{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,9,18]],"date-time":"2023-09-18T04:29:38Z","timestamp":1695011378760},"reference-count":19,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2019,6,26]],"date-time":"2019-06-26T00:00:00Z","timestamp":1561507200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,6,26]],"date-time":"2019-06-26T00:00:00Z","timestamp":1561507200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Period Math Hung"],"published-print":{"date-parts":[[2019,12]]},"DOI":"10.1007\/s10998-019-00287-0","type":"journal-article","created":{"date-parts":[[2019,6,26]],"date-time":"2019-06-26T19:03:25Z","timestamp":1561575805000},"page":"210-217","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["On the Diophantine equation $$L_{n}-L_{m}=2\\cdot 3^{a}$$"],"prefix":"10.1007","volume":"79","author":[{"given":"Bahar","family":"Demirt\u00fcrk Bitim","sequence":"first","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,6,26]]},"reference":[{"issue":"3","key":"287_CR1","first-page":"155","volume":"11","author":"A Baker","year":"1967","unstructured":"A. Baker, Linear forms in the logarithms of algebraic numbers. Matematika 11(3), 155\u2013166 (1967)","journal-title":"Matematika"},{"key":"287_CR2","first-page":"1","volume":"17","author":"JJ Bravo","year":"2014","unstructured":"J.J. Bravo, F. Luca, Powers of two as sums of two Lucas numbers. J. Integer Seq. 17, 1\u201312 (2014)","journal-title":"J. Integer Seq."},{"issue":"3","key":"287_CR3","doi-asserted-by":"crossref","first-page":"391","DOI":"10.2989\/16073606.2015.1070377","volume":"39","author":"JJ Bravo","year":"2015","unstructured":"J.J. Bravo, F. Luca, On the Diophantine equation $$F_{n}+F_{m}=2^{a}$$. Quaest. Math. 39(3), 391\u2013400 (2015)","journal-title":"Quaest. Math."},{"issue":"3","key":"287_CR4","doi-asserted-by":"publisher","first-page":"969","DOI":"10.4007\/annals.2006.163.969","volume":"163","author":"Y Bugeaud","year":"2006","unstructured":"Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers. Ann. Math. 163(3), 969\u20131018 (2006)","journal-title":"Ann. Math."},{"key":"287_CR5","unstructured":"B.M.M. de Weger, Algorithms for Diophantine Equations, CWI Tracts 65 (Stichting Maths. Centrum, Amsterdam, 1989)"},{"key":"287_CR6","unstructured":"B. Demirt\u00fcrk Bitim, R. Keskin, On Solutions of the Diophantine Equation $$F_{n}-F_{m}=3^{a}$$. (accepted to be published in Proceedings Mathematical Sciences)"},{"issue":"3","key":"287_CR7","doi-asserted-by":"publisher","first-page":"291","DOI":"10.1093\/qmathj\/49.3.291","volume":"49","author":"A Dujella","year":"1998","unstructured":"A. Dujella, A. Peth\u00f6, A generalization of a theorem of Baker and Davenport. Q. J. Math. Oxford Ser. (2) 49(3), 291\u2013306 (1998)","journal-title":"Q. J. Math. Oxford Ser. (2)"},{"key":"287_CR8","doi-asserted-by":"publisher","first-page":"66","DOI":"10.1002\/9781118033067","volume-title":"Fibonacci and Lucas Numbers with Applications","author":"T Koshy","year":"2001","unstructured":"T. Koshy, Fibonacci and Lucas Numbers with Applications (Wiley, New York, 2001), pp. 66\u201399"},{"key":"287_CR9","doi-asserted-by":"publisher","first-page":"90","DOI":"10.1016\/j.jnt.2018.02.003","volume":"189","author":"F Luca","year":"2018","unstructured":"F. Luca, V. Patel, On perfect powers that are sums of two Fibonacci numbers. J. Number Theor. 189, 90\u201396 (2018). https:\/\/doi.org\/10.1016\/j.jnt.2018.02.003","journal-title":"J. Number Theor."