{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T07:33:00Z","timestamp":1740123180244,"version":"3.37.3"},"reference-count":78,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2017,12,22]],"date-time":"2017-12-22T00:00:00Z","timestamp":1513900800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100000266","name":"Engineering and Physical Sciences Research Council","doi-asserted-by":"publisher","award":["EP\/K030469\/1"],"id":[{"id":"10.13039\/501100000266","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Mach Learn"],"published-print":{"date-parts":[[2018,1]]},"DOI":"10.1007\/s10994-017-5685-x","type":"journal-article","created":{"date-parts":[[2017,12,22]],"date-time":"2017-12-22T21:22:27Z","timestamp":1513977747000},"page":"285-311","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":60,"title":["Meta-QSAR: a large-scale application of meta-learning to drug design and discovery"],"prefix":"10.1007","volume":"107","author":[{"given":"Ivan","family":"Olier","sequence":"first","affiliation":[]},{"given":"Noureddin","family":"Sadawi","sequence":"additional","affiliation":[]},{"given":"G. Richard","family":"Bickerton","sequence":"additional","affiliation":[]},{"given":"Joaquin","family":"Vanschoren","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1049-2136","authenticated-orcid":false,"given":"Crina","family":"Grosan","sequence":"additional","affiliation":[]},{"given":"Larisa","family":"Soldatova","sequence":"additional","affiliation":[]},{"given":"Ross D.","family":"King","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,12,22]]},"reference":[{"key":"5685_CR1","unstructured":"Abdulrahman, S., & Brazdil, P. (2014). Measures for combining accuracy and time for meta-learning. In Proceedings of the international workshop on meta-learning and algorithm selection co-located with 21st European conference on artificial intelligence, MetaSel@ECAI 2014, Prague, Czech Republic, August 19, 2014 (pp. 49\u201350)."},{"key":"5685_CR2","unstructured":"Amasyali, M. F., & Ersoy, O. K. (2009). A study of meta learning for regression. Research report, Purdue University. http:\/\/docs.lib.purdue.edu\/ecetr\/386 ."},{"issue":"6","key":"5685_CR3","first-page":"1895","volume":"88","author":"I Atsushi","year":"1980","unstructured":"Atsushi, I. (1980). Thermostability and aliphatic index of globular proteins. Journal of Biochemistry, 88(6), 1895\u20131898.","journal-title":"Journal of Biochemistry"},{"key":"5685_CR4","unstructured":"Bardenet, R., Brendel, M., K\u00e9gl, B., & Sebag, M. (2013). Collaborative hyperparameter tuning. In S. Dasgupta & D. McAllester (Eds.), 30th international conference on machine learning (ICML 2013) (Vol.\u00a028 , pp. 199\u2013207). Acm Press. http:\/\/hal.in2p3.fr\/in2p3-00907381 ."},{"key":"5685_CR5","unstructured":"Bensusan, H., & Giraud-Carrier, C. (2000). Casa batl\u00f3 is in passeig de gr\u00e0cia or landmarking the expertise space. Proceedings of the ECML-00 workshop on meta-learning: Building automatic advice strategies for model selection and method combination (pp. 29\u201346)."},{"key":"5685_CR6","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1007\/3-540-44795-4_3","volume":"2167","author":"H Bensusan","year":"2001","unstructured":"Bensusan, H., & Kalousis, A. (2001). Estimating the predictive accuracy of a classifier. Lecture Notes in Computer Science, 2167, 25\u201336.","journal-title":"Lecture Notes in Computer Science"},{"issue":"22","key":"5685_CR7","doi-asserted-by":"crossref","first-page":"23262","DOI":"10.1074\/jbc.M401932200","volume":"279","author":"M Bhasin","year":"2004","unstructured":"Bhasin, M., & Raghava, G. P. S. (2004). Classification of nuclear receptors based on amino acid composition and dipeptide composition. Journal of Biological Chemistry, 279(22), 23262\u201323266.","journal-title":"Journal of Biological Chemistry"},{"key":"5685_CR8","doi-asserted-by":"publisher","unstructured":"Bickel, S., Bogojeska, J., Lengauer, T., & Scheffer, T. (2008). Multi-task learning for