{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,16]],"date-time":"2024-11-16T05:18:36Z","timestamp":1731734316952,"version":"3.28.0"},"reference-count":203,"publisher":"Springer Science and Business Media LLC","issue":"5","license":[{"start":{"date-parts":[[2024,3,29]],"date-time":"2024-03-29T00:00:00Z","timestamp":1711670400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2024,3,29]],"date-time":"2024-03-29T00:00:00Z","timestamp":1711670400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/100006502","name":"Defense Sciences Office, DARPA","doi-asserted-by":"publisher","award":["FA8750-16-C-0166"],"id":[{"id":"10.13039\/100006502","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100006502","name":"Defense Sciences Office, DARPA","doi-asserted-by":"publisher","award":["HR00112090135"],"id":[{"id":"10.13039\/100006502","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Mach Learn"],"published-print":{"date-parts":[[2024,5]]},"abstract":"Abstract<\/jats:title>Good models require good training data. For overparameterized deep models, the causal relationship between training data and model predictions is increasingly opaque and poorly understood. Influence analysis partially demystifies training\u2019s underlying interactions by quantifying the amount each training instance alters the final model. Measuring the training data\u2019s influence exactly can be provably hard in the worst case; this has led to the development and use of influence estimators, which only approximate the true influence. This paper provides the first comprehensive survey of training data influence analysis and estimation. We begin by formalizing the various, and in places orthogonal, definitions of training data influence. We then organize state-of-the-art influence analysis methods into a taxonomy; we describe each of these methods in detail and compare their underlying assumptions, asymptotic complexities, and overall strengths and weaknesses. Finally, we propose future research directions to make influence analysis more useful in practice as well as more theoretically and empirically sound.<\/jats:p>","DOI":"10.1007\/s10994-023-06495-7","type":"journal-article","created":{"date-parts":[[2024,3,29]],"date-time":"2024-03-29T16:02:18Z","timestamp":1711728138000},"page":"2351-2403","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Training data influence analysis and estimation: a survey"],"prefix":"10.1007","volume":"113","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0627-4232","authenticated-orcid":false,"given":"Zayd","family":"Hammoudeh","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9501-0361","authenticated-orcid":false,"given":"Daniel","family":"Lowd","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,3,29]]},"reference":[{"issue":"1","key":"6495_CR1","first-page":"4148","volume":"18","author":"N Agarwal","year":"2017","unstructured":"Agarwal, N., Bullins, B., & Hazan, E. (2017). Second-order stochastic optimization for machine learning in linear time. Journal of Machine Learning Research, 18(1), 4148\u20134187.","journal-title":"Journal of Machine Learning Research"},{"issue":"1","key":"6495_CR2","first-page":"37","volume":"6","author":"DW Aha","year":"1991","unstructured":"Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6(1), 37\u201366.","journal-title":"Machine Learning"},{"key":"6495_CR3","unstructured":"Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2016). Machine bias. ProPublica. https:\/\/www.propublica.org\/article\/machine-bias-risk-assessments-in-criminal-sentencing"},{"issue":"1","key":"6495_CR4","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1090\/qam\/42792","volume":"9","author":"WE Arnoldi","year":"1951","unstructured":"Arnoldi, W. E. (1951). The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quarterly of Applied Mathematics, 9(1), 17\u201329.","journal-title":"Quarterly of Applied Mathematics"},{"key":"6495_CR5","unstructured":"Arpit, D., Jastrzebski, S., Ballas, N., Krueger, D., Bengio, E., Kanwal, M.S., Maharaj, T., Fischer, A., Courville, A., Bengio, Y., & Lacoste-Julien, S. (2017). A closer look at memorization in deep networks. In Proceedings of the 34th international conference on machine learning. ICML\u201917., arXiv:1706.05394"},{"issue":"7729","key":"6495_CR6","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1038\/s41586-018-0637-6","volume":"563","author":"E Awad","year":"2018","unstructured":"Awad, E., Dsouza, S., Kim, R., Schulz, J., Henrich, J., Shariff, A., Bonnefon, J. F., & Rahwan, I. (2018). The moral machine experiment. Nature, 563(7729), 59\u201364.","journal-title":"Nature"},{"key":"6495_CR7","unstructured":"Bachem, O., Lucic, M., & Krause, A. (2017). Practical coreset constructions for machine learning"},{"key":"6495_CR8","unstructured":"Bae, J., Ng, N., Lo, A., Ghassemi, M., & Grosse, R. (2022). If influence functions are the answer, then what is the question? In Proceedings of the 36th\u00a0Conference on Neural Information Processing Systems. NeurIPS\u201922, Curran Associates, Inc. arXiv:2209.05364"},{"issue":"2","key":"6495_CR9","first-page":"317","volume":"19","author":"JFI Banzhaf","year":"1965","unstructured":"Banzhaf, J. F. I. (1965). Weighted voting doesn\u2019t work: A mathematical analysis. Rutgers Law Review, 19(2), 317\u2013343.","journal-title":"Rutgers Law Review"},{"key":"6495_CR10","unstructured":"Barshan, E., Brunet, M., Dziugaite, G.K. (2020). RelatIF: Identifying explanatory training samples via relative influence. In Proceedings of the 23rd International conference on artificial intelligence and statistics. AISTATS\u201920. arXiv:2003.11630"},{"issue":"48","key":"6495_CR11","doi-asserted-by":"crossref","first-page":"30063","DOI":"10.1073\/pnas.1907378117","volume":"117","author":"PL Bartlett","year":"2020","unstructured":"Bartlett, P. L., Long, P. M., Lugosi, G., & Tsigler, A. (2020). Benign overfitting in linear regression. Proceedings of the National Academy of Sciences, 117(48), 30063\u201330070.","journal-title":"Proceedings of the National Academy of Sciences"},{"key":"6495_CR12","doi-asserted-by":"crossref","unstructured":"Basta, C., Costa-juss\u00e0, M.R., & Casas, N. (2019). Evaluating the underlying gender bias in contextualized word embeddings. In Proceedings of the first workshop on gender bias in natural language processing. Association for computational linguistics. arXiv:1904.08783","DOI":"10.18653\/v1\/W19-3805"},{"key":"6495_CR13","unstructured":"Basu, S., Pope, P., & Feizi, S. (2021). Influence functions in deep learning are fragile. In Proceedings of the 9th\u00a0International Conference on Learning Representations. ICLR\u201921, Virtual Only. arXiv:2006.14651"},{"key":"6495_CR14","unstructured":"Basu, S., You, X., & Feizi, S. (2020). On second-order group influence functions for black-box predictions. In Proceedings of the 37th\u00a0International conference on machine learning. ICML\u201920, PMLR, Virtual Only. arXiv:1911.00418"},{"issue":"2","key":"6495_CR15","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1080\/00401706.1974.10489171","volume":"16","author":"AE Beaton","year":"1974","unstructured":"Beaton, A. E., & Tukey, J. W. (1974). The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics, 16(2), 147\u2013185.","journal-title":"Technometrics"},{"key":"6495_CR16","doi-asserted-by":"crossref","first-page":"688969","DOI":"10.3389\/fdata.2021.688969","volume":"4","author":"V Belle","year":"2021","unstructured":"Belle, V., & Papantonis, I. (2021). Principles and practice of explainable machine learning. Frontiers in Big Data, 4, 688969\u2013688969.","journal-title":"Frontiers in Big Data"},{"key":"6495_CR17","doi-asserted-by":"publisher","unstructured":"Bender, E.M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM conference on fairness, accountability, and transparency. p. 610\u2013623. FAccT\u201921, Association for Computing Machinery. https:\/\/doi.org\/10.1145\/3442188.3445922","DOI":"10.1145\/3442188.3445922"},{"key":"6495_CR18","unstructured":"Biggio, B., Nelson, B., Laskov, P. (2012). Poisoning attacks against support vector machines. In Proceedings of the 29th international conference on machine learning. ICML\u201912, PMLR, Edinburgh, Great Britain, arXiv:1206.6389"},{"key":"6495_CR19","unstructured":"Bilmes, J. (2022) Submodularity in machine learning and artificial intelligence , arXiv:2202.00132"},{"key":"6495_CR20","doi-asserted-by":"crossref","unstructured":"Black, E., & Fredrikson, M. (2021). Leave-one-out unfairness. In Proceedings of the 2021 acm conference on fairness, accountability, and transparency. FAccT\u20192. arXiv:2107.10171","DOI":"10.1145\/3442188.3445894"},{"issue":"1","key":"6495_CR21","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1016\/S0893-6080(05)80010-3","volume":"5","author":"AL Blum","year":"1992","unstructured":"Blum, A. L., & Rivest, R. L. (1992). Training a 3-node neural network is NP-complete. Neural Networks, 5(1), 117\u2013127.","journal-title":"Neural Networks"},{"key":"6495_CR22","unstructured":"Bordt, S., & von Luxburg, U. (2023). From Shapley values to generalized additive models and back. In Proceedings of The 26th international conference on artificial intelligence and statistics. AISTATS\u201923 (2023) , arXiv:2209.04012"},{"key":"6495_CR23","unstructured":"Borsos, Z., Mutny, M., Krause, A. (2020). Coresets via bilevel optimization for continual learning and streaming. In Proceedings of the 34th\u00a0conference on neural information processing systems. NeurIPS\u201920. arXiv:2006.03875"},{"key":"6495_CR24","doi-asserted-by":"crossref","DOI":"10.1017\/CBO9780511804441","volume-title":"Convex optimization","author":"S Boyd","year":"2004","unstructured":"Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press."},{"key":"6495_CR25","doi-asserted-by":"crossref","unstructured":"Braun, J., Kornreich, M., Park, J., Pawar, J., Browning, J., Herzog, R., Odry, B., & Zhang, L. (2022) Influence based re-weighing for labeling noise in medical imaging. In Proceedings of the 19th IEEE International Symposium on Biomedical Imaging. ISBI\u201922","DOI":"10.1109\/ISBI52829.2022.9761479"},{"key":"6495_CR26","first-page":"1","volume":"24","author":"J Brophy","year":"2023","unstructured":"Brophy, J., Hammoudeh, Z., & Lowd, D. (2023). Adapting and evaluating influence-estimation methods for gradient-boosted decision trees. Journal of Machine Learning Research, 24, 1\u201348.","journal-title":"Journal of Machine Learning Research"},{"key":"6495_CR27","unstructured":"Brophy, J., & Lowd, D. (2021). Machine unlearning for random forests. In Proceedings of the 38th international conference on machine learning. ICML\u201921. arXiv:2009.05567"},{"key":"6495_CR28","unstructured":"Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., & Amodei, D. (2020). Language models are few-shot learners. In Proceedings of the 34th\u00a0conference on neural information processing systems. NeurIPS\u201920, Curran Associates, Inc. arXiv:2005.14165"},{"key":"6495_CR29","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1613\/jair.1.12228","volume":"70","author":"N Burkart","year":"2021","unstructured":"Burkart, N., & Huber, M. F. (2021). A survey on the explainability of supervised machine learning. Journal Artificial Intelligence Research, 70, 245\u2013317.","journal-title":"Journal Artificial Intelligence Research"},{"key":"6495_CR30","doi-asserted-by":"publisher","unstructured":"Cai, C.J., Jongejan, J., & Holbrook, J. (2019). The effects of example-based explanations in a machine learning interface. In Proceedings of the 24th international conference on intelligent user interfaces. p. 258\u2013262. IUI\u201919 . https:\/\/doi.org\/10.1145\/3301275.3302289","DOI":"10.1145\/3301275.3302289"},{"key":"6495_CR31","unstructured":"Chen, R., Li, Z., Li, J., Wu, C., Yan, J. (2022). On collective robustness of bagging against data poisoning. In Proceedings of the 39th international conference on machine learning. ICML\u201922, PMLR. arXiv:2205.13176"},{"key":"6495_CR32","unstructured":"Chen, X., Liu, C., Li, B., Lu, K., Song, D. (2017). Targeted backdoor attacks on deep learning systems using data poisoning. arXiv:1712.05526"},{"key":"6495_CR33","doi-asserted-by":"crossref","unstructured":"Chen, Y., Li, B., Yu, H., Wu, P., & Miao, C. (2021). HyDRA: Hypergradient data relevance analysis for interpreting deep neural networks. In Proceedings of the 35th AAAI conference on artificial intelligence. AAAI\u201921, association for the advancement of artificial intelligence, virtual only. arXiv:2102.02515","DOI":"10.1609\/aaai.v35i8.16871"},{"key":"6495_CR34","unstructured":"Cohen, G., & Giryes, R. (2022). Membership inference attack using self influence functions. arXiv:2205.13680"},{"key":"6495_CR35","doi-asserted-by":"crossref","unstructured":"Cohen, G., Sapiro, G., & Giryes, R. (2020) Detecting adversarial samples using influence functions and nearest neighbors. In Proceedings of the IEEE conference on computer vision and pattern recognition. CVPR\u201920, Virtual Only. arXiv:1909.06872","DOI":"10.1109\/CVPR42600.2020.01446"},{"issue":"1","key":"6495_CR36","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1080\/00401706.1977.10489493","volume":"19","author":"RD Cook","year":"1977","unstructured":"Cook, R. D. (1977). Detection of influential observation in linear regression. Technometrics, 19(1), 15\u201318.","journal-title":"Technometrics"},{"issue":"3","key":"6495_CR37","doi-asserted-by":"crossref","first-page":"370","DOI":"10.1111\/j.2517-6161.1982.tb01215.x","volume":"44","author":"RD Cook","year":"1982","unstructured":"Cook, R. D., Holschuh, N., & Weisberg, S. (1982). A note on an alternative outlier model. Journal of the Royal Statistical Society Series B (Methodological), 44(3), 370\u2013376.","journal-title":"Journal of the Royal Statistical Society Series B (Methodological)"},{"volume-title":"Residuals and influence in regression","year":"1982","author":"RD Cook","key":"6495_CR38","unstructured":"Cook, R. D., & Weisberg, S. (1982). Residuals and influence in regression. Chapman and Hall."},{"key":"6495_CR39","unstructured":"Dai, Z., & Gifford, D.K. (2023). Training data attribution for diffusion models. arXiv:2306.02174"},{"key":"6495_CR40","unstructured":"D\u2019Amour, A., Heller, K.A., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., Chen, C., Deaton, J., Eisenstein, J., Hoffman, M.D., Hormozdiari, F., Houlsby, N., Hou, S., Jerfel, G., Karthikesalingam, A., Lucic, M., Ma, Y., McLean, C.Y., Mincu, D., Mitani, A., Montanari, A., Nado, Z., Natarajan, V., Nielson, C., Osborne, T.F., Raman, R., Ramasamy, K., Sayres, R., Schrouff, J., Seneviratne, M., Sequeira, S., Suresh, H., Veitch, V., Vladymyrov, M., Wang, X., Webster, K., Yadlowsky, S., Yun, T., Zhai, X., & Sculley, D. (2020). Underspecification presents challenges for credibility in modern machine learning. arXiv:2011.03395"},{"key":"6495_CR41","doi-asserted-by":"crossref","unstructured":"Das, S., Singh, A., Chatterjee, S., Bhattacharya, S., & Bhattacharya, S. (2021). Finding high-value training data subset through differentiable convex programming. In Proceedings of the 2021 European conference on machine learning and principles and practice of knowledge discovery in databases. ECML PKDD\u201921. arXiv:2104.13794","DOI":"10.1007\/978-3-030-86520-7_41"},{"key":"6495_CR42","unstructured":"Davies, A., & Ghahramani, Z. (2014) The random forest kernel and other kernels for big data from random partitions. arXiv:1402.4293"},{"key":"6495_CR43","unstructured":"Demontis, A., Melis, M., Pintor, M., Jagielski, M., Biggio, B., Oprea, A., Nita-Rotaru, C., & Roli, F. (2019). Why do adversarial attacks transfer? Explaining transferability of evasion and poisoning attacks. In: Proceedings of the 28th USENIX security symposium. USENIX\u201919. arXiv:1809.02861"},{"key":"6495_CR44","doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., & Fei-Fei, L. (2009) ImageNet: A large-scale hierarchical image database. In Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 248\u2013255. CVPR\u201909.","DOI":"10.1109\/CVPR.2009.5206848"},{"issue":"2","key":"6495_CR45","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1287\/moor.19.2.257","volume":"19","author":"X Deng","year":"1994","unstructured":"Deng, X., & Papadimitriou, C. H. (1994). On the complexity of cooperative solution concepts. Mathematics of Operations Research, 19(2), 257\u2013266.","journal-title":"Mathematics of Operations Research"},{"key":"6495_CR46","unstructured":"Devlin, J., Chang, M.W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference of the north American chapter of the association for computational linguistics. ACL\u201919, Association for Computational Linguistics, Minneapolis, Minnesota. arXiv:1810.04805."