{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,25]],"date-time":"2024-06-25T12:40:01Z","timestamp":1719319201719},"reference-count":44,"publisher":"Springer Science and Business Media LLC","issue":"12","license":[{"start":{"date-parts":[[2017,7,12]],"date-time":"2017-07-12T00:00:00Z","timestamp":1499817600000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2017,7,12]],"date-time":"2017-07-12T00:00:00Z","timestamp":1499817600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"name":"National Science Foundation","award":["NSF grant IIS1218488"]},{"name":"SBO-program of the Flemish Agency for In-novation by Science and Technology","award":["IWT-SBO-Nr. 110067","IWT-SBO-Nr. 110067"]},{"name":"SBO-program of the Flemish Agency for In-novation by Science and Technology","award":["IWT-SBO-Nr. 110067"]},{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","award":["NSF grant IIS1218488"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Mach Learn"],"published-print":{"date-parts":[[2017,12]]},"DOI":"10.1007\/s10994-017-5647-3","type":"journal-article","created":{"date-parts":[[2017,7,12]],"date-time":"2017-07-12T19:07:45Z","timestamp":1499886465000},"page":"1971-1991","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":15,"title":["Soft quantification in statistical relational learning"],"prefix":"10.1007","volume":"106","author":[{"given":"Golnoosh","family":"Farnadi","sequence":"first","affiliation":[]},{"given":"Stephen H.","family":"Bach","sequence":"additional","affiliation":[]},{"given":"Marie-Francine","family":"Moens","sequence":"additional","affiliation":[]},{"given":"Lise","family":"Getoor","sequence":"additional","affiliation":[]},{"given":"Martine","family":"De Cock","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,7,12]]},"reference":[{"key":"5647_CR1","doi-asserted-by":"crossref","unstructured":"Alshukaili, D., Fernandes, A. A. A., & Paton, N. W. (2016). Structuring linked data search results using probabilistic soft logic. In International semantic web conference (ISWC).","DOI":"10.1007\/978-3-319-46523-4_1"},{"key":"5647_CR2","unstructured":"Bach, S. H., Broecheler, M., Huang, B., & Getoor, L. (2015). Hinge-loss Markov random fields and probabilistic soft logic. arXiv:1505.04406 [cs.LG]."},{"key":"5647_CR3","unstructured":"Bach, S. H., Huang, B., London, B., & Getoor, L. (2013). Hinge-loss Markov random fields: Convex inference for structured prediction. In Proceedings of the Uncertainty in Artificial Intelligence (UAI)."},{"key":"5647_CR4","doi-asserted-by":"crossref","unstructured":"Bastian, M., Sebastien, H., & Mathieu, J. (2009). Gephi: An open source software for exploring and manipulating networks. In Proceedings of the international AAAI conference on web and social media (ICWSM) (pp. 361\u2013362).","DOI":"10.1609\/icwsm.v3i1.13937"},{"key":"5647_CR5","unstructured":"Beltagy, I., & Erk, K. (2015). On the proper treatment of quantifiers in probabilistic logic semantics. In Proceedings of the 11th international conference on computational semantics (IWCS) (p. 140)."},{"key":"5647_CR6","doi-asserted-by":"crossref","unstructured":"Beltagy, I., Erk, K., & Mooney, R. J. (2014). Probabilistic soft logic for semantic textual similarity. In Proceedings of the 52nd annual meeting of the association for computational linguistics (ACL) (pp. 1210\u20131219).","DOI":"10.3115\/v1\/P14-1114"},{"key":"5647_CR7","doi-asserted-by":"crossref","unstructured":"Bobillo, F., & Straccia, U. (2008). fuzzyDL: An expressive fuzzy description logic reasoner. In Proceedings of the IEEE international conference on fuzzy systems (FUZZ-IEEE) (pp. 923\u2013930).","DOI":"10.1109\/FUZZY.2008.4630480"},{"key":"5647_CR8","doi-asserted-by":"crossref","unstructured":"Cao, T. H., Rossiter, J. M., Martin, T. P., & Baldwin, J. F. (2002). On the implementation of Fril++ for object-oriented logic programming with uncertainty and fuzziness. In Technologies for constructing intelligent systems 2 (pp. 393\u2013406). Physica-Verlag HD.","DOI":"10.1007\/978-3-7908-1796-6_31"},{"key":"5647_CR9","doi-asserted-by":"publisher","first-page":"181","DOI":"10.1002\/nav.3800090303","volume":"9","author":"A Charnes","year":"1962","unstructured":"Charnes, A., & Cooper, W. W. (1962). Programming with linear fractional functionals. Naval Research Logistics Quarterly, 9, 181\u2013186.","journal-title":"Naval Research Logistics Quarterly"},{"key":"5647_CR10","doi-asserted-by":"crossref","unstructured":"Collins, M. (2002). Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms. In Proceedings of the international conference on empirical methods in natural language processing (ACL) (pp. 1\u20138).","DOI":"10.3115\/1118693.1118694"},{"key":"5647_CR11","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.fss.2013.10.012","volume":"242","author":"M Delgado","year":"2014","unstructured":"Delgado, M., Ruiz, M.-D., S\u00e1nchez, D., & Vila, M.-A. (2014). Fuzzy quantification: A state of the art. Fuzzy Sets and Systems, 242, 1\u201330.","journal-title":"Fuzzy Sets and Systems"},{"key":"5647_CR12","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1016\/S0888-613X(99)00031-6","volume":"23","author":"M Delgado","year":"2000","unstructured":"Delgado, M., S\u00e1nchez, D., & Vila, M. A. (2000). Fuzzy cardinality based evaluation of quantified sentences. International Journal of Approximate Reasoning, 23, 23\u201366.","journal-title":"International Journal of Approximate Reasoning"},{"key":"5647_CR13","doi-asserted-by":"crossref","unstructured":"Deng, L., & Wiebe, J. (2015). Joint prediction for entity\/event-level sentiment analysis using probabilistic soft logic models. In Conference on empirical methods in natural language processing (EMNLP).","DOI":"10.18653\/v1\/D15-1018"},{"key":"5647_CR14","doi-asserted-by":"publisher","first-page":"58","DOI":"10.1016\/j.tourman.2014.09.005","volume":"47","author":"C Dijkmans","year":"2015","unstructured":"Dijkmans, C., Kerkhof, P., & Beukeboom, C. J. (2015). A stage to engage: Social media use and corporate reputation. Tourism Management, 47, 58\u201367.","journal-title":"Tourism Management"},{"key":"5647_CR15","doi-asserted-by":"crossref","unstructured":"Ebrahimi, J., Dou, D., & Lowd, D. (2016). Weakly supervised tweet stance classification by relational bootstrapping. In Conference on empirical methods in natural language processing (EMNLP).","DOI":"10.18653\/v1\/D16-1105"},{"key":"5647_CR16","doi-asserted-by":"publisher","first-page":"775","DOI":"10.1109\/TCBB.2014.2325031","volume":"11","author":"S Fakhraei","year":"2014","unstructured":"Fakhraei, S., Huang, B., Raschid, L., & Getoor, L. (2014). Network-based drug-target interaction prediction with probabilistic soft logic. IEEE\/ACM Transactions on Computational Biology and Bioinformatics, 11, 775\u2013787.","journal-title":"IEEE\/ACM Transactions on Computational Biology and Bioinformatics"},{"key":"5647_CR17","unstructured":"Farnadi, G., Bach, S., Blondeel, M., Moens, M.-F., Getoor, L., & De Cock, M. (2015). Statistical relational learning with soft quantifiers. In Proceedings of 25th international conference on inductive logic programming (ILP)."},{"key":"5647_CR18","unstructured":"Farnadi, G., Bach, S. H., Moens, M. F., Getoor, L., & De Cock, M. (2014). Extending PSL with fuzzy quantifiers. In Proceedings of the Fourth International Workshop on Statistical Relational AI at AAAI (StarAI)."},{"key":"5647_CR19","doi-asserted-by":"crossref","unstructured":"Farnadi, G., Mahdavifar, Z., Keller, I., Nelson, J., Teredesai, A., Moens, M.-F., & De Cock, M. (2015). scalable adaptive label propagation in Grappa. In Proceedings of IEEE international conference on big data (IEEE-BigData).","DOI":"10.1109\/BigData.2015.7363911"},{"key":"5647_CR20","doi-asserted-by":"crossref","DOI":"10.7551\/mitpress\/7432.001.0001","volume-title":"Introduction to statistical relational learning","author":"L Getoor","year":"2007","unstructured":"Getoor, L., & Taskar, B. (2007). Introduction to statistical relational learning. Cambridge: MIT press."},{"key":"5647_CR21","doi-asserted-by":"publisher","first-page":"8801","DOI":"10.1007\/s11042-013-1691-6","volume":"74","author":"I Ha","year":"2015","unstructured":"Ha, I., Oh, K.