hiv therapy screening. In Proceedings of the 25th international conference on machine learning, ICML \u201908, pp. 56\u201363, New York, NY, USA. ACM. ISBN: 978-1-60558-205-4. https:\/\/doi.org\/10.1145\/1390156.1390164 .","DOI":"10.1145\/1390156.1390164"},{"key":"5685_CR9","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1016\/j.artint.2016.04.003","volume":"237","author":"B Bischl","year":"2016","unstructured":"Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M., Malitsky, Y., Frechtte, A., et al. (2016). Aslib: A benchmark library for algorithm selection. Artificial Intelligence Journal, 237, 41\u201358.","journal-title":"Artificial Intelligence Journal"},{"key":"5685_CR10","doi-asserted-by":"crossref","unstructured":"Bischl, B., Mersmann, O., Trautmann, H., & Preuss, M. (2012). Algorithm selection based on exploratory landscape analysis and cost-sensitive learning. In Proceedings of the fourteenth annual conference on genetic and evolutionary computation (pp. 313320).","DOI":"10.1145\/2330163.2330209"},{"issue":"3","key":"5685_CR11","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1046\/j.1365-2796.2003.01228.x","volume":"254","author":"HG Boman","year":"2003","unstructured":"Boman, H. G. (2003). Antibacterial peptides: Basic facts and emerging concepts. Journal of internal medicine, 254(3), 197\u2013215.","journal-title":"Journal of internal medicine"},{"issue":"4","key":"5685_CR12","doi-asserted-by":"crossref","first-page":"242","DOI":"10.1111\/j.2042-7174.2010.00036.x","volume":"18","author":"LA Braun","year":"2010","unstructured":"Braun, L. A., Tiralongo, E., Wilkinson, J. M., Poole, S., Spitzer, O., Bailey, M., et al. (2010). Adverse reactions to complementary medicines: The Australian pharmacy experience. International Journal of Pharmacy Practice, 18(4), 242\u2013244.","journal-title":"International Journal of Pharmacy Practice"},{"key":"5685_CR13","unstructured":"Brazdil, P., & Soares, C. (2000). Ranking classification algorithms based on relevant performance information. In Meta-learning: Building automatic advice strategies for model selection and method combination."},{"key":"5685_CR14","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1023\/A:1021713901879","volume":"50","author":"P Brazdil","year":"2003","unstructured":"Brazdil, P., Soares, C., & Da Costa, J. P. (2003). Ranking learning algorithms: Using ibl and meta-learning on accuracy and time results. Machine Learning, 50, 251\u2013277.","journal-title":"Machine Learning"},{"key":"5685_CR15","unstructured":"Brochu, E., Cora, V. M., & De Freitas, N. (2010). A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 ."},{"issue":"12","key":"5685_CR16","doi-asserted-by":"crossref","first-page":"4977","DOI":"10.1021\/jm4004285","volume":"57","author":"A Cherkasov","year":"2014","unstructured":"Cherkasov, A., Muratov, E. N., Fourches, D., Varnek, A., Baskin, I. I., Cronin, M., et al. (2014). QSAR modeling: Where have you been? Where are you going to? Journal of Medicinal Chemistry, 57(12), 4977\u20135010.","journal-title":"Journal of Medicinal Chemistry"},{"issue":"4","key":"5685_CR17","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1007\/s10822-013-9648-4","volume":"27","author":"R Cox","year":"2013","unstructured":"Cox, R., Green, D. V. S., Luscombe, C. N., Malcolm, N., & Pickett, S. D. (2013). QSAR workbench: Automating QSAR modeling to drive compound design. Journal of Computer-Aided Molecular Design, 27(4), 321\u2013336.","journal-title":"Journal of Computer-Aided Molecular Design"},{"issue":"1","key":"5685_CR18","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1007\/s10822-011-9495-0","volume":"26","author":"RD Cramer","year":"2012","unstructured":"Cramer, R. D. (2012). The inevitable QSAR renaissance. Journal of Computer-Aided Molecular Design, 26(1), 35\u201338.","journal-title":"Journal of Computer-Aided Molecular Design"},{"issue":"12","key":"5685_CR19","doi-asserted-by":"crossref","first-page":"948","DOI":"10.1038\/nrd4128","volume":"12","author":"JG