},{"key":"6495_CR47","unstructured":"Diskin, M., Bukhtiyarov, A., Ryabinin, M., Saulnier, L., Lhoest, Q., Sinitsin, A., Popov, D., Pyrkin, D., Kashirin, M., Borzunov, A., del Moral, A.V., Mazur, D., Kobelev, I., Jernite, Y., Wolf, T., & Pekhimenko, G. (2021). Distributed deep learning in open collaborations. In Proceedings of the 35th\u00a0conference on neural information processing Systems. NeurIPS\u201921. arXiv:2106.10207"},{"key":"6495_CR48","unstructured":"Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2019). An image is worth 16x16 words: Transformers for image recognition at scale. In Proceedings of the 9th international conference on learning representations. ICLR\u201921, Virtual Only. arXiv:2010.11929"},{"issue":"3","key":"6495_CR49","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1007\/BF01780630","volume":"4","author":"P Dubey","year":"1975","unstructured":"Dubey, P. (1975). On the uniqueness of the Shapley Value. International Journal of Game Theory, 4(3), 131\u2013139.","journal-title":"International Journal of Game Theory"},{"issue":"1","key":"6495_CR50","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1287\/moor.6.1.122","volume":"6","author":"P Dubey","year":"1981","unstructured":"Dubey, P., Neyman, A., & Weber, R. J. (1981). Value theory without efficiency. Mathematics of Operations Research, 6(1), 122\u2013128.","journal-title":"Mathematics of Operations Research"},{"key":"6495_CR51","first-page":"2121","volume":"12","author":"J Duchi","year":"2011","unstructured":"Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12, 2121\u20132159.","journal-title":"Journal of Machine Learning Research"},{"key":"6495_CR52","doi-asserted-by":"crossref","unstructured":"Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2012). Fairness through awareness. In Proceedings of the 3rd innovations in theoretical computer science conference. ITCS\u201912. arXiv:1104.3913","DOI":"10.1145\/2090236.2090255"},{"key":"6495_CR53","unstructured":"Eisenhofer, T., Riepel, D., Chandrasekaran, V., Ghosh, E., Ohrimenko, O., & Papernot, N. (2022) Verifiable and provably secure machine unlearning. arXiv:2210.09126"},{"key":"6495_CR54","doi-asserted-by":"crossref","unstructured":"Ekambaram, R., Goldgof, D.B., & Hall, L.O. (2017). Finding label noise examples in large scale datasets. In Proceeding of the 2017 IEEE international conference on systems, man, and cybernetics.","DOI":"10.1109\/SMC.2017.8122985"},{"issue":"3","key":"6495_CR55","doi-asserted-by":"crossref","first-page":"637","DOI":"10.2307\/2529752","volume":"32","author":"JH Ellenberg","year":"1976","unstructured":"Ellenberg, J. H. (1976). Testing for a single outlier from a general linear regression. Biometrics, 32(3), 637\u2013645.","journal-title":"Biometrics"},{"key":"6495_CR56","doi-asserted-by":"crossref","unstructured":"Fang, M., Gong, N.Z., & Liu, J. (2020). Influence function based data poisoning attacks to top-N recommender systems. In: Proceedings of the Web Conference\u00a02020. WWW\u201920. arXiv:2002.08025","DOI":"10.1145\/3366423.3380072"},{"key":"6495_CR57","doi-asserted-by":"crossref","unstructured":"Feldman, D. (2020a). Introduction to core-sets: an updated survey. arXiv:2011.09384.","DOI":"10.1002\/widm.1335"},{"key":"6495_CR58","doi-asserted-by":"crossref","unstructured":"Feldman, V. (2020b). Does learning require memorization? A short tale about a long tail. In Proceedings of the 52nd Annual ACM SIGACT symposium on theory of computing. STOC\u201920. arXiv:1906.05271","DOI":"10.1145\/3357713.3384290"},{"key":"6495_CR59","unstructured":"Feldman, V., & Zhang, C. (2020). What neural networks memorize and why: Discovering the long tail via influence estimation. In Proceedings of the 34th\u00a0conference on neural information processing systems. NeurIPS\u201920, Curran Associates, Inc., Virtual Only. arXiv:2008.03703"},{"key":"6495_CR60","unstructured":"Fowl, L., Goldblum, M., Chiang, P., Geiping, J., Czaja, W., & Goldstein, T. (2021). Adversarial examples make strong poisons. In Proceedings of the 35th\u00a0conference on neural information processing systems. NeurIPS\u201921, Curran Associates, Inc., Virtual Only. arXiv:2106.10807"},{"key":"6495_CR61","unstructured":"Ghorbani, A., & Zou, J. (2019). Data Shapley: Equitable valuation of data for machine learning. In Proceedings of the 36th international conference on machine learning. ICML\u201919 (2019) , https:\/\/proceedings.mlr.press\/v97\/ghorbani19c.html"},{"key":"6495_CR62","unstructured":"Ghorbani, A., & Zou, J.Y. (2020). Neuron Shapley: Discovering the responsible neurons. In Proceedings of the 34th\u00a0conference on neural information processing systems. NeurIPS\u201920. arXiv:2002.09815"},{"key":"6495_CR63","doi-asserted-by":"crossref","unstructured":"Glymour, B., & Herington, J. (2019). Measuring the biases that matter: The ethical and casual foundations for measures of fairness in algorithms. In Proceedings of the 2019 ACM conference on fairness, accountability, and transparency. FAccT\u201919.","DOI":"10.1145\/3287560.3287573"},{"key":"6495_CR64","unstructured":"Goyal, P., Doll\u00e1r, P., Girshick, R.B., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., He, K. (2017). Accurate, large minibatch SGD: Training ImageNet in 1 hour. arXiv:1706.02677"},{"issue":"4","key":"6495_CR65","doi-asserted-by":"publisher","first-page":"547","DOI":"10.1007\/s001820050125","volume":"28","author":"M Grabisch","year":"1999","unstructured":"Grabisch, M., & Roubens, M. (1999). An axiomatic approach to the concept of interaction among players in cooperative games. International Journal of Game Theory, 28(4), 547\u2013565. https:\/\/doi.org\/10.1007\/s001820050125","journal-title":"International Journal of Game Theory"},{"key":"6495_CR66","unstructured":"Guo, C., Goldstein, T., Hannun, A.Y., & van\u00a0der Maaten, L. (2020). Certified data removal from machine learning models. In Proceedings of the 37th international conference on machine learning. ICML\u201920, vol. 119, pp. 3832\u20133842. arXiv:1911.03030"},{"key":"6495_CR67","doi-asserted-by":"crossref","unstructured":"Guo, H., Rajani, N., Hase, P., Bansal, M., & Xiong, C. (2021). FastIF: Scalable influence functions for efficient model interpretation and debugging. In Proceedings of the 2021 conference on empirical methods in natural language processing. EMNLP\u201921. arXiv:2012.15781.","DOI":"10.18653\/v1\/2021.emnlp-main.808"},{"key":"6495_CR68","unstructured":"Hammoudeh, Z., & Lowd, D. (2021). Simple, attack-agnostic defense against targeted training set attacks using cosine similarity. In Proceedings of the 3rd\u00a0ICML workshop on uncertainty and robustness in deep learning. UDL\u201921."},{"key":"6495_CR69","doi-asserted-by":"crossref","unstructured":"Hammoudeh, Z., & Lowd, D. (2022). Identifying a training-set attack\u2019s target using renormalized influence estimation. In Proceedings of the 29th ACM SIGSAC conference on computer and communications security. CCS\u201922, Association for Computing Machinery. arXiv:2201.10055.","DOI":"10.1145\/3548606.3559335"},{"key":"6495_CR71","doi-asserted-by":"crossref","unstructured":"Hammoudeh, Z., & Lowd, D. (2023). Reducing certified regression to certified classification for general poisoning attacks. In Proceedings of the 1st IEEE conference on secure and trustworthy machine learning. SaTML\u201923. arXiv:2208.13904.","DOI":"10.1109\/SaTML54575.2023.00040"},{"key":"6495_CR70","doi-asserted-by":"crossref","unstructured":"Hammoudeh, Z., & Lowd, D. (2024) Provable robustness against a union of $$\\ell_0$$ attacks. In Proceedings of the 38th AAAI conference on artificial intelligence. AAAI\u201924. arXiv:2302.11628.","DOI":"10.1609\/aaai.v38i19.30106"},{"issue":"346","key":"6495_CR72","doi-asserted-by":"crossref","first-page":"383","DOI":"10.1080\/01621459.1974.10482962","volume":"69","author":"FR Hampel","year":"1974","unstructured":"Hampel, F. R. (1974). The influence curve and its role in robust estimation. Journal of the American Statistical Association, 69(346), 383\u2013393.","journal-title":"Journal of the American Statistical Association"},{"key":"6495_CR73","doi-asserted-by":"crossref","unstructured":"Han, X., & Tsvetkov, Y. (2021). Fortifying toxic speech detectors against veiled toxicity. In Proceedings of the 2020 conference on empirical methods in natural language processing. EMNLP\u201920. arXiv:2010.03154.","DOI":"10.18653\/v1\/2020.emnlp-main.622"},{"key":"6495_CR74","unstructured":"Hara, S., Nitanda, A., & Maehara, T. (2019) Data cleansing for models trained with SGD. In Proceedings of the 33rd\u00a0conference on neural information processing systems. NeurIPS\u201919, Curran Associates, Inc. arXiv:1906.08473"},{"key":"6495_CR75","doi-asserted-by":"crossref","unstructured":"He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., Shi, Y., Atallah, A., Herbrich, R., Bowers, S., & Candela, J.Q.N. (2014). Practical lessons from predicting clicks on ads at Facebook. In Proceedings of the eighth international workshop on data mining for online advertising. AdKDD\u201914. Association for Computing Machinery. https:\/\/research.facebook.com\/publications\/practical-lessons-from-predicting-clicks-on-ads-at-facebook\/.","DOI":"10.1145\/2648584.2648589"},{"key":"6495_CR76","unstructured":"Higgins, I., Matthey, L., Pal, A., Burgess, C.P., Glorot, X., Botvinick, M.M., Mohamed, S., & Lerchner, A. (2017). beta-VAE: Learning basic visual concepts with a constrained variational framework. In Proceedings of the 5th international conference on learning representations. ICLR\u201917. https:\/\/openreview.net\/forum?id=Sy2fzU9gl."