{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,17]],"date-time":"2024-10-17T21:40:19Z","timestamp":1729201219747,"version":"3.27.0"},"reference-count":90,"publisher":"Springer Science and Business Media LLC","issue":"10","license":[{"start":{"date-parts":[[2024,7,15]],"date-time":"2024-07-15T00:00:00Z","timestamp":1721001600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,7,15]],"date-time":"2024-07-15T00:00:00Z","timestamp":1721001600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Mach Learn"],"published-print":{"date-parts":[[2024,10]]},"DOI":"10.1007\/s10994-024-06562-7","type":"journal-article","created":{"date-parts":[[2024,7,15]],"date-time":"2024-07-15T19:02:42Z","timestamp":1721070162000},"page":"8027-8059","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Imbalanced COVID-19 vaccine sentiment classification with synthetic resampling coupled deep adversarial active learning"],"prefix":"10.1007","volume":"113","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3930-4699","authenticated-orcid":false,"given":"Sankhadeep","family":"Chatterjee","sequence":"first","affiliation":[]},{"given":"Saranya","family":"Bhattacharjee","sequence":"additional","affiliation":[]},{"given":"Asit Kumar","family":"Das","sequence":"additional","affiliation":[]},{"given":"Soumen","family":"Banerjee","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,7,15]]},"reference":[{"key":"6562_CR1","doi-asserted-by":"crossref","unstructured":"Abdelwahab, M., & Busso, C. (2019). Active learning for speech emotion recognition using deep neural network. In 2019 8th International conference on affective computing and intelligent interaction (ACII) (pp. 1\u20137). IEEE.","DOI":"10.1109\/ACII.2019.8925524"},{"key":"6562_CR2","doi-asserted-by":"crossref","unstructured":"Aggarwal, U., Popescu, A., & Hudelot, C. (2020). Active learning for imbalanced datasets. In Proceedings of the IEEE\/CVF winter conference on applications of computer vision (pp. 1428\u20131437).","DOI":"10.1109\/WACV45572.2020.9093475"},{"key":"6562_CR3","doi-asserted-by":"crossref","unstructured":"Akpatsa, S. K., Li, Xiaoyu, L., Hang, & Obeng, V.-H. K. S. (2022). Evaluating public sentiment of covid-19 vaccine tweets using machine learning techniques. Informatica 46(1).","DOI":"10.31449\/inf.v46i1.3483"},{"issue":"29","key":"6562_CR4","first-page":"3859","volume":"39","author":"S Al-Hajri","year":"2021","unstructured":"Al-Hajri, S., Al-Kuwari, M. G., & Al-Thani, M. H. (2021). The covid-19 vaccine social media challenge: Strategies for addressing vaccine hesitancy in the age of misinformation. Vaccine, 39(29), 3859\u20133861.","journal-title":"Vaccine"},{"key":"6562_CR5","doi-asserted-by":"crossref","unstructured":"Alam, K. N., Khan, M. S., Dhruba, A. R., Khan, M. M., Al-Amri, J. F., Masud, M, & Rawashdeh, M. (2021). Deep learning-based sentiment analysis of covid-19 vaccination responses from twitter data. Computational and Mathematical Methods in Medicine, 2021.","DOI":"10.1155\/2021\/4321131"},{"key":"6562_CR6","doi-asserted-by":"publisher","first-page":"104957","DOI":"10.1016\/j.compbiomed.2021.104957","volume":"139","author":"AH Alamoodi","year":"2021","unstructured":"Alamoodi, A. H., Zaidan, B. B., Al-Masawa, M., Taresh, S. M., Noman, S., Ahmaro, I. Y. Y., Garfan, S., Chen, J., Ahmed, M. A., Zaidan, A. A., et al. (2021a). Multi-perspectives systematic review on the applications of sentiment analysis for vaccine hesitancy. Computers in Biology and Medicine, 139, 104957.","journal-title":"Computers in Biology and Medicine"},{"key":"6562_CR7","doi-asserted-by":"publisher","first-page":"114155","DOI":"10.1016\/j.eswa.2020.114155","volume":"167","author":"AH Alamoodi","year":"2021","unstructured":"Alamoodi, A. H., Zaidan, B. B., Zaidan, A. A., Albahri, O. S., Mohammed, K. I., Malik, R. Q., Almahdi, E. M., Chyad, M. A., Tareq, Z., Albahri, A. S., et al. (2021b). Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert Systems with Applications, 167, 114155.","journal-title":"Expert Systems with Applications"},{"key":"6562_CR8","unstructured":"Alanazi, N. (2021). Opinion mining challenges and case study: Using twitter for sentiment analysis towards Pfizer\/BioNTech, Moderna, AstraZeneca\/Oxford, and Sputnik COVID-19 Vaccines. Ph.D. thesis, Lamar University-Beaumont."},{"key":"6562_CR9","doi-asserted-by":"crossref","unstructured":"Amjad, A., Qaiser, S., Anwar, A., Ali, R., et al. (2021). Analysing public sentiments regarding covid-19 vaccines: A sentiment analysis approach. In 2021 IEEE international smart cities conference (ISC2) (pp. 1\u20137). IEEE.","DOI":"10.1109\/ISC253183.2021.9562904"},{"key":"6562_CR10","unstructured":"Ash, J. T., Zhang, C., Krishnamurthy, A., Langford, J., & Agarwal, A. (2019). Deep batch active learning by diverse, uncertain gradient lower bounds. arXiv:1906.03671"},{"issue":"2","key":"6562_CR11","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3446343","volume":"12","author":"MA Bashar","year":"2021","unstructured":"Bashar, M. A., & Nayak, R. (2021). Active learning for effectively fine-tuning transfer learning to downstream task. ACM Transactions on Intelligent Systems and Technology (TIST), 12(2), 1\u201324.","journal-title":"ACM Transactions on Intelligent Systems and Technology (TIST)"},{"key":"6562_CR12","doi-asserted-by":"publisher","first-page":"107242","DOI":"10.1016\/j.knosys.2021.107242","volume":"228","author":"ME Basiri","year":"2021","unstructured":"Basiri, M. E., Nemati, S., Abdar, M., Asadi, S., & Rajendra Acharrya, U. (2021). A novel fusion-based deep learning model for sentiment analysis of covid-19 tweets. Knowledge-Based Systems, 228, 107242.","journal-title":"Knowledge-Based Systems"},{"key":"6562_CR13","unstructured":"Beck, N., Sivasubramanian, D., Dani, A., Ramakrishnan, G., & Iyer, R. (2021). Effective evaluation of deep active learning on image classification tasks. arXiv:2106.15324"},{"key":"6562_CR14","doi-asserted-by":"crossref","unstructured":"Bhoj, N., Khari, M., & Pandey, B. (2021). Improved identification of negative tweets related to covid-19 vaccination by mitigating class imbalance. In 2021 13th International conference on computational intelligence and communication networks (CICN) (pp. 23\u201328). IEEE.","DOI":"10.1109\/CICN51697.2021.9574664"},{"key":"6562_CR15","doi-asserted-by":"publisher","first-page":"1832","DOI":"10.1016\/j.procs.2022.09.241","volume":"207","author":"K Borowska","year":"2022","unstructured":"Borowska, K., & Stepaniuk, J. (2022). Rough-granular approach in imbalanced bankruptcy data analysis. Procedia Computer Science, 207, 1832\u20131841.","journal-title":"Procedia Computer Science"},{"key":"6562_CR16","doi-asserted-by":"crossref","unstructured":"Cao, P., Zhao, D., & Zaiane, O. R. (2013). An optimized cost-sensitive svm for imbalanced data learning. In Advances in knowledge discovery and data mining: 17th Pacific-Asia conference, PAKDD 2013, Gold Coast, Australia, April 14\u201317, 2013, proceedings, Part II 17 (pp. 280\u2013292). Springer.","DOI":"10.1007\/978-3-642-37456-2_24"},{"key":"6562_CR17","doi-asserted-by":"publisher","first-page":"106754","DOI":"10.1016\/j.asoc.2020.106754","volume":"97","author":"K Chakraborty","year":"2020","unstructured":"Chakraborty, K., Bhatia, S., Bhattacharyya, S., Platos, J., Bag, R., & Hassanien, A. E. (2020). Sentiment analysis of covid-19 tweets by deep learning classifiers\u2014a study to show how popularity is affecting accuracy in social media. Applied Soft Computing, 97, 106754.","journal-title":"Applied Soft Computing"},{"key":"6562_CR18","unstructured":"Dash, A., Gamboa, J. C. B., Ahmed, S., Liwicki, M., & Afzal, M. Z. (2017). Tac-gan-text conditioned auxiliary classifier generative adversarial network. arXiv:1703.06412."