{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:57:05Z","timestamp":1732042625879},"reference-count":63,"publisher":"Springer Science and Business Media LLC","issue":"7","license":[{"start":{"date-parts":[[2023,4,3]],"date-time":"2023-04-03T00:00:00Z","timestamp":1680480000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,4,3]],"date-time":"2023-04-03T00:00:00Z","timestamp":1680480000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100002573","name":"Yonsei University","doi-asserted-by":"publisher","award":["2022-22-0131"],"id":[{"id":"10.13039\/501100002573","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Institute of Information and communications Technology Planning And Evaluations","award":["2022-0-01361-003"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Mach Learn"],"published-print":{"date-parts":[[2023,7]]},"abstract":"Abstract<\/jats:title>Theoretically, domain adaptation is a well-researched problem. Further, this theory has been well-used in practice. In particular, we note the bound on target error given by Ben-David et al. (Mach Learn 79(1\u20132):151\u2013175, 2010) and the well-known domain-aligning algorithm based on this work using Domain Adversarial Neural Networks (DANN) presented by Ganin and Lempitsky (in International conference on machine learning, pp 1180\u20131189). Recently, multiple variants of DANN have been proposed for the related problem of domain generalization<\/jats:italic>, but without much discussion of the original motivating bound. In this paper, we investigate the validity of DANN in domain generalization from this perspective. We investigate conditions under which application of DANN makes sense and further consider DANN as a dynamic process during training. Our investigation suggests that the application of DANN to domain generalization may not be as straightforward as it seems. To address this, we design an algorithmic extension to DANN in the domain generalization case. Our experimentation validates both theory and algorithm.<\/jats:p>","DOI":"10.1007\/s10994-023-06324-x","type":"journal-article","created":{"date-parts":[[2023,4,3]],"date-time":"2023-04-03T20:33:25Z","timestamp":1680554005000},"page":"2685-2721","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":18,"title":["Domain adversarial neural networks for domain generalization: when it works and how to improve"],"prefix":"10.1007","volume":"112","author":[{"given":"Anthony","family":"Sicilia","sequence":"first","affiliation":[]},{"given":"Xingchen","family":"Zhao","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3713-5553","authenticated-orcid":false,"given":"Seong Jae","family":"Hwang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,4,3]]},"reference":[{"key":"6324_CR1","unstructured":"Albuquerque, I., Monteiro, J., Falk, T.H., & Mitliagkas, I. (2020). Adversarial target-invariant representation learning for domain generalization. arXiv preprint arXiv:1911.00804"},{"key":"6324_CR2","unstructured":"Balaji, Y., Sankaranarayanan, S., & Chellappa, R. (2018). Metareg: Towards domain generalization using meta-regularization. In Advances in Neural Information Processing Systems (pp. 998\u20131008)."},{"key":"6324_CR3","first-page":"2285","volume":"20","author":"PL Bartlett","year":"2019","unstructured":"Bartlett, P. L., Harvey, N., Liaw, C., & Mehrabian, A. (2019). Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear neural networks. JMLR, 20, 2285\u20132301.","journal-title":"JMLR"},{"key":"6324_CR4","doi-asserted-by":"crossref","unstructured":"Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2007). Analysis of representations for domain adaptation. In Advances in Neural Information Processing Systems, pp. 137\u2013144","DOI":"10.7551\/mitpress\/7503.003.0022"},{"issue":"1\u20132","key":"6324_CR5","doi-asserted-by":"publisher","first-page":"151","DOI":"10.1007\/s10994-009-5152-4","volume":"79","author":"S Ben-David","year":"2010","unstructured":"Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., & Vaughan, J. W. (2010a). A theory of learning from different domains. Machine Learning, 79(1\u20132), 151\u2013175.","journal-title":"Machine Learning"},{"key":"6324_CR6","unstructured":"Ben-David, S., Lu, T., Luu, T., & Pal, D. (2010b). Impossibility theorems for domain adaptation. In: Teh, Y. W., Titterington, M. (Eds.) Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research (Vol. 9, pp. 129\u2013136). PMLR, Chia Laguna Resort, Sardinia, Italy. https:\/\/proceedings.mlr.press\/v9\/david10a.html"},{"key":"6324_CR7","unstructured":"Bengio, S., Bengio, Y., Cloutier, J., & Gecsei, J. (1992). On the optimization of a synaptic learning rule. In Preprints Conference on Optimality in Artificial and Biological Neural Networks (Vol. 2). University of Texas."},{"key":"6324_CR8","unstructured":"Biewald, L. (2020). Experiment tracking with weights and biases. Software available from wandb.com https:\/\/www.wandb.com\/"},{"key":"6324_CR9","first-page":"2","volume":"22","author":"G Blanchard","year":"2021","unstructured":"Blanchard, G., Deshmukh, A. A., Dogan, \u00dc., Lee, G., & Scott, C. (2021). Domain generalization by marginal transfer learning. J. Mach. Learn. Res., 22, 2\u20131.","journal-title":"J. Mach. Learn. Res."},{"key":"6324_CR10","first-page":"2178","volume":"24","author":"G Blanchard","year":"2011","unstructured":"Blanchard, G., Lee, G., & Scott, C. (2011). Generalizing from several related classification tasks to a new unlabeled sample. Advances in Neural Information Processing Systems, 24, 2178\u20132186.","journal-title":"Advances in Neural Information Processing Systems"},{"key":"6324_CR11","doi-asserted-by":"crossref","unstructured":"Carlucci, F.M., D\u2019Innocente, A., Bucci, S., Caputo, B., & Tommasi, T. (2019). Domain generalization by solving jigsaw puzzles. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2229\u20132238).","DOI":"10.1109\/CVPR.2019.00233"},{"key":"6324_CR12","doi-asserted-by":"crossref","unstructured":"Crammer, K., Kearns, M. & Wortman, J. (2007). Learning from multiple sources. In Advances in Neural Information Processing Systems (pp. 321\u2013328).","DOI":"10.7551\/mitpress\/7503.003.0045"},{"key":"6324_CR13","unstructured":"Deng, Z., Ding, F., Dwork, C., Hong, R., Parmigiani, G., Patil, P., & Sur, P. (2020). Representation via representations: Domain generalization via adversarially learned invariant representations. arXiv preprint arXiv:2006.11478"},{"key":"6324_CR14","doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. In CVPR.","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"6324_CR15","unstructured":"Dou, Q., de Castro, D. C., Kamnitsas, K., & Glocker, B. (2019). Domain generalization via model-agnostic learning of semantic features. In Advances in Neural Information Processing Systems (pp. 6447\u20136458)."},{"key":"6324_CR16","unstructured":"Dziugaite, G. K., & Roy, D. M. (2017). Computing nonvacuous generalization bounds for deep (stochastic) neural networks with many more parameters than training data. arXiv:1703.11008v2"},{"key":"6324_CR17","unstructured":"Flamary, R., Courty, N., Tuia, D., & Rakotomamonjy, A. (2016). Optimal transport for domain adaptation (p. 1). IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"6324_CR18","unstructured":"Ganin, Y., & Lempitsky, V. (2015). Unsupervised domain adaptation by backpropagation. In International Conference on Machine Learning (pp. 1180\u20131189)."},{"key":"6324_CR19","doi-asserted-by":"publisher","first-page":"379","DOI":"10.1016\/j.neucom.2019.10.105","volume":"379","author":"P Germain","year":"2020","unstructured":"Germain, P., Habrard, A., Laviolette, F., & Morvant, E. (2020). Pac-bayes and domain adaptation. Neurocomputing, 379, 379\u2013397.","journal-title":"Neurocomputing"},{"key":"6324_CR20","unstructured":"Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (pp. 249\u2013256)."},{"issue":"1","key":"6324_CR21","first-page":"723","volume":"13","author":"A Gretton","year":"2012","unstructured":"Gretton, A., Borgwardt, K. M., Rasch, M. J., Sch\u00f6lkopf, B., & Smola, A. (2012). A kernel two-sample test. The Journal of Machine Learning Research, 13(1), 723\u2013773.","journal-title":"The Journal of Machine Learning Research"},{"key":"6324_CR22","unstructured":"Gulrajani, I., & Lopez-Paz, D. (2020). In search of lost domain generalization. In International Conference on Learning Representations."