},{"issue":"3","key":"6495_CR77","doi-asserted-by":"crossref","first-page":"1171","DOI":"10.1214\/009053607000000677","volume":"36","author":"T Hofmann","year":"2008","unstructured":"Hofmann, T., Sch\u00f6lkopf, B., & Smola, A. J. (2008). Kernel methods in machine learning. Annals of Statistics, 36(3), 1171\u20131220. arXiv:math\/0701907.","journal-title":"Annals of Statistics"},{"issue":"3","key":"6495_CR78","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1080\/00031305.1979.10482673","volume":"33","author":"RV Hogg","year":"1979","unstructured":"Hogg, R. V. (1979). Statistical robustness: One view of its use in applications today. The American Statistician, 33(3), 108\u2013115.","journal-title":"The American Statistician"},{"key":"6495_CR79","doi-asserted-by":"crossref","DOI":"10.1002\/0471725250","volume-title":"Robust statistics","author":"P Huber","year":"1981","unstructured":"Huber, P. (1981). Robust statistics. Wiley."},{"issue":"1","key":"6495_CR80","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1214\/aoms\/1177703732","volume":"35","author":"PJ Huber","year":"1964","unstructured":"Huber, P. J. (1964). Robust estimation of a location parameter. Annals of Mathematical Statistics, 35(1), 73\u2013101.","journal-title":"Annals of Mathematical Statistics"},{"key":"6495_CR81","doi-asserted-by":"crossref","unstructured":"Hutchinson, B., Prabhakaran, V., Denton, E., Webster, K., Zhong, Y., & Denuyl, S. (2020). Social biases in NLP models as barriers for persons with disabilities. In Proceedings of the 58th annual meeting of the association for computational linguistics. Association for Computational Linguistics.","DOI":"10.18653\/v1\/2020.acl-main.487"},{"key":"6495_CR82","unstructured":"Ilyas, A., Park, S.M., Engstrom, L., Leclerc, G., & Madry, A. (2022). Datamodels: Understanding predictions with data and data with predictions. In Proceedings of the 39th international conference on machine learning. ICML\u201922, PMLR. arXiv:2202.00622"},{"volume-title":"The infinitesimal jackknife, Tech. rep.","year":"1972","author":"LA Jaeckel","key":"6495_CR83","unstructured":"Jaeckel, L. A. (1972). The infinitesimal jackknife, Tech. rep. Bell Laboratories."},{"key":"6495_CR84","doi-asserted-by":"crossref","unstructured":"Jagielski, M., Severi, G., Pousette\u00a0Harger, N., & Oprea, A. (2021) Subpopulation data poisoning attacks. In Proceedings of the 28th ACM SIGSAC conference on computer and communications security. ccs \u201921, association for computing machinery, Virtual Only. arXiv:2006.14026","DOI":"10.1145\/3460120.3485368"},{"key":"6495_CR85","doi-asserted-by":"crossref","unstructured":"Jia, J., Liu, Y., Cao, X., & Gong, N.Z. (2022). Certified robustness of nearest neighbors against data poisoning and backdoor attacks. In Proceedings of the 36th AAAI conference on artificial intelligence. AAAI\u201922. arXiv:2012.03765.","DOI":"10.1609\/aaai.v36i9.21191"},{"key":"6495_CR86","doi-asserted-by":"crossref","unstructured":"Jia, R., Dao, D., Wang, B., Hubis, F.A., G\u00fcrel, N.M., Li, B., Zhang, C., Spanos, C.J., & Song, D. (2019a). Efficient task-specific data valuation for nearest neighbor algorithms. In Proceedings of the VLDB endowment. PVLDB\u201919. arXiv:1908.08619","DOI":"10.14778\/3342263.3342637"},{"key":"6495_CR87","unstructured":"Jia, R., Dao, D., Wang, B., Hubis, F.A., Hynes, N., G\u00fcrel, N.M., Li, B., Zhang, C., Song, D., & Spanos, C.J. (2019b). Towards efficient data valuation based on the Shapley value. In Proceedings of the 22nd conference on artificial intelligence and statistics. pp. 1167\u20131176. AISTATS\u201919. arXiv:1902.10275"},{"key":"6495_CR88","doi-asserted-by":"crossref","unstructured":"Jia, R., Wu, F., Sun, X., Xu, J., Dao, D., Kailkhura, B., Zhang, C., Li, B., & Song, D. (2021). Scalability vs. utility: Do we have to sacrifice one for the other in data importance quantification? In Proceedings of the 2021 IEEE\/CVF conference on computer vision and pattern recognition. CVPR\u201921 (2021) , arXiv:1911.07128","DOI":"10.1109\/CVPR46437.2021.00814"},{"key":"6495_CR89","unstructured":"Jiang, Z., Zhang, C., Talwar, K., & Mozer, M.C. (2021). Characterizing structural regularities of labeled data in overparameterized models. In Proceedings of the 38th international conference on machine learning. (pp. 5034\u20135044). ICML\u201921. arXiv:2002.03206"},{"key":"6495_CR90","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1090\/conm\/026\/737400","volume":"26","author":"WB Johnson","year":"1984","unstructured":"Johnson, W. B., & Lindenstrauss, J. (1984). Extensions of Lipschitz mappings into a Hilbert space. Contemporary Mathematics, 26, 189\u2013206.","journal-title":"Contemporary Mathematics"},{"issue":"4","key":"6495_CR91","doi-asserted-by":"crossref","first-page":"345","DOI":"10.1080\/03610917808812083","volume":"7","author":"JE Dennis Jr Jr","year":"1978","unstructured":"Dennis Jr., J. E., & Welsch, R. E. (1978). Techniques for nonlinear least squares and robust regression. Communications in Statistics-Simulation and Computation, 7(4), 345\u2013359.","journal-title":"Communications in Statistics-Simulation and Computation"},{"key":"6495_CR92","unstructured":"K, K., & S\u00f8gaard, A. (2021). Revisiting methods for finding influential examples. arXiv:2111.04683."},{"key":"6495_CR93","unstructured":"Kandpal, N., Wallace, E., & Raffel, C. (2022). Deduplicating training data mitigates privacy risks in language models. In Proceedings of the 39th international conference on machine learning. ICML\u201922. arXiv:2202.06539"},{"issue":"1","key":"6495_CR94","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.jarmac.2013.01.001","volume":"2","author":"SM Kassin","year":"2013","unstructured":"Kassin, S. M., Dror, I. E., & Kukucka, J. (2013). The forensic confirmation bias: Problems, perspectives, and proposed solutions. Journal of Applied Research in Memory and Cognition, 2(1), 42\u201352.","journal-title":"Journal of Applied Research in Memory and Cognition"},{"key":"6495_CR95","unstructured":"Khanna, R., Kim, B., Ghosh, J., Koyejo, O. (2019). Interpreting black box predictions using Fisher kernels. In Proceedings of the 22nd conference on artificial intelligence and statistics. AISTATS\u201919. arXiv:1810.10118."},{"key":"6495_CR96","unstructured":"Ki, N., Choi, H., Chung, H.W. (2023). Data valuation without training of a model. In Proceedings of the 11th international conference on learning representations. ICLR\u201923. https:\/\/openreview.net\/forum?id=XIzO8zr-WbM."},{"key":"6495_CR97","unstructured":"Kingma, D.P., & Ba, J. (2021). Adam: A method for stochastic optimization. In Proceedings of the 3rd international conference on learning representations. ICLR\u201915. arXiv:1412.6980"},{"key":"6495_CR98","unstructured":"Kingma, D.P., & Welling, M. (2014) Auto-encoding variational Bayes. In Proceedings of the 2nd international conference on learning representations. ICLR\u201914 (2014). arXiv:1312.6114."