Cumming","year":"2013","unstructured":"Cumming, J. G., Davis, A. M., Muresan, S., Haeberlein, M., & Chen, H. (2013). Chemical predictive modelling to improve compound quality. Nature Reviews Drug Discovery, 12(12), 948\u2013962.","journal-title":"Nature Reviews Drug Discovery"},{"key":"5685_CR20","first-page":"1","volume":"7","author":"J Demsar","year":"2006","unstructured":"Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1\u201330.","journal-title":"Journal of Machine Learning Research"},{"issue":"20","key":"5685_CR21","doi-asserted-by":"crossref","first-page":"1972","DOI":"10.1056\/NEJMc1504317","volume":"372","author":"JA DiMasi","year":"2015","unstructured":"DiMasi, J. A., Grabowski, H. G., & Hansen, R. W. (2015). The cost of drug development [letter to the editor]. New England Journal of Medicine, 372(20), 1972.","journal-title":"New England Journal of Medicine"},{"key":"5685_CR22","unstructured":"dos Santos, P., Ludermir, T., & Prud\u00eancio, R. (2004). Selection of time series forecasting models based on performance information. Proceedings of the 4th international conference on hybrid intelligent systems (pp. 366\u2013371)."},{"key":"5685_CR23","doi-asserted-by":"crossref","unstructured":"Feurer, M., Springenberg, T., & Hutter, F. (January 2015). Initializing bayesian hyperparameter optimization via meta-learning. In Proceedings of the twenty-ninth AAAI conference on artificial intelligence.","DOI":"10.1609\/aaai.v29i1.9354"},{"key":"5685_CR24","unstructured":"Floris, M., Willighagen, E., Guha, R., Rojas, M., & Hoppe, C. (2011). The Blue Obelisk descriptor ontology. Available at: http:\/\/qsar.sourceforge.net\/dicts\/qsar-descriptors\/index.xhtml ."},{"key":"5685_CR25","unstructured":"F\u00fcrnkranz, J., & Petrak, J. (2001). An evaluation of landmarking variants. Working notes of the ECML\/PKDD 2001 workshop on integrating aspects of data mining, decision support and meta-learning (pp. 57\u201368)."},{"key":"5685_CR26","unstructured":"Guerri, A., & Milano, M. (2012). Learning techniques for automatic algorithm portfolio selection. In Proceedings of the sixteenth european conference on artificial intelligence (pp. 475479)."},{"key":"5685_CR27","doi-asserted-by":"publisher","unstructured":"Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009) The weka data mining software: An update. SIGKDD Explor. Newsl., 11(1), 10\u201318. ISSN: 1931-0145. https:\/\/doi.org\/10.1145\/1656274.1656278 .","DOI":"10.1145\/1656274.1656278"},{"issue":"8","key":"5685_CR28","doi-asserted-by":"crossref","first-page":"1616","DOI":"10.1021\/ja01062a035","volume":"86","author":"C Hansch","year":"1964","unstructured":"Hansch, C., & Fujita, T. (1964). p- $$\\sigma $$ \u03c3 - $$\\pi $$ \u03c0 analysis. A method for the correlation of biological activity and chemical structure. Journal of the American Chemical Society, 86(8), 1616\u20131626.","journal-title":"Journal of the American Chemical Society"},{"issue":"10","key":"5685_CR29","doi-asserted-by":"crossref","first-page":"e25513","DOI":"10.1371\/journal.pone.0025513","volume":"6","author":"J Hastings","year":"2011","unstructured":"Hastings, J., Chepelev, L., Willighagen, E., Adams, N., Steinbeck, C., & Dumontier, M. (2011). The chemical information ontology: Provenance and disambiguation for chemical data on the biological semantic web. Plos One, 6(10), e25513.","journal-title":"Plos One"},{"key":"5685_CR30","doi-asserted-by":"crossref","first-page":"180","DOI":"10.1007\/3-540-44794-6_15","volume":"2168","author":"M Hilario","year":"2001","unstructured":"Hilario, M., & Kalousis, A. (2001). Fusion of meta-knowledge and meta-data for case-based model selection. Lecture Notes in Computer Science, 2168, 180\u2013191.","journal-title":"Lecture Notes in Computer Science"},{"key":"5685_CR31","doi-asserted-by":"crossref","unstructured":"Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). Sequential model-based optimization for general algorithm configuration. In Proceedings of the conference on