},{"key":"287_CR10","volume-title":"Effective Methods for Diophantine Equations","author":"F Luca","year":"2009","unstructured":"F. Luca, Effective Methods for Diophantine Equations (Universidad Nacional Autonoma de Mexico, Mexico, 2009)"},{"issue":"6","key":"287_CR11","first-page":"1217","volume":"64","author":"EM Matveev","year":"2000","unstructured":"E.M. Matveev, An Explicit lower bound for a homogenous rational linear form in the logarithms of algebraic numbers II. Izv. Ross. Akad. Nauk Ser. Mat. 64(6), 1217\u20131269 (2000)","journal-title":"Izv. Ross. Akad. Nauk Ser. Mat."},{"issue":"1","key":"287_CR12","first-page":"46","volume":"1","author":"L Moser","year":"1963","unstructured":"L. Moser, L. Carlitz, Advanced problem H-2. Fibonacci Q. 1(1), 46 (1963)","journal-title":"Fibonacci Q."},{"key":"287_CR13","volume-title":"Tomorrow\u2019s Math, Unsolved Problems for Amateur","author":"SC Ogilvy","year":"1962","unstructured":"S.C. Ogilvy, Tomorrow\u2019s Math, Unsolved Problems for Amateur (Oxford University Press, New York, 1962)"},{"key":"287_CR14","doi-asserted-by":"crossref","first-page":"117","DOI":"10.5486\/PMD.1983.30.1-2.11","volume":"30","author":"A Peth\u00f6","year":"1983","unstructured":"A. Peth\u00f6, Full cubes in the Fibonacci sequence. Publ. Math. Debr. 30, 117\u2013127 (1983)","journal-title":"Publ. Math. Debr."},{"key":"287_CR15","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1007\/s00605-017-1121-3","volume":"185","author":"I Pink","year":"2018","unstructured":"I. Pink, V. Ziegler, Effective Resolution of Diophantine equations of the form $$u_{n}+u_{m}=wp_{1}^{z_{1}} \\ldots p_{s}^{z_{s}}$$. Monatsh Math 185, 103\u2013131 (2018)","journal-title":"Monatsh Math"},{"key":"287_CR16","first-page":"215","volume":"21","author":"N Robbins","year":"1983","unstructured":"N. Robbins, On Fibonacci numbers which are powers: II. Fibonacci Q. 21, 215\u2013218 (1983)","journal-title":"Fibonacci Q."},{"key":"287_CR17","doi-asserted-by":"publisher","first-page":"216","DOI":"10.2307\/2312909","volume":"70","author":"AP Rollett","year":"1963","unstructured":"A.P. Rollett, Advanced problem 5080. Am. Math. Monthly 70, 216 (1963)","journal-title":"Am. Math. Monthly"},{"key":"287_CR18","unstructured":"Z. \u015eiar, R. Keskin, On the Diophantine Equation $$F_{n}-F_{m}=2^{a}$$, arXiv:1712.10138"},{"key":"287_CR19","volume-title":"Fibonacci and Lucas Numbers and the Golden Section","author":"S Vajda","year":"1989","unstructured":"S. Vajda, Fibonacci and Lucas Numbers and the Golden Section (Ellis Horwood Limited, England, 1989)"}],"container-title":["Periodica Mathematica Hungarica"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10998-019-00287-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10998-019-00287-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10998-019-00287-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,17]],"date-time":"2023-09-17T19:57:28Z","timestamp":1694980648000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10998-019-00287-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,6,26]]},"references-count":19,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2019,12]]}},"alternative-id":["287"],"URL":"https:\/\/doi.org\/10.1007\/s10998-019-00287-0","relation":{},"ISSN":["0031-5303","1588-2829"],"issn-type":[{"value":"0031-5303","type":"print"},{"value":"1588-2829","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,6,26]]},"assertion":[{"value":"26 June 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}