-J., & Jo, G.-S. (2015). Personalized advertisement system using social relationship based user modeling. Multimedia Tools and Applications, 74, 8801\u20138819.","journal-title":"Multimedia Tools and Applications"},{"key":"5647_CR22","doi-asserted-by":"publisher","DOI":"10.1037\/10628-000","volume-title":"The psychology of interpersonal relations","author":"F Heider","year":"1958","unstructured":"Heider, F. (1958). The psychology of interpersonal relations. New York: Wiley."},{"key":"5647_CR23","doi-asserted-by":"crossref","unstructured":"Huang, B., Kimmig, A., Getoor, L., & Golbeck, J. (2013). A flexible framework for probabilistic models of social trust. In Social computing, behavioral-cultural modeling and prediction (pp. 265\u2013273).","DOI":"10.1007\/978-3-642-37210-0_29"},{"key":"5647_CR24","doi-asserted-by":"publisher","first-page":"71","DOI":"10.1002\/nav.3800030108","volume":"3","author":"JR Isbell","year":"1956","unstructured":"Isbell, J. R., & Marlow, W. H. (1956). Attrition games. Naval Research Logistics Quarterly, 3, 71\u201394.","journal-title":"Naval Research Logistics Quarterly"},{"key":"5647_CR25","unstructured":"Jain, D., Barthels, A., & Beetz, M. (2010). Adaptive Markov logic networks: Learning statistical relational models with dynamic parameters. In Proceedings of the European conference on artificial intelligence (ECAI) (pp. 937\u2013942)."},{"key":"5647_CR26","unstructured":"Kazemi, S. M., Buchman, D., Kersting, K., Natarajan, S., & Poole, D. (2014). Relational logistic regression. In Proceedings of the international conference on principles of knowledge representation and reasoning (KR)."},{"key":"5647_CR27","volume-title":"Fuzzy sets and fuzzy logic","author":"G Klir","year":"1995","unstructured":"Klir, G., & Yuan, B. (1995). Fuzzy sets and fuzzy logic. New Jersey: Prentice Hall."},{"key":"5647_CR28","doi-asserted-by":"crossref","unstructured":"Kouki, P., Fakhraei, S., Foulds, J., Eirinaki, M., & Getoor, L. (2015). HyPER: A flexible and extensible probabilistic framework for hybrid recommender systems. In ACM conference on recommender systems (RecSys).","DOI":"10.1145\/2792838.2800175"},{"key":"5647_CR29","doi-asserted-by":"crossref","unstructured":"Leskovec, J., Huttenlocher, D., & Kleinberg, J. (2010). Signed Networks in Social Media. In Proceedings of the 28th ACM conference on human factors in computing systems (CHI).","DOI":"10.1145\/1753326.1753532"},{"key":"5647_CR30","doi-asserted-by":"crossref","unstructured":"Liu, S., Liu, K., He, S., & Zhao, J. (2016). A probabilistic soft logic based approach to exploiting latent and global information in event classification. In AAAI conference on artificial intelligence (AAAI).","DOI":"10.1609\/aaai.v30i1.10375"},{"key":"5647_CR31","unstructured":"Lowd, D., & Domingos, P. (2007). Recursive random fields. In Proceedings of the international joint conference on artificial intelligence (IJCAI) (pp. 950\u2013955)."},{"key":"5647_CR32","unstructured":"Milch, B., Zettlemoyer, L. S., Kersting, K., Haimes, M., & Kaelbling, L. P. (2008). Lifted probabilistic inference with counting formulas. In Proceedings of the international conference on artificial intelligence (AAAi) (Vol. 8, pp. 1062\u20131068)."},{"key":"5647_CR33","doi-asserted-by":"publisher","first-page":"629","DOI":"10.1016\/0743-1066(94)90035-3","volume":"19","author":"S Muggleton","year":"1994","unstructured":"Muggleton, S., & De Raedt, L. (1994). Inductive logic programming: Theory and methods. The Journal of Logic Programming, 19, 629\u2013679.","journal-title":"The Journal of Logic Programming"},{"key":"5647_CR34","doi-asserted-by":"crossref","unstructured":"Poole, D., Buchman, D., Kazemi, S. M., Kersting, K., & Natarajan, S. (2014). Population size extrapolation in relational probabilistic modelling. In Proceedings of the international conference on scalable uncertainty management (SUM) (pp. 292\u2013305). Springer.","DOI":"10.1007\/978-3-319-11508-5_25"},{"key":"5647_CR35","unstructured":"Poole, D., Buchman, D., Natarajan, S., & Kersting, K. (2012). Aggregation and population growth: The relational logistic regression and Markov logic cases. In Proceedings of the international workshop on statistical relational AI at UAI (StarAI)."