learning and intelligent optimization (LION 5) (pp. 507\u2013523).","DOI":"10.1007\/978-3-642-25566-3_40"},{"key":"5685_CR32","doi-asserted-by":"publisher","unstructured":"Imming, P., Sinning, C., & Meyer, A. (2006). Drugs, their targets and the nature and number of drug targets. Nature Reviews Drug Discovery, 5(10), 821\u2013834. ISSN: 1474-1776. https:\/\/doi.org\/10.1038\/nrd2132 .","DOI":"10.1038\/nrd2132"},{"key":"5685_CR33","doi-asserted-by":"publisher","unstructured":"Ioset, J. R., & Chang, S. (2011). Drugs for Neglected Diseases initiative model of drug development for neglected diseases: Current status and future challenges. Future Medicinal Chemistry, 3(11), 1361\u20131371. https:\/\/doi.org\/10.4155\/fmc.11.102 .","DOI":"10.4155\/fmc.11.102"},{"key":"5685_CR34","unstructured":"Kalousis, A. (2002). Algorithm selection via meta-learning. Ph.D. Thesis. University of Geneva."},{"issue":"4","key":"5685_CR35","doi-asserted-by":"crossref","first-page":"525","DOI":"10.1142\/S0218213001000647","volume":"10","author":"A Kalousis","year":"2001","unstructured":"Kalousis, A., & Hilario, M. (2001). Model selection via meta-learning: A comparative study. International Journal on Artificial Intelligence Tools, 10(4), 525\u2013554.","journal-title":"International Journal on Artificial Intelligence Tools"},{"key":"5685_CR36","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/j.websem.2015.01.001","volume":"32","author":"C Keeta","year":"2015","unstructured":"Keeta, C., Lawrynowiczb, A., d\u2019Amatoc, C., et al. (2015). The data mining optimization ontology. Journal of Web Semantics, 32, 43\u201353.","journal-title":"Journal of Web Semantics"},{"key":"5685_CR37","unstructured":"K\u00f6pf, C., Taylor, C., & Keller, J. (Jan 2000). Meta-analysis: From data characterisation for meta-learning to meta-regression. Proceedings of the PKDD2000 workshop on data mining, decision support, meta-learning an ILP: Forum for practical problem representaion and prospective solutions (pp. 15\u201326)."},{"key":"5685_CR38","doi-asserted-by":"crossref","unstructured":"Lee, J. W., & Giraud-Carrier, C. G. (2008). Predicting algorithm accuracy with a small set of effective meta-features. In Seventh international conference on machine learning and applications, ICMLA 2008, San Diego, CA, USA, 11\u201313 December 2008 (pp. 808\u2013812).","DOI":"10.1109\/ICMLA.2008.62"},{"issue":"6","key":"5685_CR39","doi-asserted-by":"crossref","first-page":"827","DOI":"10.3233\/IDA-2011-0498","volume":"15","author":"JW Lee","year":"2011","unstructured":"Lee, J. W., & Giraud-Carrier, C. G. (2011). A metric for unsupervised metalearning. Intelligent Data Analysis, 15(6), 827\u2013841.","journal-title":"Intelligent Data Analysis"},{"key":"5685_CR40","doi-asserted-by":"crossref","unstructured":"Leite, R., & Brazdil, P. (2005). Predicting relative performance of classifiers from samples. Proceedings of the 22nd international conference on machine learning (pp. 497\u2013504).","DOI":"10.1145\/1102351.1102414"},{"key":"5685_CR41","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1007\/978-3-540-77002-2_8","volume":"4874","author":"R Leite","year":"2007","unstructured":"Leite, R., & Brazdil, P. (2007). An iterative process for building learning curves and predicting relative performance of classifiers. Lecture Notes in Computer Science, 4874, 87\u201398.","journal-title":"Lecture Notes in Computer Science"},{"key":"5685_CR42","doi-asserted-by":"crossref","unstructured":"Leite, R., Brazdil, P., & Vanschoren, J. (2012). Selecting classification algorithms with active testing. In Machine learning and data mining in pattern recognition\u20148th international conference, MLDM 2012, Berlin, Germany, July 13\u201320, 2012. Proceedings (pp. 117\u2013131).","DOI":"10.1007\/978-3-642-31537-4_10"},{"key":"5685_CR43","unstructured":"Ler, D., Koprinska, I., & Chawla, S. (2005). Utilizing regression-based landmarkers within a meta-learning framework for algorithm selection. Technical report number 569 School of Information Technologies University of Sydney (pp. 44\u201351)."