},{"key":"6495_CR99","doi-asserted-by":"crossref","unstructured":"Kizilcec, R.F. (2016). How much information? Effects of transparency on trust in an algorithmic interface. In Proceedings of the 2016 CHI conference on human factors in computing systems, (pp. 2390\u20132395). CHI\u201916, Association for Computing Machinery.","DOI":"10.1145\/2858036.2858402"},{"key":"6495_CR100","unstructured":"Knight, W. (2017). The dark secret at the heart of AI. MIT Technology Review. https:\/\/www.technologyreview.com\/2017\/04\/11\/5113\/the-dark-secret-at-the-heart-of-ai\/."},{"key":"6495_CR101","doi-asserted-by":"crossref","unstructured":"Kobayashi, S., Yokoi, S., Suzuki, J., & Inui, K. (2020). Efficient estimation of influence of a training instance. In Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing. Association for Computational Linguistics. arXiv:2012.04207.","DOI":"10.18653\/v1\/2020.sustainlp-1.6"},{"key":"6495_CR102","unstructured":"Koh, P.W., Ang, K.S., Teo, H.H.K., & Liang, P. (2019). On the accuracy of influence functions for measuring group effects. In Proceedings of the 33rd international conference on neural information processing systems. NeurIPS\u201919, Curran Associates Inc., arXiv:1905.13289"},{"key":"6495_CR103","unstructured":"Koh, P.W., & Liang, P. (2017). Understanding black-box predictions via influence functions. In Proceedings of the 34th\u00a0international conference on machine learning. ICML\u201917, PMLR. arXiv:1703.04730."},{"key":"6495_CR104","unstructured":"Kong, S., Shen, Y., & Huang, L. (2022). Resolving training biases via influence-based data relabeling. In Proceedings of the 10th international conference on learning representations, ICLR\u201922. https:\/\/openreview.net\/forum?id=EskfH0bwNVn."},{"key":"6495_CR105","unstructured":"Kong, Z., & Chaudhuri, K. (2021) Understanding instance-based interpretability of variational auto-encoders. In Proceedings of the 35th\u00a0conference on neural information processing systems. NeurIPS\u201921, Curran Associates, Inc. arXiv:2105.14203."},{"key":"6495_CR106","doi-asserted-by":"crossref","unstructured":"Krishnan, S., Wang, J., Wu, E., Franklin, M.J., & Goldberg, K. (2016). ActiveClean: Interactive data cleaning for statistical modeling. In Proceedings of the VLDB endowment. https:\/\/www.vldb.org\/pvldb\/vol9\/p948-krishnan.pdf.","DOI":"10.14778\/2994509.2994514"},{"key":"6495_CR107","unstructured":"Krishnan, S., & Wu, E. (2019). AlphaClean: Automatic generation of data cleaning pipelines. arXiv:1904.11827."},{"key":"6495_CR108","unstructured":"Krizhevsky, A., Nair, V., & Hinton, G. (2014). The CIFAR-10 dataset."},{"key":"6495_CR109","unstructured":"Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012). ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th\u00a0conference on neural information processing systems. (pp. 1097\u20131105). NeurIPS\u201912."},{"key":"6495_CR110","doi-asserted-by":"crossref","unstructured":"Kurita, K., Vyas, N., Pareek, A., Black, A.W., & Tsvetkov, Y. (2019). Measuring bias in contextualized word representations. In Proceedings of the first workshop on gender bias in natural language processing. Association for Computational Linguistics. arXiv:1906.07337","DOI":"10.18653\/v1\/W19-3823"},{"key":"6495_CR111","unstructured":"Kwon, Y., & Zou, J. (2022). Beta Shapley: A unified and noise-reduced data valuation framework for machine learning. In Proceedings of the 25th conference on artificial intelligence and statistics. AISTATS\u201922, PMLR. arXiv:2110.14049"},{"issue":"1","key":"6495_CR112","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1007\/BF00054839","volume":"3","author":"YG Leclerc","year":"1989","unstructured":"Leclerc, Y. G. (1989). Constructing simple stable descriptions for image partitioning. International Journal of Computer Vision, 3(1), 73\u2013102.","journal-title":"International Journal of Computer Vision"},{"key":"6495_CR113","doi-asserted-by":"crossref","unstructured":"LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. In Proceedings of the IEEE. (vol.\u00a086, pp. 2278\u20132324).","DOI":"10.1109\/5.726791"},{"key":"6495_CR114","doi-asserted-by":"crossref","unstructured":"Lee, D., Park, H., Pham, T., & Yoo, C.D. (2020). Learning augmentation network via influence functions. In Proceedings of the 33rd conference on computer vision and pattern recognition. CVPR\u201920.","DOI":"10.1109\/CVPR42600.2020.01097"},{"key":"6495_CR115","unstructured":"Levine, A., & Feizi, S. (2021). Deep partition aggregation: Provable defenses against general poisoning attacks. In Proceedings of the 9th international conference on learning representations. ICLR\u201921, Virtual Only. arXiv:2006.14768."},{"key":"6495_CR116","unstructured":"Li, Y., Wu, B., Jiang, Y., Li, Z., & Xia, S. (2022). Backdoor learning: A survey. In IEEE transactions on neural networks and learning systems. arXiv:2007.08745"},{"key":"6495_CR117","doi-asserted-by":"crossref","unstructured":"Liang, W., Liang, K.H., & Yu, Z. (2021). HERALD: An annotation efficient method to detect user disengagement in social conversations. In Proceedings of the 59th annual meeting of the association for computational linguistics and the 11th international joint conference on natural language processing. ACL-IJCNLP\u201921, Association for Computational Linguistics. arXiv:2106.00162.","DOI":"10.18653\/v1\/2021.acl-long.283"},{"key":"6495_CR118","doi-asserted-by":"crossref","unstructured":"Lim, B.Y., Dey, A.K., & Avrahami, D. (2009). Why and why not explanations improve the intelligibility of context-aware intelligent systems. In Proceedings of the SIGCHI conference on human factors in computing systems. (p. 2119\u20132128). CHI\u201909, Association for Computing Machinery.","DOI":"10.1145\/1518701.1519023"},{"key":"6495_CR119","unstructured":"Lin, J., Zhang, A., Lecuyer, M., Li, J., Panda, A., & Sen, S. (2022). Measuring the effect of training data on deep learning predictions via randomized experiments. In Proceedings of the 39th international conference on machine learning. ICML\u201922. arXiv:2206.10013."},{"issue":"3","key":"6495_CR120","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1145\/3236386.3241340","volume":"16","author":"ZC Lipton","year":"2018","unstructured":"Lipton, Z. C. (2018). The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue, 16(3), 31\u201357. https:\/\/doi.org\/10.1145\/3236386.3241340","journal-title":"Queue"},{"key":"6495_CR121","doi-asserted-by":"crossref","unstructured":"Liu, K., Dolan-Gavitt, B., & Garg, S. (2018). Fine-pruning: Defending against backdooring attacks on deep neural networks. In Proceedings of the international symposium on research in attacks, intrusions, and defenses, (pp. 273\u2013294). RAID\u201918, Springer. arXiv:1805.12185.","DOI":"10.1007\/978-3-030-00470-5_13"},{"key":"6495_CR122","doi-asserted-by":"crossref","unstructured":"Liu, Z., Ding, H., Zhong, H., Li, W., Dai, J., & He, C. (2021). Influence selection for active learning. In Proceedings of the 18th\u00a0international conference on computer vision. ICCV\u201921. arXiv:2108.09331.","DOI":"10.1109\/ICCV48922.2021.00914"},{"key":"6495_CR123","unstructured":"Lundberg, S.M., & Lee, S.I. (2017). A unified approach to interpreting model predictions. In Proceedings of the 31st international conference on neural information processing systems. NeurIPS\u201917 (2017) , arXiv:1705.07874."},{"issue":"2","key":"6495_CR124","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1007\/BF01173636","volume":"1","author":"MJ Mahoney","year":"1977","unstructured":"Mahoney, M. J. (1977). Publication prejudices: An experimental study of confirmatory bias in the peer review system. Cognitive Therapy and Research, 1(2), 161\u2013175.","journal-title":"Cognitive Therapy and Research"},{"issue":"6","key":"6495_CR125","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3457607","volume":"54","author":"N Mehrabi","year":"2021","unstructured":"Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys, 54(6), 1\u201335.","journal-title":"ACM Computing Surveys"},{"key":"6495_CR126","unstructured":"Mirzasoleiman, B., Bilmes, J., & Leskovec, J. (2020). Coresets for data-efficient training of machine learning models. In Proceedings of the 37th international conference on machine learning. ICML\u201920. arXiv:1906.01827."