},{"key":"6324_CR23","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In CVPR.","DOI":"10.1109\/CVPR.2016.90"},{"key":"6324_CR24","unstructured":"Johansson, F. D., Sontag, D., & Ranganath, R. (2019). Support and invertibility in domain-invariant representations. In The 22nd International Conference on Artificial Intelligence and Statistics (pp. 527\u2013536). PMLR."},{"key":"6324_CR25","first-page":"180","volume":"4","author":"D Kifer","year":"2004","unstructured":"Kifer, D., Ben-David, S., & Gehrke, J. (2004). Detecting change in data streams. VLDB, 4, 180\u2013191.","journal-title":"Detecting change in data streams. VLDB"},{"key":"6324_CR26","unstructured":"Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980"},{"key":"6324_CR27","unstructured":"Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (pp. 1097\u20131105)."},{"key":"6324_CR28","volume-title":"Information theory and statistics","author":"S Kullback","year":"1997","unstructured":"Kullback, S. (1997). Information theory and statistics. North Chelmsford: Courier Corporation."},{"key":"6324_CR29","doi-asserted-by":"publisher","first-page":"4122","DOI":"10.1609\/aaai.v33i01.33014122","volume":"33","author":"S Kuroki","year":"2019","unstructured":"Kuroki, S., Charoenphakdee, N., Bao, H., Honda, J., Sato, I., & Sugiyama, M. (2019). Unsupervised domain adaptation based on source-guided discrepancy. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 4122\u20134129.","journal-title":"Proceedings of the AAAI Conference on Artificial Intelligence"},{"key":"6324_CR30","doi-asserted-by":"crossref","unstructured":"Li, D., Yang, Y., Song, Y.-Z., & Hospedales, T. M. (2017). Deeper, broader and artier domain generalization. In Proceedings of the IEEE International Conference on Computer Vision. (pp. 5542\u20135550).","DOI":"10.1109\/ICCV.2017.591"},{"key":"6324_CR31","doi-asserted-by":"crossref","unstructured":"Li, D., Yang, Y., Song, Y.-Z., & Hospedales, T. M. (2018a). Learning to generalize: Meta-learning for domain generalization. In Thirty-Second AAAI Conference on Artificial Intelligence.","DOI":"10.1609\/aaai.v32i1.11596"},{"key":"6324_CR32","doi-asserted-by":"crossref","unstructured":"Li, H., Jialin\u00a0Pan, S., Wang, S., & Kot, A. C. (2018b). Domain generalization with adversarial feature learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 5400\u20135409).","DOI":"10.1109\/CVPR.2018.00566"},{"key":"6324_CR33","doi-asserted-by":"crossref","unstructured":"Li, Y., Tian, X., Gong, M., Liu, Y., Liu, T., Zhang, K., & Tao, D. (2018c). Deep domain generalization via conditional invariant adversarial networks. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 624\u2013639).","DOI":"10.1007\/978-3-030-01267-0_38"},{"key":"6324_CR34","unstructured":"Lipton, Z., Wang, Y.-X., & Smola, A. (2018). Detecting and correcting for label shift with black box predictors. In International Conference on Machine Learning (pp. 3122\u20133130). PMLR."},{"key":"6324_CR35","unstructured":"Liu, H., Long, M., Wang, J., & Jordan, M. (2019). Transferable adversarial training: A general approach to adapting deep classifiers. In International Conference on Machine Learning (pp. 4013\u20134022)."},{"key":"6324_CR36","first-page":"3118","volume":"33","author":"H Li","year":"2020","unstructured":"Li, H., Wang, Y., Wan, R., Wang, S., Li, T.-Q., & Kot, A. (2020). Domain generalization for medical imaging classification with linear-dependency regularization. Advances in Neural Information Processing Systems, 33, 3118\u20133129.","journal-title":"Advances in Neural Information Processing Systems"},{"key":"6324_CR37","unstructured":"Mansour, Y., Mohri, M., & Rostamizadeh, A. (2009). Domain adaptation with multiple sources. In: Advances in Neural Information Processing Systems (pp. 1041\u20131048)."},{"key":"6324_CR38","doi-asserted-by":"crossref","unstructured":"Matsuura, T., & Harada, T. (2020). Domain generalization using a mixture of multiple latent domains. In AAAI","DOI":"10.1609\/aaai.v34i07.6846"},{"key":"6324_CR39","unstructured":"Muandet, K., Balduzzi, D., & Sch\u00f6lkopf, B. (2013). Domain generalization via invariant feature representation. In International Conference on Machine Learning, (pp. 10\u201318)."