},{"issue":"Suppl 2","key":"5685_CR44","doi-asserted-by":"crossref","first-page":"S241","DOI":"10.1111\/j.1532-5415.2011.03671.x","volume":"59","author":"DL Leslie","year":"2011","unstructured":"Leslie, D. L., & Inouye, S. K. (2011). The importance of delirium: Economic and societal costs. Journal of the American Geriatrics Society, 59(Suppl 2), S241\u2013S243.","journal-title":"Journal of the American Geriatrics Society"},{"key":"5685_CR45","doi-asserted-by":"crossref","unstructured":"Lindner, G., & Studer, R. (1999). Ast: Support for algorithm selection with a cbr approach. In Proceedings of the international conference on machine learning, workshop on recent advances in meta-learning and future work.","DOI":"10.1007\/978-3-540-48247-5_52"},{"issue":"6\u20137","key":"5685_CR46","doi-asserted-by":"crossref","first-page":"613","DOI":"10.1007\/s10822-010-9325-9","volume":"24","author":"YC Martin","year":"2010","unstructured":"Martin, Y. C. (2010). Tautomerism, Hammett sigma, and QSAR. Journal of Computer-Aided Molecular Design, 24(6\u20137), 613\u2013616.","journal-title":"Journal of Computer-Aided Molecular Design"},{"key":"5685_CR47","first-page":"237","volume":"56","author":"A Mauri","year":"2006","unstructured":"Mauri, A., Consonni, V., Pavan, M., & Todeschini, R. (2006). Dragon software: An easy approach to molecular descriptor calculations. MATCH Communications in Mathematical and in Computer Chemistry, 56, 237\u2013248.","journal-title":"MATCH Communications in Mathematical and in Computer Chemistry"},{"key":"5685_CR48","unstructured":"Mcnaught, A. D., & Wilkinson, A. (1997). IUPAC. Compendium of chemical terminology, 2nd ed. (the \u201cGold Book\u201d). New York: Wiley; 2nd Revised edition edition."},{"key":"5685_CR49","unstructured":"Misir, M., & Sebag, M. (2013). Algorithm selection as a collaborative filtering problem. Research report, INRIA. https:\/\/hal.inria.fr\/hal-00922840 ."},{"issue":"1","key":"5685_CR50","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1016\/0307-4412(85)90114-1","volume":"13","author":"DS Moore","year":"1985","unstructured":"Moore, D. S. (1985). Amino acid and peptide net charges: A simple calculational procedure. Biochemical Education, 13(1), 10\u201311.","journal-title":"Biochemical Education"},{"key":"5685_CR51","doi-asserted-by":"crossref","unstructured":"Pammolli, F., Magazzini, L., & Riccaboni, M. (2011). The productivity crisis in pharmaceutical R&D. Nature Reviews Drug Discovery, 10(6), 428\u2013438.","DOI":"10.1038\/nrd3405"},{"key":"5685_CR52","first-page":"2825","volume":"12","author":"F Pedregosa","year":"2011","unstructured":"Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825\u20132830.","journal-title":"Journal of Machine Learning Research"},{"key":"5685_CR53","unstructured":"Peng, Y., Flach, P., Brazdil, P., & Soares, C. (2002). Decision tree-based data characterization for meta-learning. ECML\/PKDD\u201902 workshop on integration and collaboration aspects of data mining, decision support and meta-learning (pp. 111\u2013122)."},{"key":"5685_CR54","unstructured":"Pfahringer, B., Bensusan, H., & Giraud-Carrier, C. (2000). Tell me who can learn you and I can tell you who you are: landmarking various learning algorithms. In Proceedings of the 17th international conference on machine learning (pp. 743\u2013750)."},{"key":"5685_CR55","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/j.neucom.2004.03.008","volume":"61","author":"R Prud\u00eancio","year":"2004","unstructured":"Prud\u00eancio, R., & Ludermir, T. (2004). Meta-learning approaches to selecting time series models. Neurocomputing, 61, 121\u2013137.","journal-title":"Neurocomputing"},{"key":"5685_CR56","first-page":"65118","volume":"15","author":"JR Rice","year":"1976","unstructured":"Rice, J. R. (1976). The algorithm selection problem. Advances in Computers, 15, 65118.","journal-title":"Advances in Computers"},{"issue":"5","key":"5685_CR57","doi-asserted-by":"crossref","first-page":"742","DOI":"10.1021\/ci100050t","volume":"50","author":"D Rogers","year":"2010","unstructured":"Rogers, D., & Hahn, M. (2010). Extended-connectivity fingerprints. Journal of Chemical Information and Modeling, 50(5), 742\u2013754.","journal-title":"Journal of Chemical Information and Modeling"},{"key":"5685_CR58","unstructured":"Rondn-Villarreal, P., Osorio, D., & Torres, R. (2014). Peptides: Calculate indices and theoretical physicochemical properties of peptides and protein sequences. http:\/\/CRAN.R-project.org\/package=Peptides ."