},{"issue":"3","key":"6495_CR127","doi-asserted-by":"crossref","first-page":"208","DOI":"10.1016\/j.scijus.2013.11.003","volume":"54","author":"S Nakhaeizadeh","year":"2013","unstructured":"Nakhaeizadeh, S., Dror, I. E., & Morgan, R. M. (2013). Cognitive bias in forensic anthropology: Visual assessment of skeletal remains is susceptible to confirmation bias. Science & Justice, 54(3), 208\u2013214.","journal-title":"Science & Justice"},{"issue":"4","key":"6495_CR128","doi-asserted-by":"crossref","first-page":"538","DOI":"10.1214\/12-STS400","volume":"27","author":"SN Negahban","year":"2012","unstructured":"Negahban, S. N., Ravikumar, P., Wainwright, M. J., & Yu, B. (2012). A unified framework for high-dimensional analysis of $$M$$-estimators with decomposable regularizers. Statistical Science, 27(4), 538\u2013557.","journal-title":"Statistical Science"},{"key":"6495_CR129","unstructured":"Nguyen, E., Seo, M., & Oh, S.J. (2023). A Bayesian perspective on training data attribution. arXiv:2305.19765."},{"key":"6495_CR130","first-page":"02299","volume":"2209","author":"TT Nguyen","year":"2022","unstructured":"Nguyen, T. T., Huynh, T. T., Nguyen, P. L., Liew, A. W. C., Yin, H., & Nguyen, Q. V. H. (2022). A survey of machine unlearning., 2209, 02299.","journal-title":"A survey of machine unlearning."},{"key":"6495_CR131","doi-asserted-by":"crossref","unstructured":"Oh, S., Kim, S., Rossi, R.A., & Kumar, S. (2021). Influence-guided data augmentation for neural tensor completion. In Proceedings of the 30th ACM international conference on information and knowledge management. CIKM\u201921, ACM. arXiv:2108.10248.","DOI":"10.1145\/3459637.3482267"},{"key":"6495_CR132","doi-asserted-by":"crossref","unstructured":"Oh, S., Ustun, B., McAuley, J., & Kumar, S. (2022). Rank list sensitivity of recommender systems to interaction perturbations. In Proceedings of the 31st ACM international conference on information and knowledge management. CIKM\u201922, ACM. arXiv:2201.12686.","DOI":"10.1145\/3511808.3557425"},{"key":"6495_CR133","unstructured":"Park, S.M., Georgiev, K., Ilyas, A., Leclerc, G., & Madry, A. (2023). TRAK: Attributing model behavior at scale. In Proceedings of the 40th international conference on machine learning. ICML\u201923. arXiv:2303.14186"},{"key":"6495_CR134","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1162\/neco.1994.6.1.147","volume":"6","author":"BA Pearlmutter","year":"1994","unstructured":"Pearlmutter, B. A. (1994). Fast exact multiplication by the Hessian. Neural Computation, 6, 147\u2013160.","journal-title":"Neural Computation"},{"key":"6495_CR135","unstructured":"Pleiss, G., Zhang, T., Elenberg, E., & Weinberger, K.Q. (2020). Identifying mislabeled data using the area under the margin ranking. In Proceedings of the 34th international conference on neural information processing systems. NeurIPS\u201920, Curran Associates Inc., Red Hook. arXiv:2001.10528."},{"key":"6495_CR136","unstructured":"Pruthi, G., Liu, F., Kale, S., & Sundararajan, M. (2020) Estimating training data influence by tracing gradient descent. In Proceedings of the 34th\u00a0conference on neural information processing systems. NeurIPS\u201920, Curran Associates, Inc., Virtual Only. arXiv:2002.08484"},{"issue":"1","key":"6495_CR137","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/S0893-6080(98)00116-6","volume":"12","author":"N Qian","year":"1999","unstructured":"Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural Networks, 12(1), 145\u2013151.","journal-title":"Neural Networks"},{"key":"6495_CR138","doi-asserted-by":"crossref","unstructured":"Raste, S., Singh, R., Vaughan, J., & Nair, V.N. (2022). Quantifying inherent randomness in machine learning algorithms. arXiv:2206.12353","DOI":"10.2139\/ssrn.4146989"},{"key":"6495_CR139","first-page":"3413","volume":"12","author":"B Recht","year":"2011","unstructured":"Recht, B. (2011). A simpler approach to matrix completion. Journal of Machine Learning Research, 12, 3413\u20133430.","journal-title":"Journal of Machine Learning Research"},{"key":"6495_CR140","unstructured":"Reddi, V. J., Diamos, G., Warden, P., Mattson, P., & Kanter, D. (2021). Data engineering for everyone. (vol. 2102, p. 11447). arXiv:2102.11447"},{"issue":"9","key":"6495_CR141","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3472291","volume":"54","author":"P Ren","year":"2021","unstructured":"Ren, P., Xiao, Y., Chang, X., Huang, P. Y., Li, Z., Gupta, B. B., Chen, X., & Wang, X. (2021). A survey of deep active learning. ACM Computing Surveys, 54(9), 1\u201340.","journal-title":"ACM Computing Surveys"},{"issue":"1","key":"6495_CR142","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1111\/cogs.12086","volume":"38","author":"A Renkl","year":"2014","unstructured":"Renkl, A. (2014). Toward an instructionally oriented theory of example-based learning. Cognitive Science, 38(1), 1\u201337.","journal-title":"Cognitive Science"},{"issue":"1","key":"6495_CR143","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1007\/s10648-008-9093-4","volume":"21","author":"A Renkl","year":"2009","unstructured":"Renkl, A., Hilbert, T., & Schworm, S. (2009). Example-based learning in heuristic domains: A cognitive load theory account. Educational Psychology Review, 21(1), 67\u201378.","journal-title":"Educational Psychology Review"},{"key":"6495_CR144","unstructured":"Rezaei, K., Banihashem, K., Chegini, A., & Feizi, S. (2023). Run-off election: Improved provable defense against data poisoning attacks. In Proceedings of the 40th international conference on machine learning. ICML\u201923. arXiv:2302.02300"},{"key":"6495_CR145","unstructured":"Rezende, D.J., Mohamed, S., & Wierstra, D. (2014). Stochastic backpropagation and approximate inference in deep generative models. In Proceedings of the 31st international conference on international conference on machine learning. ICML\u201914. arXiv:1401.4082."},{"issue":"388","key":"6495_CR146","doi-asserted-by":"crossref","first-page":"871","DOI":"10.1080\/01621459.1984.10477105","volume":"79","author":"P Rousseeuw","year":"1994","unstructured":"Rousseeuw, P. (1994). Least median of squares regression. Journal of the American Statistical Association, 79(388), 871\u2013880.","journal-title":"Journal of the American Statistical Association"},{"key":"6495_CR147","doi-asserted-by":"crossref","DOI":"10.1002\/0471725382","volume-title":"Robust regression and outlier detection","author":"PJ Rousseeuw","year":"1987","unstructured":"Rousseeuw, P. J., & Leroy, A. M. (1987). Robust regression and outlier detection. Wiley."},{"key":"6495_CR148","doi-asserted-by":"crossref","unstructured":"Rozemberczki, B., Watson, L., Bayer, P., Yang, H.T., Kiss, O., Nilsson, S., & Sarkar, R. (2022). The Shapley value in machine learning. arXiv:2202.05594.","DOI":"10.24963\/ijcai.2022\/778"},{"issue":"5","key":"6495_CR149","doi-asserted-by":"crossref","first-page":"206","DOI":"10.1038\/s42256-019-0048-x","volume":"1","author":"C Rudin","year":"2019","unstructured":"Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206\u2013215.","journal-title":"Nature Machine Intelligence"},{"issue":"6088","key":"6495_CR150","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1038\/323533a0","volume":"323","author":"DE Rumelhart","year":"1986","unstructured":"Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533\u2013536.","journal-title":"Nature"},{"key":"6495_CR151","doi-asserted-by":"crossref","unstructured":"Saxena, N.A., Huang, K., DeFilippis, E., Radanovic, G., Parkes, D.C., & Liu, Y. (2019). How do fairness definitions fare? Examining public attitudes towards algorithmic definitions of fairness. In Proceedings of the 2019 AAAI\/ACM conference on AI, ethics, and society. AIES\u201919. arXiv:1811.03654.","DOI":"10.1145\/3306618.3314248"},{"key":"6495_CR152","unstructured":"Schioppa, A., Filippova, K., Titov, I., & Zablotskaia, P. (2023). Theoretical and practical perspectives on what influence functions do. arXiv:2305.16971."},{"key":"6495_CR153","doi-asserted-by":"crossref","unstructured":"Schioppa, A., Zablotskaia, P., Torres, D.V., & Sokolov, A. (2022) Scaling up influence functions. In Proceedings of the 36th AAAI conference on artificial intelligence. AAAI\u201922. arXiv:2112.03052","DOI":"10.1609\/aaai.v36i8.20791"},{"key":"6495_CR154","doi-asserted-by":"crossref","unstructured":"Sch\u00f6lkopf, B., Herbrich, R., & Smola, A.J. (2001). A generalized representer theorem. In Proceedings of the 14th annual conference on computational learning theory and 5th european conference on computational learning theory. (pp. 416\u2013426). COLT\u201901\/EuroCOLT\u201901, Springer.","DOI":"10.1007\/3-540-44581-1_27"},{"key":"6495_CR155","unstructured":"Shafahi, A., Huang, W.R., Najibi, M., Suciu, O., Studer, C., Dumitras, T., & Goldstein, T. (2018) Poison frogs! Targeted clean-label poisoning attacks on neural networks. In Proceedings of the 32nd\u00a0Conference on Neural Information Processing Systems. NeurIPS\u201918, Curran Associates, Inc. arXiv:1804.00792."