},{"issue":"4","key":"6562_CR19","doi-asserted-by":"publisher","first-page":"5343","DOI":"10.1007\/s11042-022-12178-7","volume":"82","author":"G Dhiman","year":"2023","unstructured":"Dhiman, G., Vignesh Kumar, A., Nirmalan, R., Sujitha, S., Srihari, K., Yuvaraj, N., Arulprakash, P., & Arshath Raja, R. (2023). Multi-modal active learning with deep reinforcement learning for target feature extraction in multi-media image processing applications. Multimedia Tools and Applications, 82(4), 5343\u20135367.","journal-title":"Multimedia Tools and Applications"},{"key":"6562_CR20","doi-asserted-by":"publisher","first-page":"114885","DOI":"10.1016\/j.eswa.2021.114885","volume":"176","author":"S Dong","year":"2021","unstructured":"Dong, S. (2021). Multi class svm algorithm with active learning for network traffic classification. Expert Systems with Applications, 176, 114885.","journal-title":"Expert Systems with Applications"},{"key":"6562_CR21","unstructured":"Dor, L. E., Halfon, A., Gera, A., Shnarch, E., Dankin, L., Choshen, L., Danilevsky, M., Aharonov, R., Katz, Y., & Slonim, N. (2020). Active learning for bert: An empirical study. In Proceedings of the 2020 conference on empirical methods in natural language processing (EMNLP) (pp. 7949\u20137962)."},{"key":"6562_CR22","unstructured":"Dozat, T. (2016). Incorporating nesterov momentum into adam."},{"issue":"1","key":"6562_CR23","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s13326-017-0120-6","volume":"8","author":"J Du","year":"2017","unstructured":"Du, J., Jun, X., Song, H., Liu, X., & Tao, C. (2017). Optimization on machine learning based approaches for sentiment analysis on hpv vaccines related tweets. Journal of Biomedical Semantics, 8(1), 1\u20137.","journal-title":"Journal of Biomedical Semantics"},{"issue":"5","key":"6562_CR24","doi-asserted-by":"publisher","first-page":"809","DOI":"10.1136\/amiajnl-2011-000648","volume":"19","author":"RL Figueroa","year":"2012","unstructured":"Figueroa, R. L., Zeng-Treitler, Q., Ngo, L. H., Goryachev, S., & Wiechmann, E. P. (2012). Active learning for clinical text classification: Is it better than random sampling? Journal of the American Medical Informatics Association, 19(5), 809\u2013816.","journal-title":"Journal of the American Medical Informatics Association"},{"key":"6562_CR25","unstructured":"Geifman, Y., & El-Yaniv, R. (2017). Deep active learning over the long tail. arXiv:1711.00941"},{"key":"6562_CR26","unstructured":"Gissin, D., & Shalev-Shwartz, S. (2019). Discriminative active learning. arXiv:1907.06347"},{"issue":"3","key":"6562_CR27","doi-asserted-by":"publisher","first-page":"290","DOI":"10.1007\/s11633-015-0912-z","volume":"15","author":"M Goudjil","year":"2018","unstructured":"Goudjil, M., Koudil, M., Bedda, M., & Ghoggali, N. (2018). A novel active learning method using svm for text classification. International Journal of Automation and Computing, 15(3), 290\u2013298.","journal-title":"International Journal of Automation and Computing"},{"key":"6562_CR28","unstructured":"Hacohen, G., Ben-David, S., & Shalev-Shwartz, S. (2022). Active learning on a budget: Opposite strategies suit high and low budgets. In Proceedings of the 38th international conference on machine learning."},{"key":"6562_CR29","doi-asserted-by":"crossref","unstructured":"Han, W., Fan, R., Wang, L., Feng, R., Li, F., Deng, Z., & Chen, X. (2020). Improving training instance quality in aerial image object detection with a sampling-balance-based multistage network. IEEE Transactions on Geoscience and Remote Sensing.","DOI":"10.1109\/TGRS.2020.3038803"},{"issue":"1","key":"6562_CR30","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1109\/TITS.2018.2888698","volume":"21","author":"Y Huang","year":"2019","unstructured":"Huang, Y., Liu, Z., Jiang, M., Xian, Yu., & Ding, X. (2019). Cost-effective vehicle type recognition in surveillance images with deep active learning and web data. IEEE Transactions on Intelligent Transportation Systems, 21(1), 79\u201386.","journal-title":"IEEE Transactions on Intelligent Transportation Systems"},{"key":"6562_CR31","doi-asserted-by":"publisher","first-page":"181074","DOI":"10.1109\/ACCESS.2020.3027350","volume":"8","author":"AS Imran","year":"2020","unstructured":"Imran, A. S., Daudpota, S. M., Kastrati, Z., & Batra, R. (2020). Cross-cultural polarity and emotion detection using sentiment analysis and deep learning on covid-19 related tweets. IEEE Access, 8, 181074\u2013181090.","journal-title":"IEEE