},{"issue":"5","key":"5685_CR59","doi-asserted-by":"crossref","first-page":"4791","DOI":"10.3390\/molecules17054791","volume":"17","author":"F Sahigara","year":"2012","unstructured":"Sahigara, F., Mansouri, K., Ballabio, D., Mauri, A., Consonni, V., & Todeschini, R. (2012). Comparison of different approaches to define the applicability domain of QSAR models. Molecules, 17(5), 4791\u20134810.","journal-title":"Molecules"},{"key":"5685_CR60","doi-asserted-by":"publisher","unstructured":"Segal, M., & Xiao, Y. (2011). Multivariate random forests. Wiley interdisciplinary reviews: Data mining and knowledge discovery, 1(1), 80\u201387. ISSN: 19424787. https:\/\/doi.org\/10.1002\/widm.12 .","DOI":"10.1002\/widm.12"},{"key":"5685_CR61","unstructured":"Smith-Miles, K. A. (2008). Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Computing Surveys (CSUR), 41(1), 6:1\u20136:25."},{"key":"5685_CR62","doi-asserted-by":"publisher","unstructured":"Smith, M. R., Martinez, T. R., & Giraud-Carrier, C. G. (2014a). An instance level analysis of data complexity. Machine Learning, 95(2), 225\u2013256. https:\/\/doi.org\/10.1007\/s10994-013-5422-z .","DOI":"10.1007\/s10994-013-5422-z"},{"key":"5685_CR63","unstructured":"Smith, M. R., Mitchell, L., Giraud-Carrier, C., Martinez, T. R. (2014b). Recommending learning algorithms and their associated hyperparameters. In Proceedings of the international workshop on meta-learning and algorithm selection co-located with 21st European conference on artificial intelligence, MetaSel@ECAI 2014, Prague, Czech Republic, August 19, 2014 (pp. 39\u201340)."},{"key":"5685_CR64","doi-asserted-by":"crossref","unstructured":"Soares, C., & Brazdil, P. (2000). Zoomed ranking: Selection of classification algorithms based on relevant performance information. In Proceedings of the 4th European conference on principles of data mining and knowledge discovery (PKDD-2000) (pp. 126\u2013135).","DOI":"10.1007\/3-540-45372-5_13"},{"key":"5685_CR65","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1023\/B:MACH.0000015879.28004.9b","volume":"54","author":"C Soares","year":"2004","unstructured":"Soares, C., Brazdil, P., & Kuba, P. (2004). A meta-learning method to select the kernel width in support vector regression. Machine Learning, 54, 195\u2013209.","journal-title":"Machine Learning"},{"key":"5685_CR66","doi-asserted-by":"crossref","unstructured":"Thornton, C., Hutter, F., Hoos. H. H, & Leyton-Brown, K. (2013). Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. In Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining (KDD\u201913).","DOI":"10.1145\/2487575.2487629"},{"key":"5685_CR67","doi-asserted-by":"crossref","first-page":"444","DOI":"10.1007\/3-540-36755-1_37","volume":"2430","author":"L Todorovski","year":"2002","unstructured":"Todorovski, L., Blockeel, H., & Dzeroski, S. (2002). Ranking with predictive clustering trees. Lecture Notes in Computer Science, 2430, 444\u2013455.","journal-title":"Lecture Notes in Computer Science"},{"key":"5685_CR68","doi-asserted-by":"crossref","unstructured":"van Rijn, J. N., Abdulrahman, S. M., Brazdil, P., & Vanschoren, J. (2015a). Fast algorithm selection using learning curves. In Advances in intelligent data analysis XIV\u201414th international symposium, IDA 2015, Saint Etienne, France, October 22\u201324, 2015, Proceedings (pp. 298\u2013309).","DOI":"10.1007\/978-3-319-24465-5_26"},{"key":"5685_CR69","doi-asserted-by":"crossref","unstructured":"van