},{"key":"6495_CR156","first-page":"307","volume-title":"Contributions to the Theory of Games II","author":"LS Shapley","year":"1953","unstructured":"Shapley, L. S. (1953). A value for n-person games. In H. W. Kuhn & A. W. Tucker (Eds.), Contributions to the Theory of Games II (pp. 307\u2013317). Princeton University Press."},{"volume-title":"The Shapley Value: Essays in Honor of Lloyd S","year":"1988","author":"LS Shapley","key":"6495_CR157","unstructured":"Shapley, L. S., & Roth, A. E. (1988). The Shapley Value: Essays in Honor of Lloyd S. Shapley: Cambridge University Press."},{"key":"6495_CR158","unstructured":"Sharchilev, B., Ustinovskiy, Y., Serdyukov, P., & de\u00a0Rijke, M. (2018). Finding influential training samples for gradient boosted decision trees. In Proceedings of the 35th international conference on machine learning, (pp. 4577\u20134585). ICML\u201918, PMLR. arXiv:1802.06640"},{"key":"6495_CR159","volume-title":"Statistical Methods","author":"WG Snedecor","year":"1968","unstructured":"Snedecor, W. G., & Cochran, G. W. (1968). Statistical Methods (6th ed.). Iowa State University Press.","edition":"6"},{"issue":"3","key":"6495_CR160","first-page":"251","volume":"23","author":"KS Srikantan","year":"1961","unstructured":"Srikantan, K. S. (1961). Testing for the single outlier in a regression model. Indian Journal of Statistics, 23(3), 251\u2013260.","journal-title":"Indian Journal of Statistics"},{"key":"6495_CR161","unstructured":"Steinhardt, J., Koh, P.W., & Liang, P. (2017) Certified defenses for data poisoning attacks. In Proceedings of the 31st\u00a0conference on neural information processing systems. NeurIPS\u201917, Curran Associates, Inc., Long Beach.arXiv:1706.03691."},{"key":"6495_CR162","doi-asserted-by":"crossref","unstructured":"Strubell, E., Ganesh, A., & McCallum, A. (2020). Energy and policy considerations for modern deep learning research. In Proceedings of the 34th AAAI conference on artificial intelligence. AAAI\u201920. arXiv:1906.02243.","DOI":"10.1609\/aaai.v34i09.7123"},{"key":"6495_CR163","unstructured":"Sui, Y., Wu, G., & Sanner, S. (2021). Representer point selection via local Jacobian expansion for post-hoc classifier explanation of deep neural networks and ensemble models. In Proceedings of the 35th\u00a0conference on neural information processing systems. NeurIPS\u201921, Curran Associates, Inc., Virtual Only. https:\/\/openreview.net\/forum?id=Wl32WBZnSP4."},{"key":"6495_CR164","unstructured":"Summers, C., & Dinneen, M.J. (2021). Nondeterminism and instability in neural network optimization. In Proceedings of the 38th international conference on machine learning. ICML\u201921. arXiv:2103.04514."},{"key":"6495_CR165","unstructured":"Sundararajan, M., Dhamdhere, K., Agarwal, A. (2020) The Shapley Taylor interaction index. In Proceedings of the 37th international conference on machine learning. ICML\u201920. http:\/\/proceedings.mlr.press\/v119\/sundararajan20a."},{"key":"6495_CR166","unstructured":"Sundararajan, M., & Najmi, A. (2020). The many Shapley values for model explanation. In Proceedings of the 37th international conference on machine learning. (pp. 9269\u20139278). ICML\u201920. arXiv:1908.08474"},{"key":"6495_CR167","unstructured":"Tan, Y.C., Celis, L.E. (2019) Assessing social and intersectional biases in contextualized word representations. In Proceedings of the 33rd\u00a0conference on neural information processing systems. NeurIPS\u201919, Curran Associates, Inc., arXiv:1911.01485"},{"key":"6495_CR168","unstructured":"Terashita, N., Ohashi, H., Nonaka, Y., & Kanemaru, T. (2021). Influence estimation for generative adversarial networks. In Proceedings of the 9th international conference on learning representations. ICLR\u201921. arXiv:2101.08367."},{"key":"6495_CR169","doi-asserted-by":"crossref","unstructured":"Thimonier, H., Popineau, F., Rimmel, A., Doan, B.L., & Daniel, F. (2022). TracInAD: Measuring influence for anomaly detection. In: Proceedings of the 2022 international joint conference on neural networks. IJCNN\u201922. arXiv:2205.01362.","DOI":"10.1109\/IJCNN55064.2022.9892058"},{"key":"6495_CR170","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1111\/j.2517-6161.1996.tb02080.x","volume":"58","author":"R Tibshirani","year":"1996","unstructured":"Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society (Series B), 58, 267\u2013288.","journal-title":"Journal of the Royal Statistical Society (Series B)"},{"issue":"4","key":"6495_CR171","doi-asserted-by":"crossref","first-page":"717","DOI":"10.1080\/00401706.1973.10489106","volume":"15","author":"GL Tietjen","year":"1973","unstructured":"Tietjen, G. L., Moore, R. H., & Beckman, R. J. (1973). Testing for a single outlier in simple linear regression. Technometrics, 15(4), 717\u2013721.","journal-title":"Technometrics"},{"key":"6495_CR172","unstructured":"Ting, D., & Brochu, E. (2018). Optimal subsampling with influence functions. In Proceedings of the 32nd\u00a0conference on neural information processing systems. NeurIPS\u201918, Curran Associates, Inc. arXiv:1709.01716."},{"issue":"94","key":"6495_CR173","first-page":"1","volume":"24","author":"CP Tsai","year":"2023","unstructured":"Tsai, C. P., Yeh, C. K., & Ravikumar, P. (2023). Faith-Shap: The faithful Shapley interaction index. Journal of Machine Learning Research, 24(94), 1\u201342.","journal-title":"Journal of Machine Learning Research"},{"key":"6495_CR174","unstructured":"Tsai, C.P., Zhang, J., Chien, E., Yu, H.F., Hsieh, C.J., & Ravikumar, P. (2023b). Representer point selection for explaining regularized high-dimensional models. In: Proceedings of the 40th international conference on machine learning. ICML\u201923. arXiv:2305.20002."},{"key":"6495_CR175","unstructured":"Tukan, M., Zhou, S., Maalouf, A., Rus, D., Braverman, V., & Feldman, D. (2023). Provable data subset selection for efficient neural networks training. In Proceedings of the 40th international conference on machine learning. ICML\u201923. arXiv:2303.05151"},{"key":"6495_CR176","unstructured":"van den Burg, G.J.J., & Williams, C.K.I. (2021). On memorization in probabilistic deep generative models. In Proceedings of the 35th\u00a0conference on neural information processing systems. NeurIPS\u201921, Curran Associates, Inc. arXiv:2106.03216"},{"key":"6495_CR177","doi-asserted-by":"crossref","unstructured":"Wallace, E., Zhao, T.Z., Feng, S., & Singh, S. (2021). Concealed data poisoning attacks on NLP models. In Proceedings of the North American chapter of the association for computational linguistics. NAACL\u201921. arXiv:2010.12563.","DOI":"10.18653\/v1\/2021.naacl-main.13"},{"key":"6495_CR178","doi-asserted-by":"crossref","unstructured":"Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng, H., & Zhao, B.Y. (2019). Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In Proceedings of the 40th\u00a0IEEE symposium on security and privacy. SP\u201919. https:\/\/ieeexplore.ieee.org\/document\/8835365.","DOI":"10.1109\/SP.2019.00031"},{"key":"6495_CR179","unstructured":"Wang, J.T., & Jia, R. (2023). Data Banzhaf: A robust data valuation framework for machine learning. In Proceedings of the 26th international conference on artificial intelligence and statistics. AISTATS\u201923. arXiv:2205.15466."},{"key":"6495_CR180","unstructured":"Wang, W., Levine, A., & Feizi, S. (2022). Improved certified defenses against data poisoning with (deterministic) finite aggregation. In Proceedings of the 39th international conference on machine learning. ICML\u201922. arXiv:2202.02628."