Access"},{"issue":"1","key":"6562_CR32","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1007\/s13278-023-01102-y","volume":"13","author":"JH Joloudari","year":"2023","unstructured":"Joloudari, J. H., Hussain, S., Nematollahi, M. A., Bagheri, R., Fazl, F., Alizadehsani, R., Lashgari, R., & Talukder, A. (2023). Bert-deep cnn: State of the art for sentiment analysis of covid-19 tweets. Social Network Analysis and Mining, 13(1), 99.","journal-title":"Social Network Analysis and Mining"},{"key":"6562_CR33","doi-asserted-by":"crossref","unstructured":"Kim, K., Park, D., Kim, K. I., & Chun, S. Y. (2021). Task-aware variational adversarial active learning. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 8166\u20138175).","DOI":"10.1109\/CVPR46437.2021.00807"},{"key":"6562_CR34","unstructured":"Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv:1312.6114"},{"issue":"2","key":"6562_CR35","doi-asserted-by":"publisher","first-page":"215","DOI":"10.1007\/s13748-019-00172-4","volume":"8","author":"LI Kuncheva","year":"2019","unstructured":"Kuncheva, L. I., Arnaiz-Gonz\u00e1lez, \u00c1., D\u00edez-Pastor, J.-F., & Gunn, I. A. D. (2019). Instance selection improves geometric mean accuracy: A study on imbalanced data classification. Progress in Artificial Intelligence, 8(2), 215\u2013228.","journal-title":"Progress in Artificial Intelligence"},{"issue":"1","key":"6562_CR36","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s12911-020-1046-y","volume":"20","author":"F Kunneman","year":"2020","unstructured":"Kunneman, F., Lambooij, M., Wong, A., van den Bosch, A., & Mollema, L. (2020). Monitoring stance towards vaccination in twitter messages. BMC Medical Informatics and Decision Making, 20(1), 1\u201314.","journal-title":"BMC Medical Informatics and Decision Making"},{"key":"6562_CR37","doi-asserted-by":"crossref","unstructured":"Kwolek, B., Koziarski, M., Buka\u0142a, A., Antosz, Z., Olborski, B., W\u0105sowicz, P., Swad\u017aba, J., & Cyganek, B. (2019). Breast cancer classification on histopathological images affected by data imbalance using active learning and deep convolutional neural network. In International conference on artificial neural networks (pp. 299\u2013312). Springer.","DOI":"10.1007\/978-3-030-30493-5_31"},{"key":"6562_CR38","doi-asserted-by":"publisher","first-page":"418","DOI":"10.1016\/j.ins.2021.08.019","volume":"579","author":"Y Li","year":"2021","unstructured":"Li, Y., Fan, B., Zhang, W., Ding, W., & Yin, J. (2021). Deep active learning for object detection. Information Sciences, 579, 418\u2013433.","journal-title":"Information Sciences"},{"key":"6562_CR39","doi-asserted-by":"crossref","unstructured":"Liu, J., Cao, L., & Tian, Y. (2020a). Deep active learning for effective pulmonary nodule detection. In International conference on medical image computing and computer-assisted intervention (pp. 609\u2013618). Springer.","DOI":"10.1007\/978-3-030-59725-2_59"},{"key":"6562_CR40","unstructured":"Liu, M., Tu, Z., Wang, Z., & Xu, X. (2020b). Ltp: A new active learning strategy for bert-crf based named entity recognition. arXiv:2001.02524"},{"issue":"8","key":"6562_CR41","first-page":"1517","volume":"32","author":"Y Liu","year":"2019","unstructured":"Liu, Y., Li, Z., Zhou, C., Jiang, Y., Sun, J., Wang, M., & He, X. (2019). Generative adversarial active learning for unsupervised outlier detection. IEEE Transactions on Knowledge and Data Engineering, 32(8), 1517\u20131528.","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"6562_CR42","unstructured":"Longpre, S., Reisler, J., Huang, E. Greg, L., Yi, F., Andrew, R., Nikhil, & DuBois, C. (2022). Active learning over multiple domains in natural language tasks. arXiv:2202.00254"},{"key":"6562_CR43","doi-asserted-by":"crossref","unstructured":"Luo, J., Wang, J., Cheng, N., & Xiao, J. (2021). Loss prediction: End-to-end active learning approach for speech recognition. In 2021 International joint conference on neural networks (IJCNN) (pp. 1\u20137). IEEE.","DOI":"10.1109\/IJCNN52387.2021.9533839"},{"issue":"2","key":"6562_CR44","doi-asserted-by":"publisher","first-page":"e19447","DOI":"10.2196\/19447","volume":"6","author":"MO