Rijn, J. N., Holmes, G., Pfahringer, B., & Vanschoren, J. (2014). Algorithm selection on data streams. In Discovery science\u201417th international conference, DS 2014, Bled, Slovenia, October 8\u201310, 2014. Proceedings (pp. 325\u2013336).","DOI":"10.1007\/978-3-319-11812-3_28"},{"key":"5685_CR70","doi-asserted-by":"crossref","unstructured":"van Rijn, J. N., Holmes, G., Pfahringer, B., & Vanschoren, J. (2015b) Having a blast: Meta-learning and heterogeneous ensembles for data streams. In 2015 IEEE international conference on data mining, ICDM 2015, Atlantic City, NJ, USA, November 14\u201317, 2015 (pp. 1003\u20131008).","DOI":"10.1109\/ICDM.2015.55"},{"key":"5685_CR71","unstructured":"Vanschoren, J. (2010). Understanding learning performance with experiment databases. Ph.D. Thesis. University of Leuven."},{"key":"5685_CR72","doi-asserted-by":"publisher","unstructured":"Vanschoren, J., van Rijn, J. N., Bischl, B., & Torgo, L. (2013). Openml: Networked science in machine learning. SIGKDD Explorations, 15(2), 49\u201360. https:\/\/doi.org\/10.1145\/2641190.2641198 .","DOI":"10.1145\/2641190.2641198"},{"issue":"13\u201314","key":"5685_CR73","doi-asserted-by":"crossref","first-page":"685","DOI":"10.1016\/j.drudis.2012.02.013","volume":"17","author":"AJ Williams","year":"2012","unstructured":"Williams, A. J., Ekins, S., & Tkachenko, V. (2012). Towards a gold standard: Regarding quality in public domain chemistry databases and approaches to improving the situation. Drug Discovery Today, 17(13\u201314), 685\u2013701.","journal-title":"Drug Discovery Today"},{"key":"5685_CR74","unstructured":"Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques, Second Edition (Morgan Kaufmann series in data management systems). San Francisco, CA: Morgan Kaufmann Publishers Inc. ISBN: 0120884070."},{"issue":"2","key":"5685_CR75","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1016\/S0893-6080(05)80023-1","volume":"5","author":"D Wolpert","year":"1992","unstructured":"Wolpert, D. (1992). Stacked generalization. Neural Networks, 5(2), 241\u2013259.","journal-title":"Neural Networks"},{"key":"5685_CR76","doi-asserted-by":"publisher","first-page":"1857","DOI":"10.1093\/bioinformatics\/btv042","volume":"31","author":"N Xiao","year":"2015","unstructured":"Xiao, N., Cao, D. S., Zhu, M. F., & Xu, Q. S. (2015). protr\/protrweb: R package and web server for generating various numerical representation schemes of protein sequences. Bioinformatics, 31, 1857\u20131859. https:\/\/doi.org\/10.1093\/bioinformatics\/btv042 .","journal-title":"Bioinformatics"},{"key":"5685_CR77","first-page":"565606","volume":"32","author":"L Xu","year":"2008","unstructured":"Xu, L., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2008). SATzilla: Portfolio-based algorithm selection for SAT. Journal of Artificial Intelligence Research, 32, 565606.","journal-title":"Journal of Artificial Intelligence Research"},{"key":"5685_CR78","unstructured":"Xu, L., Hutter, F., Shen, J., Hoos H. H., & Leyton-Brown, K. (2012). SATzilla2012: Improved algorithm selection based on cost-sensitive classification models. In Proceedings of SAT Challenge 2012."}],"container-title":["Machine Learning"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10994-017-5685-x\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-017-5685-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-017-5685-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,8,11]],"date-time":"2022-08-11T03:08:56Z","timestamp":1660187336000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10994-017-5685-x"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,12,22]]},"references-count":78,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2018,1]]}},"alternative-id":["5685"],"URL":"https:\/\/doi.org\/10.1007\/s10994-017-5685-x","relation":{},"ISSN":["0885-6125","1573-0565"],"issn-type":[{"type":"print","value":"0885-6125"},{"type":"electronic","value":"1573-0565"}],"subject":[],"published":{"date-parts":[[2017,12,22]]}}}