},{"key":"6324_CR40","unstructured":"Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019). Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d\u2019 Alch\u00e9-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems (Vol. 32, pp. 8024\u20138035). Curran Associates, Inc., New York."},{"key":"6324_CR41","doi-asserted-by":"publisher","first-page":"737","DOI":"10.1007\/978-3-319-71246-8_45","volume-title":"Joint European Conference on Machine Learning and Knowledge Discovery in Databases","author":"I Redko","year":"2017","unstructured":"Redko, I., Habrard, A., & Sebban, M. (2017). Theoretical analysis of domain adaptation with optimal transport. Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 737\u2013753). New York: Springer."},{"key":"6324_CR42","unstructured":"Schoenauer-Sebag, A., Heinrich, L., Schoenauer, M., Sebag, M., Wu, L. F. & Altschuler, S. J. (2019) Multi-domain adversarial learning. In International Conference on Learning Representation."},{"key":"6324_CR43","doi-asserted-by":"crossref","unstructured":"Seo, S., Suh, Y., Kim, D., Han, J., & Han, B. (2019). Learning to optimize domain specific normalization with domain augmentation for domain generalization. arXiv preprint arXiv:1907.04275","DOI":"10.1007\/978-3-030-58542-6_5"},{"key":"6324_CR44","unstructured":"Shankar, S., Piratla, V., Chakrabarti, S., Chaudhuri, S., Jyothi, P., & Sarawagi, S. (2018) Generalizing across domains via cross-gradient training. In International Conference on Learning Representations"},{"key":"6324_CR45","doi-asserted-by":"crossref","unstructured":"Shen, J., Qu, Y., Zhang, W., & Yu, Y. (2018). Wasserstein distance guided representation learning for domain adaptation. In Thirty-Second AAAI Conference on Artificial Intelligence.","DOI":"10.1609\/aaai.v32i1.11784"},{"key":"6324_CR46","unstructured":"Shu, R., Bui, H. H., Narui, H., & Ermon, S. (2018). A dirt-t approach to unsupervised domain adaptation. arXiv preprint arXiv:1802.08735"},{"issue":"5","key":"6324_CR47","first-page":"985","volume":"8","author":"M Sugiyama","year":"2007","unstructured":"Sugiyama, M., Krauledat, M., & M\u00fcller, K.-R. (2007). Covariate shift adaptation by importance weighted cross validation. Journal of Machine Learning Research, 8(5), 985\u20131005.","journal-title":"Journal of Machine Learning Research"},{"key":"6324_CR48","unstructured":"Tachet\u00a0des Combes, R., Zhao, H., Wang, Y.-X., & Gordon, G. J. (2020). Domain adaptation with conditional distribution matching and generalized label shift. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F., Lin, H. (eds.) Advances in Neural Information Processing Systems, (Vol. 33, pp. 19276\u201319289). Curran Associates, Inc., https:\/\/proceedings.neurips.cc\/paper\/2020\/file\/dfbfa7ddcfffeb581f50edcf9a0204bb-Paper.pdf"},{"key":"6324_CR49","volume-title":"The nature of statistical learning theory","author":"V Vapnik","year":"1999","unstructured":"Vapnik, V. (1999). The nature of statistical learning theory. New York: Springer."},{"key":"6324_CR50","doi-asserted-by":"crossref","unstructured":"Venkateswara, H., Eusebio, J., Chakraborty, S., & Panchanathan, S. (2017). Deep hashing network for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 5018\u20135027)","DOI":"10.1109\/CVPR.2017.572"},{"key":"6324_CR51","unstructured":"Volpi, R., Namkoong, H., Sener, O., Duchi, J.C., Murino, V., & Savarese, S. (2018). Generalizing to unseen domains via adversarial data augmentation. In Advances in Neural Information Processing Systems (pp. 5334\u20135344)."