Lwin","year":"2020","unstructured":"Lwin, M. O., Jiahui, L., Sheldenkar, A., Schulz, P. J., Shin, W., Gupta, R., & Yang, Y. (2020). Global sentiments surrounding the covid-19 pandemic on twitter: Analysis of twitter trends. JMIR Public Health and Surveillance, 6(2), e19447.","journal-title":"JMIR Public Health and Surveillance"},{"key":"6562_CR45","doi-asserted-by":"crossref","unstructured":"Mayer, C., & Timofte, R. (2020). Adversarial sampling for active learning. In Proceedings of the IEEE\/CVF winter conference on applications of computer vision (pp. 3071\u20133079).","DOI":"10.1109\/WACV45572.2020.9093556"},{"issue":"4","key":"6562_CR46","doi-asserted-by":"publisher","first-page":"532","DOI":"10.1017\/pan.2020.4","volume":"28","author":"B Miller","year":"2020","unstructured":"Miller, B., Linder, F., & Mebane, W. R. (2020). Active learning approaches for labeling text: Review and assessment of the performance of active learning approaches. Political Analysis, 28(4), 532\u2013551.","journal-title":"Political Analysis"},{"key":"6562_CR47","volume-title":"The connection between social media use and vaccine hesitancy","author":"A Mitchell","year":"2021","unstructured":"Mitchell, A., Jurkowitz, M., Baxter Oliphant, J., & Shearer, E. (2021). The connection between social media use and vaccine hesitancy. Salon."},{"key":"6562_CR48","unstructured":"Mittal, S., Tatarchenko, M., \u00c7i\u00e7ek, \u00d6., & Brox, T. (2019). Parting with illusions about deep active learning. arXiv:1912.05361"},{"key":"6562_CR49","unstructured":"Mottaghi, A, & Yeung, S. (2019) Adversarial representation active learning. arXiv:1912.09720"},{"key":"6562_CR50","unstructured":"M\u00fcller, M., Salath\u00e9, M., & Kummervold, P. E. (2020). Covid-twitter-bert: A natural language processing model to analyse covid-19 content on twitter. arXiv:2005.07503"},{"key":"6562_CR51","doi-asserted-by":"crossref","unstructured":"Muqtadiroh, F. A., Purwitasari, D., Yuniarno, E. M., Nugroho, S. M. S., & Purnomo, M. H. (2021). Analysis the opinion of school-from-home during the covid-19 pandemic using lstm approach. In 2021 International seminar on intelligent technology and its applications (ISITIA) (pp. 408\u2013413). IEEE.","DOI":"10.1109\/ISITIA52817.2021.9502206"},{"issue":"1","key":"6562_CR52","doi-asserted-by":"publisher","first-page":"218","DOI":"10.1148\/radiol.2018180237","volume":"290","author":"JG Nam","year":"2019","unstructured":"Nam, J. G., Park, S., Hwang, E. J., Lee, J. H., Jin, K.-N., Lim, K. Y., Vu, T. H., Sohn, J. H., Hwang, S., Goo, J. M., et al. (2019). Development and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology, 290(1), 218\u2013228.","journal-title":"Radiology"},{"issue":"1","key":"6562_CR53","doi-asserted-by":"publisher","first-page":"23","DOI":"10.3390\/asi4010023","volume":"4","author":"U Naseem","year":"2021","unstructured":"Naseem, U., Khushi, M., Khan, S. K., Shaukat, K., & Moni, M. A. (2021). A comparative analysis of active learning for biomedical text mining. Applied System Innovation, 4(1), 23.","journal-title":"Applied System Innovation"},{"key":"6562_CR54","doi-asserted-by":"crossref","unstructured":"Naseem, U., Razzak, I., Khushi, M., Eklund, P. W., & Kim, J. (2021). Covidsenti: A large-scale benchmark twitter data set for covid-19 sentiment analysis. IEEE Transactions on Computational Social Systems.","DOI":"10.1109\/TCSS.2021.3051189"},{"key":"6562_CR55","doi-asserted-by":"crossref","unstructured":"Noor, S., Guo, Y., Shah, S. H. H., Fournier-Viger, P., & Saqib Nawaz, M. (2020). Analysis of public reactions to the novel coronavirus (covid-19) outbreak on twitter. Kybernetes.","DOI":"10.1108\/K-05-2020-0258"},{"key":"6562_CR56","doi-asserted-by":"crossref","unstructured":"Nwafor, E., Vaughan, R., & Kolimago, C.. (2021). Covid vaccine sentiment analysis by geographic region. In 2021 IEEE international conference on big data (big data) (pp. 4401\u20134404). IEEE.","DOI":"10.1109\/BigData52589.2021.9671854"},{"key":"6562_CR57","first-page":"2825","volume":"12","author":"F