},{"key":"5647_CR36","doi-asserted-by":"crossref","unstructured":"Prade, H., Richard, G., & Serrurier, M. (2003). Learning first order fuzzy logic rules. In Proceedings of the 10th international fuzzy systems world congress (IFSA) (pp. 702\u2013709). Springer.","DOI":"10.1007\/3-540-44967-1_84"},{"key":"5647_CR37","doi-asserted-by":"crossref","unstructured":"Pujara, J., Miao, H., Getoor, L., & Cohen, W. (2013). Knowledge graph identification. In Proceedings of the international semantic web conference (ISWC).","DOI":"10.1007\/978-3-642-41335-3_34"},{"key":"5647_CR38","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1007\/s10994-006-5833-1","volume":"62","author":"M Richardson","year":"2006","unstructured":"Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62, 107\u2013136.","journal-title":"Machine Learning"},{"issue":"20","key":"5647_CR39","doi-asserted-by":"publisher","first-page":"3175","DOI":"10.1093\/bioinformatics\/btw342","volume":"32","author":"D Sridhar","year":"2016","unstructured":"Sridhar, D., Fakhraei, S., & Getoor, L. (2016). A probabilistic approach for collective similarity-based drug-drug interaction prediction. Bioinformatics, 32(20), 3175\u20133182.","journal-title":"Bioinformatics"},{"key":"5647_CR40","unstructured":"Van den Broeck, G., Meert, W., & Darwiche, A. (2013). Skolemization for weighted first-order model counting. arXiv preprint arXiv:1312.5378 ."},{"key":"5647_CR41","doi-asserted-by":"crossref","unstructured":"Victor, P., Cornelis, C., & De Cock, M. (2011). Trust and recommendations. In Recommender systems handbook (pp. 645\u2013675). Springer.","DOI":"10.1007\/978-0-387-85820-3_20"},{"key":"5647_CR42","doi-asserted-by":"crossref","first-page":"297","DOI":"10.1162\/tacl_a_00184","volume":"2","author":"R West","year":"2014","unstructured":"West, R., Paskov, H. S., Leskovec, J., & Potts, C. (2014). Exploiting social network structure for person-to-person sentiment analysis. Transactions of the Association for Computational Linguistics (TACL), 2, 297\u2013310.","journal-title":"Transactions of the Association for Computational Linguistics (TACL)"},{"key":"5647_CR43","doi-asserted-by":"crossref","unstructured":"Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decision making. In IEEE transactions on systems, man and cybernetics (IEEE SMC) (pp. 183\u2013190).","DOI":"10.1109\/21.87068"},{"key":"5647_CR44","doi-asserted-by":"publisher","first-page":"149","DOI":"10.1016\/0898-1221(83)90013-5","volume":"9","author":"LA Zadeh","year":"1983","unstructured":"Zadeh, L. A. (1983). A computational approach to fuzzy quantifiers in natural languages. Computers and Mathematics with Applications, 9, 149\u2013184.","journal-title":"Computers and Mathematics with Applications"}],"container-title":["Machine Learning"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10994-017-5647-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-017-5647-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-017-5647-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,25]],"date-time":"2024-06-25T12:04:18Z","timestamp":1719317058000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10994-017-5647-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,7,12]]},"references-count":44,"journal-issue":{"issue":"12","published-print":{"date-parts":[[2017,12]]}},"alternative-id":["5647"],"URL":"https:\/\/doi.org\/10.1007\/s10994-017-5647-3","relation":{},"ISSN":["0885-6125","1573-0565"],"issn-type":[{"value":"0885-6125","type":"print"},{"value":"1573-0565","type":"electronic"}],"subject":[],"published":{"date-parts":[[2017,7,12]]},"assertion":[{"value":"19 February 2016","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"1 June 2017","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"12 July 2017","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}