leun VCM (2020) Task offloading for End-Edge-Cloud orchestrated computing in mobile networks. In: Proceedings of IEEE Wireless Communications and Networking Conference, pp 1\u20136","DOI":"10.1109\/WCNC45663.2020.9120496"},{"key":"1869_CR20","doi-asserted-by":"publisher","first-page":"47118","DOI":"10.1109\/ACCESS.2020.2978896","volume":"8","author":"C Sun","year":"2020","unstructured":"Sun C, Li H, Li X, Wen J, Xiong Q, Zhou W (2020) Convergence of recommender systems and edge computing: a comprehensive survey. IEEE Access 8:47118\u201347132","journal-title":"IEEE Access"},{"issue":"3","key":"1869_CR21","doi-asserted-by":"publisher","first-page":"579","DOI":"10.1109\/TNNLS.2015.2415257","volume":"23","author":"X Luo","year":"2016","unstructured":"Luo X, Zhou M, Li S, You Z, Xia Y, Zhu Q (2016) A nonnegative latent factor model for Large-Scale sparse matrices in recommender systems via alternating direction method. IEEE Trans Neural Netw Learn Syste 23(3):579\u2013592","journal-title":"IEEE Trans Neural Netw Learn Syste"},{"issue":"8","key":"1869_CR22","doi-asserted-by":"publisher","first-page":"30","DOI":"10.1109\/MC.2009.263","volume":"42","author":"Y Koren","year":"2009","unstructured":"Koren Y, Bell R, Volinsky C (2009) Matrix factorization techniques for recommender systems. Computer 42(8):30\u2013 37","journal-title":"Computer"},{"key":"1869_CR23","unstructured":"Lee DD, Seung HS (2000) Algorithms for Non-negative Matrix Factorization. In: Proceedings of International Conference on Neural Information Processing Systems, pp 556\u2013562"},{"key":"1869_CR24","unstructured":"Mnih A, Salakhutdinov RR (2007) Probabilistic matrix factorization. In: Proceedings of International Conference on Neural Information Processing Systems, pp 1257\u20131264"},{"key":"1869_CR25","doi-asserted-by":"crossref","unstructured":"Harper FM, Konstan JA (2015) The MovieLens Datasets: History and Context. ACM Trans Interact Intell Syst 5(4):19:1\u201319:19","DOI":"10.1145\/2827872"},{"key":"1869_CR26","unstructured":"Zhang Y, Zhang M, Zhang Y, Lai G, Liu Y, Zhang H, Ma S (2005) Daily-aware Personalized Recommendation based on Feature-Level Time Series Analysis. In: Proceedings of the 24th International Conference Companion on World Wide Web, pp 1373\u20131383"},{"issue":"1","key":"1869_CR27","doi-asserted-by":"publisher","first-page":"29","DOI":"10.1016\/j.laa.2005.06.025","volume":"416","author":"VP Pauca","year":"2006","unstructured":"Pauca VP, Piper J, Plemmons RJ (2006) Nonnegative matrix factorization for spectral data analysis. Linear Algebra Appl 416(1):29\u201347","journal-title":"Linear Algebra Appl"},{"issue":"10","key":"1869_CR28","doi-asserted-by":"publisher","first-page":"1345","DOI":"10.1109\/TKDE.2009.191","volume":"22","author":"SJ Pan","year":"2010","unstructured":"Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22 (10):1345\u20131359","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"1869_CR29","doi-asserted-by":"crossref","unstructured":"Xue H, Dai X, Zhang J, Huang S, Chen J (2017) Deep matrix factorization models for recommender systems. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp 3203\u20133209","DOI":"10.24963\/ijcai.2017\/447"},{"issue":"2","key":"1869_CR30","doi-asserted-by":"publisher","first-page":"251","DOI":"10.1016\/0893-6080(91)90009-T","volume":"4","author":"K Hornik","year":"1991","unstructured":"Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4 (2):251\u2013257","journal-title":"Neural Netw"},{"key":"1869_CR31","doi-asserted-by":"crossref","unstructured":"He X, Liao L, Zhang H, Nie L, Hu X, Chua T (2017) Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, pp 173\u2013182","DOI":"10.1145\/3038912.3052569"},{"key":"1869_CR32","doi-asserted-by":"crossref","unstructured":"Rendle S, Krichene W, Zhang L, Anderson J (2020) Neural Collaborative Filtering vs. Matrix Factorization Revisited. In: Proceedings of the 14th ACM Conference on Recommender Systems, pp 240\u2013248","DOI":"10.1145\/3383313.3412488"},{"key":"1869_CR33","doi-asserted-by":"crossref","unstructured":"Kim D, Park C, Oh J, Lee S, Yu H (2016) Convolutional matrix factorization for document Context-Aware recommendation. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp 233\u2013240","DOI":"10.1145\/2959100.2959165"},{"key":"1869_CR34","doi-asserted-by":"crossref","unstructured":"Zhang S, Yao L, Xu X (2017) AutoSVD++: An Efficient Hybrid Collaborative Filtering Model via Contractive Auto-encoders. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 957\u2013960","DOI":"10.1145\/3077136.3080689"},{"key":"1869_CR35","doi-asserted-by":"publisher","first-page":"110","DOI":"10.1016\/j.ins.2020.12.001","volume":"553","author":"F Ortega","year":"2021","unstructured":"Ortega F, Lara-Cabrera R, Gonz\u00e1lez-Prieto A, Bobadilla J (2021) Providing reliability in recommender systems through Bernoulli Matrix Factorization. Inf Sci 553:110\u2013128","journal-title":"Inf Sci"},{"key":"1869_CR36","doi-asserted-by":"crossref","unstructured":"He X, Zhang H, Kan M, Chua T (2016) Fast matrix factorization for online recommendation with implicit feedback. In: Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, pp 549\u2013558","DOI":"10.1145\/2911451.2911489"},{"key":"1869_CR37","doi-asserted-by":"crossref","unstructured":"Wu Y, DuBois C, Zheng AX, Ester M (2016) Collaborative denoising Auto-Encoders for Top-N recommender systems. In: Proceedings of the 9th ACM International Conference on Web Search and Data Mining, pp 153\u2013162","DOI":"10.1145\/2835776.2835837"},{"key":"1869_CR38","doi-asserted-by":"crossref","unstructured":"Chen J, Wang C, Zhou S, Shi Q, Chen J, Feng Y, Chen C (2020) Fast adaptively weighted matrix factorization for recommendation with implicit feedback. In: Proceedings of 34th AAAI Conference on Artificial Intelligence, pp 3470\u20133477","DOI":"10.1609\/aaai.v34i04.5751"}],"container-title":["Mobile Networks and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11036-021-01869-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11036-021-01869-4\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11036-021-01869-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,27]],"date-time":"2022-09-27T19:35:27Z","timestamp":1664307327000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11036-021-01869-4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,2,4]]},"references-count":38,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2022,8]]}},"alternative-id":["1869"],"URL":"https:\/\/doi.org\/10.1007\/s11036-021-01869-4","relation":{},"ISSN":["1383-469X","1572-8153"],"issn-type":[{"value":"1383-469X","type":"print"},{"value":"1572-8153","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,2,4]]},"assertion":[{"value":"27 September 2021","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"4 February 2022","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}