Pedregosa","year":"2011","unstructured":"Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12, 2825\u20132830.","journal-title":"Journal of Machine Learning Research"},{"key":"6562_CR58","doi-asserted-by":"crossref","unstructured":"Peris, A., & Casacuberta, F. (2018). Active learning for interactive neural machine translation of data streams. arXiv:1807.11243","DOI":"10.18653\/v1\/K18-1015"},{"key":"6562_CR59","unstructured":"Prabhu, S., Mohamed, M., & Misra, H. (2021). Multi-class text classification using bert-based active learning. arXiv:2104.14289"},{"key":"6562_CR60","unstructured":"Prabucki, T. P. (2021). Sentiment analysis of sars-cov-2 vaccination tweets using deep neural networks."},{"key":"6562_CR61","unstructured":"Preda, G. (2021). All covid-19 vaccines tweets."},{"key":"6562_CR62","doi-asserted-by":"crossref","unstructured":"Rahman, Md., Islam, M. N., et al. (2022). Exploring the performance of ensemble machine learning classifiers for sentiment analysis of covid-19 tweets. In Sentimental analysis and deep learning (pp. 383\u2013396). Springer.","DOI":"10.1007\/978-981-16-5157-1_30"},{"key":"6562_CR63","doi-asserted-by":"publisher","first-page":"108295","DOI":"10.1016\/j.knosys.2022.108295","volume":"242","author":"J Ren","year":"2022","unstructured":"Ren, J., Wang, Y., Mao, M., & Cheung, Y. (2022). Equalization ensemble for large scale highly imbalanced data classification. Knowledge-Based Systems, 242, 108295.","journal-title":"Knowledge-Based Systems"},{"issue":"9","key":"6562_CR64","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3472291","volume":"54","author":"P Ren","year":"2021","unstructured":"Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Gupta, B. B., Chen, X., & Wang, X. (2021). A survey of deep active learning. ACM Computing Surveys (CSUR), 54(9), 1\u201340.","journal-title":"ACM Computing Surveys (CSUR)"},{"key":"6562_CR65","doi-asserted-by":"crossref","unstructured":"Sahan, M., Smidl, V., & Marik, R.. (2021). Active learning for text classification and fake news detection. In 2021 International symposium on computer science and intelligent controls (ISCSIC) (pp. 87\u201394). IEEE.","DOI":"10.1109\/ISCSIC54682.2021.00027"},{"issue":"13","key":"6562_CR66","doi-asserted-by":"publisher","first-page":"6128","DOI":"10.3390\/app11136128","volume":"11","author":"NS Sattar","year":"2021","unstructured":"Sattar, N. S., & Arifuzzaman, S. (2021). Covid-19 vaccination awareness and aftermath: Public sentiment analysis on twitter data and vaccinated population prediction in the USA. Applied Sciences, 11(13), 6128.","journal-title":"Applied Sciences"},{"key":"6562_CR67","unstructured":"Shui, C., Zhou, F., Gagn\u00e9, C., & Wang, B.. (2020). Deep active learning: Unified and principled method for query and training. In International conference on artificial intelligence and statistics (pp. 1308\u20131318). PMLR."},{"key":"6562_CR68","doi-asserted-by":"crossref","unstructured":"Siddhant, A., & Lipton, Z. C. (2018). Deep Bayesian active learning for natural language processing: Results of a large-scale empirical study. arXiv:1808.05697","DOI":"10.18653\/v1\/D18-1318"},{"key":"6562_CR69","doi-asserted-by":"crossref","unstructured":"Sinha, S., Ebrahimi, S., & Darrell, T. (2019). Variational adversarial active learning. In Proceedings of the IEEE\/CVF international conference on computer vision (pp. 5972\u20135981).","DOI":"10.1109\/ICCV.2019.00607"},{"key":"6562_CR70","doi-asserted-by":"crossref","unstructured":"Sourbier, N., Bonnot, J., Majorczyk, F., Gesny, O., Guyet, T., & Pelcat, M. (2022). Imbalanced classification with tpg genetic programming: Impact of problem imbalance and selection mechanisms. In Proceedings of the genetic and evolutionary computation conference companion (pp. 608\u2013611).","DOI":"10.1145\/3520304.3529008"},{"key":"6562_CR71","unstructured":"Stafanovi\u010ds, A., Bergmanis, T., & Pinnis, M. (2020). Mitigating gender bias in machine translation with target gender annotations. arXiv:2010.06203"},{"key":"6562_CR72","unstructured":"Stark, F., Haz\u0131rbas, C., Triebel, R., & Cremers, D. (2015). Captcha recognition with active deep learning. In Workshop new challenges in neural computation (Vol. 2015, p. 94). Citeseer."