},{"key":"6324_CR52","unstructured":"Wang, H., He, Z., Lipton, Z. L., & Xing, E. P. (2019). Learning robust representations by projecting superficial statistics out. In International Conference on Learning Representationshttps:\/\/openreview.net\/forum?id=rJEjjoR9K7"},{"key":"6324_CR53","unstructured":"Wright, S. (2016). Chapter 2 (from an upcoming textbook). In IMA New Directions Workshop on Mathematical Optimization, p. 20 http:\/\/www.pages.cs.wisc.edu\/\u00a0swright\/nd2016\/chapter2.pdf"},{"key":"6324_CR54","first-page":"23519","volume":"34","author":"H Ye","year":"2021","unstructured":"Ye, H., Xie, C., Cai, T., Li, R., Li, Z., & Wang, L. (2021). Towards a theoretical framework of out-of-distribution generalization. Advances in Neural Information Processing Systems, 34, 23519\u201323531.","journal-title":"Advances in Neural Information Processing Systems"},{"key":"6324_CR55","unstructured":"Yosinski, J., Clune, J., Fuchs, T., & Lipson, H. (2015). Understanding neural networks through deep visualization. In ICML Workshop on Deep Learning, Citeseer."},{"key":"6324_CR56","unstructured":"You, K., Wang, X., Long, M., & Jordan, M. (2019). Towards accurate model selection in deep unsupervised domain adaptation. In International Conference on Machine Learning (pp. 7124\u20137133). PMLR."},{"key":"6324_CR57","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Deng, B., Tang, H., Zhang, L., & Jia, K. (2020). Unsupervised multi-class domain adaptation: Theory, algorithms, and practice. IEEE Transactions on Pattern Analysis and Machine Intelligence.","DOI":"10.1109\/TPAMI.2020.3036956"},{"key":"6324_CR58","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Li, M., Li, R., Jia, K., & Zhang, L. (2022). Exact feature distribution matching for arbitrary style transfer and domain generalization. In Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (pp. 8035\u20138045).","DOI":"10.1109\/CVPR52688.2022.00787"},{"key":"6324_CR59","unstructured":"Zhang, Y., Liu, T., Long, M., & Jordan, M. (2019). Bridging theory and algorithm for domain adaptation. In International Conference on Machine Learning (pp. 7404\u20137413)."},{"key":"6324_CR60","unstructured":"Zhao, H., Des\u00a0Combes, R. T., Zhang, K., & Gordon, G. (2019). On learning invariant representations for domain adaptation. In International Conference on Machine Learning (pp. 7523\u20137532). PMLR."},{"key":"6324_CR61","unstructured":"Zhao, H., Zhang, S., Wu, G., Moura, J. M., Costeira, J. P., & Gordon, G. J. (2018). Adversarial multiple source domain adaptation. In Advances in Neural Information Processing Systems (pp. 8559\u20138570)."},{"key":"6324_CR62","doi-asserted-by":"crossref","unstructured":"Zhou, K., Yang, Y., Hospedales, T., & Xiang, T. (2020). Deep domain-adversarial image generation for domain generalisation. arXiv preprint arXiv:2003.06054","DOI":"10.1609\/aaai.v34i07.7003"},{"key":"6324_CR63","unstructured":"Zhou, K., Yang, Y., Qiao, Y., & Xiang, T. (2021). Domain generalization with mixstyle. arXiv preprint arXiv:2104.02008"}],"container-title":["Machine Learning"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-023-06324-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10994-023-06324-x\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-023-06324-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,7,14]],"date-time":"2023-07-14T20:40:47Z","timestamp":1689367247000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10994-023-06324-x"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4,3]]},"references-count":63,"journal-issue":{"issue":"7","published-print":{"date-parts":[[2023,7]]}},"alternative-id":["6324"],"URL":"https:\/\/doi.org\/10.1007\/s10994-023-06324-x","relation":{},"ISSN":["0885-6125","1573-0565"],"issn-type":[{"value":"0885-6125","type":"print"},{"value":"1573-0565","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,4,3]]},"assertion":[{"value":"18 April 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"2 January 2023","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 February 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"3 April 2023","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"Not applicable.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interests"}},{"value":"Not applicable.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethics approval"}},{"value":"Not applicable.","order":4,"name":"Ethics","group":{"name":"EthicsHeading","label":"Consent to participate"}},{"value":"All authors consent to submission and publication.","order":5,"name":"Ethics","group":{"name":"EthicsHeading","label":"Consent for publication"}}]}}