},{"key":"6495_CR181","doi-asserted-by":"crossref","unstructured":"Wang, Z., Zhu, H., Dong, Z., He, X., & Huang, S. (2020). Less is better: Unweighted data subsampling via influence function. In Proceedings of the 34th\u00a0AAAI conference on artificial intelligence. (pp. 6340\u20136347). AAAI\u201920, AAAI Press. arXiv:1912.01321","DOI":"10.1609\/aaai.v34i04.6103"},{"key":"6495_CR182","unstructured":"Wei, K., Iyer, R., Bilmes, J. (2015). Submodularity in data subset selection and active learning. In Proceedings of the 32nd international conference on machine learning. ICML\u201915, PMLR. https:\/\/proceedings.mlr.press\/v37\/wei15.html"},{"key":"6495_CR183","doi-asserted-by":"crossref","unstructured":"Wojnowicz, M., Cruz, B., Zhao, X., Wallace, B., Wolff, M., Luan, J., & Crable, C. (2016). \u2018Influence sketching\u2019: Finding influential samples in large-scale regressions. In Proceedings of the 2016 IEEE international conference on big data. BigData\u201916, IEEE. arXiv:1611.05923.","DOI":"10.1109\/BigData.2016.7841024"},{"issue":"1\u20132","key":"6495_CR184","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/0400000060","volume":"10","author":"DP Woodruff","year":"2014","unstructured":"Woodruff, D. P. (2014). Sketching as a tool for numerical linear algebra. Foundations and Trends in Theoretical Computer Science, 10(1\u20132), 1\u2013157. arXiv:1411.4357.","journal-title":"Foundations and Trends in Theoretical Computer Science"},{"key":"6495_CR185","unstructured":"Xiang, C. (2022). Scientists increasingly can\u2019t explain how AI works. Vice. https:\/\/www.vice.com\/en\/article\/y3pezm\/scientists-increasingly-cant-explain-how-ai-works"},{"issue":"2","key":"6495_CR186","doi-asserted-by":"crossref","first-page":"277","DOI":"10.1142\/S2705078520500150","volume":"7","author":"RV Yampolskiy","year":"2020","unstructured":"Yampolskiy, R. V. (2020). Unexplainability and incomprehensibility of AI. Journal of Artificial Intelligence and Consciousness, 7(2), 277\u2013291.","journal-title":"Journal of Artificial Intelligence and Consciousness"},{"key":"6495_CR187","doi-asserted-by":"crossref","unstructured":"Yan, T., & Procaccia, A.D. (2021). If you like Shapley then you\u2019ll love the core. In Proceedings of the 35th AAAI conference on artificial intelligence. AAAI\u201921, Association for the Advancement of Artificial Intelligence, Virtual Only. https:\/\/ojs.aaai.org\/index.php\/AAAI\/article\/view\/16721.","DOI":"10.1609\/aaai.v35i6.16721"},{"issue":"1","key":"6495_CR188","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1109\/TPAMI.2016.2535218","volume":"39","author":"J Yang","year":"2017","unstructured":"Yang, J., Luo, L., Qian, J., Tai, Y., Zhang, F., & Xu, Y. (2017). Nuclear norm based matrix regression with applications to face recognition with occlusion and illumination changes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(1), 156\u2013171. arXiv:1405.1207.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"6495_CR189","unstructured":"Yang, J., Zhou, K., Li, Y., & Liu, Z. (2021). Generalized out-of-distribution detection: A survey. (vol. 2110, p. 11334. arXiv:2110.11334."},{"key":"6495_CR190","unstructured":"Yang, S., Xie, Z., Peng, H., Xu, M., Sun, M., & Li, P. (2023) Dataset pruning: Reducing training data by examining generalization influence. In Proceedings of the 11th international conference on learning representations. ICLR\u201923. arXiv:2205.09329."},{"key":"6495_CR191","unstructured":"Yeh, C.K., Taly, A., Sundararajan, M., Liu, F., & Ravikumar, P. (2022). First is better than last for language data influence. In Proceedings of the 36th\u00a0conference on neural information processing systems. NeurIPS\u201922, Curran Associates. arXiv:2202.11844"},{"key":"6495_CR192","unstructured":"Yeh, C., Kim, J.S., Yen, I.E., & Ravikumar, P. (2018) Representer point selection for explaining deep neural networks. In Proceedings of the 32nd\u00a0conference on neural information processing systems. NeurIPS\u201918, Curran Associates, Inc., Montreal. arXiv:1811.09720."},{"key":"6495_CR193","doi-asserted-by":"crossref","unstructured":"You, W., Hammoudeh, Z., & Lowd, D. (2023). Large language models are better adversaries: Exploring generative clean-label backdoor attacks against text classifiers. In Findings of the association for computational linguistics. EMNLP\u201923.","DOI":"10.18653\/v1\/2023.findings-emnlp.833"},{"key":"6495_CR194","unstructured":"You, Y., Gitman, I., & Ginsburg, B. (2017). Large batch training of convolutional networks. arXiv:1708.03888."},{"issue":"3","key":"6495_CR195","doi-asserted-by":"crossref","first-page":"329","DOI":"10.1111\/j.1467-9868.2007.00591.x","volume":"69","author":"M Yuan","year":"2007","unstructured":"Yuan, M., Ekici, A., Lu, Z., & Monteiro, R. (2007). Dimension reduction and coefficient estimation in multivariate linear regression. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(3), 329\u2013346.","journal-title":"Journal of the Royal Statistical Society: Series B (Statistical Methodology)"},{"key":"6495_CR196","doi-asserted-by":"crossref","unstructured":"Zeng, Y., Wang, J.T., Chen, S., Just, H.A., Jin, R., & Jia, R. (2023). ModelPred: A framework for predicting trained model from training data. In Proceedings of the 1st IEEE conference on secure and trustworthy machine learning. SaTML\u201923. arXiv:2111.12545","DOI":"10.1109\/SaTML54575.2023.00037"},{"key":"6495_CR197","unstructured":"Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2017). Understanding deep learning requires rethinking generalization. In Proceedings of the 5th\u00a0international conference on learning representations. ICLR\u201917. arXiv:1611.03530"},{"issue":"3","key":"6495_CR198","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1145\/3446776","volume":"64","author":"C Zhang","year":"2021","unstructured":"Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2021). Understanding deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3), 107\u2013115. https:\/\/doi.org\/10.1145\/3446776","journal-title":"Communications of the ACM"},{"key":"6495_CR199","unstructured":"Zhang, C., Ippolito, D., Lee, K., Jagielski, M., Tramer F., & Carlini, N. (2021b). Counterfactual memorization in neural language models. arXiv:2112.12938."},{"key":"6495_CR200","doi-asserted-by":"crossref","unstructured":"Zhang, H., Lu, A.X., Abdalla, M., McDermott, M., & Ghassemi, M. (2020). Hurtful words: Quantifying biases in clinical contextual word embeddings. In Proceedings of the ACM conference on health, inference, and learning. CHIL\u201920, Association for Computing Machinery. arXiv:2003.11515.","DOI":"10.1145\/3368555.3384448"},{"key":"6495_CR201","doi-asserted-by":"crossref","unstructured":"Zhang, R., & Zhang, S. (2022). Rethinking influence functions of neural networks in the over-parameterized regime. In Proceedings of the 36th AAAI conference on artificial intelligence. AAAI\u201922, Association for the Advancement of Artificial Intelligence. arXiv:2112.08297.","DOI":"10.1609\/aaai.v36i8.20893"},{"key":"6495_CR202","unstructured":"Zhang, W., Wang, Y., You, Z., Cao, M., Huang, P., Shan, J., Yang, Z., Cui, B. (2021c). RIM: Reliable influence-based active learning on graphs. In Proceedings of the 35th\u00a0conference on neural information processing systems. NeurIPS\u201921, Curran Associates, Inc., Virtual Only. arXiv:2110.14854."},{"key":"6495_CR203","doi-asserted-by":"crossref","unstructured":"Zhou, J., Li, Z., Hu, H., Yu, K., Chen, F., Li, Z., & Wang, Y. (2019) Effects of influence on user trust in predictive decision making. In Extended Abstracts of the 2019 conference on human factors in computing systems. CHI\u201919, Association for Computing Machinery.","DOI":"10.1145\/3290607.3312962"}],"container-title":["Machine Learning"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-023-06495-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10994-023-06495-7\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-023-06495-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,15]],"date-time":"2024-11-15T08:22:59Z","timestamp":1731658979000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10994-023-06495-7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,3,29]]},"references-count":203,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2024,5]]}},"alternative-id":["6495"],"URL":"https:\/\/doi.org\/10.1007\/s10994-023-06495-7","relation":{},"ISSN":["0885-6125","1573-0565"],"issn-type":[{"type":"print","value":"0885-6125"},{"type":"electronic","value":"1573-0565"}],"subject":[],"published":{"date-parts":[[2024,3,29]]},"assertion":[{"value":"13 December 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"18 November 2023","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"29 November 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"29 March 2024","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}