},{"issue":"8","key":"6562_CR73","doi-asserted-by":"publisher","first-page":"4069","DOI":"10.3390\/ijerph18084069","volume":"18","author":"QG To","year":"2021","unstructured":"To, Q. G., To, K. G., Huynh, V.-A.N., Nguyen, N. T. Q., Ngo, D. T. N., Alley, S. J., Tran, A. N. Q., Tran, A. N. P., Pham, N. T. T., Bui, T. X., et al. (2021). Applying machine learning to identify anti-vaccination tweets during the covid-19 pandemic. International Journal of Environmental Research and Public Health, 18(8), 4069.","journal-title":"International Journal of Environmental Research and Public Health"},{"key":"6562_CR74","unstructured":"Tran, T., Do, T.-T., Reid, I., & Carneiro, G. (2019). Bayesian generative active deep learning. In International conference on machine learning (pp. 6295\u20136304). PMLR."},{"issue":"5","key":"6562_CR75","doi-asserted-by":"publisher","first-page":"204","DOI":"10.3390\/info12050204","volume":"12","author":"C Villavicencio","year":"2021","unstructured":"Villavicencio, C., Macrohon, J. J., Alphonse Inbaraj, X., Jeng, J.-H., & Hsieh, J.-G. (2021). Twitter sentiment analysis towards covid-19 vaccines in the philippines using na\u00efve Bayes. Information, 12(5), 204.","journal-title":"Information"},{"issue":"23","key":"6562_CR76","doi-asserted-by":"publisher","first-page":"3879","DOI":"10.3390\/rs12233879","volume":"12","author":"G Wang","year":"2020","unstructured":"Wang, G., & Ren, P. (2020). Hyperspectral image classification with feature-oriented adversarial active learning. Remote Sensing, 12(23), 3879.","journal-title":"Remote Sensing"},{"key":"6562_CR77","doi-asserted-by":"crossref","unstructured":"Wang, W., Lu, Y., Wu, B., Chen, T., Chen, D. Z., & Wu, J. (2018). Deep active self-paced learning for accurate pulmonary nodule segmentation. In International conference on medical image computing and computer-assisted intervention (pp. 723\u2013731). Springer.","DOI":"10.1007\/978-3-030-00934-2_80"},{"issue":"10","key":"6562_CR78","doi-asserted-by":"publisher","first-page":"e004206","DOI":"10.1136\/bmjgh-2020-004206","volume":"5","author":"SL Wilson","year":"2020","unstructured":"Wilson, S. L., & Wiysonge, C. (2020). Social media and vaccine hesitancy. BMJ global health, 5(10), e004206.","journal-title":"BMJ global health"},{"key":"6562_CR79","doi-asserted-by":"publisher","first-page":"101913","DOI":"10.1016\/j.media.2020.101913","volume":"68","author":"W Xing","year":"2021","unstructured":"Xing, W., Chen, C., Zhong, M., Wang, J., & Shi, J. (2021). Covid-al: The diagnosis of covid-19 with deep active learning. Medical Image Analysis, 68, 101913.","journal-title":"Medical Image Analysis"},{"issue":"9","key":"6562_CR80","doi-asserted-by":"publisher","first-page":"e0239441","DOI":"10.1371\/journal.pone.0239441","volume":"15","author":"J Xue","year":"2020","unstructured":"Xue, J., Chen, J., Chen, C., Zheng, C., Li, S., & Zhu, T. (2020). Public discourse and sentiment during the covid 19 pandemic: Using latent Dirichlet allocation for topic modeling on twitter. PloS one, 15(9), e0239441.","journal-title":"PloS one"},{"key":"6562_CR81","doi-asserted-by":"crossref","unstructured":"Yan, Y.-F., Huang, S.-J., Chen, S., Liao, M., & Xu, J. (2020). Active learning with query generation for cost-effective text classification. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, pp. 6583\u20136590).","DOI":"10.1609\/aaai.v34i04.6133"},{"key":"6562_CR82","doi-asserted-by":"crossref","unstructured":"Yang, L., Zhang, Y., Chen, J., Zhang, S., & Chen, D. Z. (2017). Suggestive annotation: A deep active learning framework for biomedical image segmentation. In International conference on medical image computing and computer-assisted intervention (pp. 399\u2013407). Springer.","DOI":"10.1007\/978-3-319-66179-7_46"},{"key":"6562_CR83","doi-asserted-by":"crossref","unstructured":"Yoo, D., & Kweon, I. S. (2019). Learning loss for active learning. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 93\u2013102).","DOI":"10.1109\/CVPR.2019.00018"},{"key":"6562_CR84","doi-asserted-by":"crossref","unstructured":"Yuan, D., Chang, X., Liu, Q., Yang, Y., Wang, D., Shu, M., He, Z., & Shi, G. (2023). Active learning for deep visual tracking. IEEE Transactions on Neural Networks and Learning Systems.","DOI":"10.1109\/TNNLS.2023.3266837"},{"key":"6562_CR85","doi-asserted-by":"crossref","unstructured":"Yue, Z., Zeng, H., Kou, Z., Shang, L., & Wang, D. (2022). Contrastive domain adaptation for early misinformation detection: A case study on covid-19. In Proceedings of the 31st ACM international conference on information and knowledge management (pp. 2423\u20132433).","DOI":"10.1145\/3511808.3557263"},{"key":"6562_CR86","doi-asserted-by":"crossref","unstructured":"Zhang, B., Li, L., Yang, S., Wang, S., Zha, Z.-J., & Huang, Q. (2020). State-relabeling adversarial active learning. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 8756\u20138765).","DOI":"10.1109\/CVPR42600.2020.00878"},{"key":"6562_CR87","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Lease, M., & Wallace, B. (2017). Active discriminative text representation learning. In Proceedings of the AAAI conference on artificial intelligence (Vol. 31).","DOI":"10.1609\/aaai.v31i1.10962"},{"issue":"4","key":"6562_CR88","first-page":"647","volume":"40","author":"Y Zhang","year":"2021","unstructured":"Zhang, Y., Zhang, X., Zhang, R., Wang, R., Zhang, Q., Wang, Y., Liang, Y., Liang, H., & Liu, J. (2021). Vaccine hesitancy and behavior change theory-based social media intervention: A randomized controlled trial. Vaccine, 40(4), 647\u2013654.","journal-title":"Vaccine"},{"key":"6562_CR89","doi-asserted-by":"publisher","first-page":"536","DOI":"10.1016\/j.neucom.2013.04.017","volume":"120","author":"S Zhou","year":"2013","unstructured":"Zhou, S., Chen, Q., & Wang, X. (2013). Active deep learning method for semi-supervised sentiment classification. Neurocomputing, 120, 536\u2013546.","journal-title":"Neurocomputing"},{"key":"6562_CR90","unstructured":"Zhu, J.-J., & Bento, J. (2017). Generative adversarial active learning. arXiv:1702.07956"}],"container-title":["Machine Learning"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-024-06562-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10994-024-06562-7\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-024-06562-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,17]],"date-time":"2024-10-17T21:06:54Z","timestamp":1729199214000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10994-024-06562-7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,7,15]]},"references-count":90,"journal-issue":{"issue":"10","published-print":{"date-parts":[[2024,10]]}},"alternative-id":["6562"],"URL":"https:\/\/doi.org\/10.1007\/s10994-024-06562-7","relation":{},"ISSN":["0885-6125","1573-0565"],"issn-type":[{"type":"print","value":"0885-6125"},{"type":"electronic","value":"1573-0565"}],"subject":[],"published":{"date-parts":[[2024,7,15]]},"assertion":[{"value":"14 May 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 January 2024","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"26 April 2024","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"15 July 2024","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that there is no Conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}},{"value":"Not applicable.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethics approval"}},{"value":"Not applicable.","order":4,"name":"Ethics","group":{"name":"EthicsHeading","label":"Consent to participate"}},{"value":"Not applicable.","order":5,"name":"Ethics","group":{"name":"EthicsHeading","label":"Consent for publication"}},{"value":"Original Data is available at \u2018\u2019. Annotated data will be made available upon request to the Corresponding Author.","order":6,"name":"Ethics","group":{"name":"EthicsHeading","label":"Availability of data and material"}},{"value":"Will be made available upon request to the Corresponding Author.","order":7,"name":"Ethics","group":{"name":"EthicsHeading","label":"Code availability"}}]}}